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An explicit, time marching solvers for the calculation of the three dimen-
sional Euler equations and two-dimensional compressible Navier-Stokes
equations are described. The equations are discretized spatially by a
node-centered finite volume formulation. To make the present appro-
ach robust, the inviscid fluxes al cell interfaces are evaluated using a
high accurate TVD scheme based on the MUSCL-type technique with
the Riemann solvers. The Baldwin-Lomax eddy-viscosity model for the
turbulence calculation is used. T'he calculations are performed using
"(C"-type and "H”-type grids. The numerical results are reported, com-
pared with experimental data and discussed.
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1. Introduction

The turbomachinery flows are among the most complex flows encountered
in gas dynamics. They are dominated by convection effects and hence they can
be defined at first approximation by the solution of Euler equation. Though
they do not cover the influence of viscosity, still, they enable the analysis of
the flow with discontinuities characteristic for transonic flows which commonly
occur in heavy-loaded compression and expansion cascades (compressors and
heat turbines). Many basic flow processes in turbomachines are characterised
by high Reynolds numbers. The convection and diffusion effects approxima-
ted by the Navier-Stokes equations allow for the analysis of complicated flow
phenomena and the losses level.
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For these reasons the analysis of turbomachinery components has become
increasingly dependent on the solution of the Navier-Stokes equations. The
accuracy of the computational scheme depends on the discretisation error in
space and in time and on the turbulence model applied. Information about
advantages and disadvantages of various numerical codes for solution of the
Euler equation is important also since they constitute an important element
of each integration algorithm of viscous flow equations.

Through last years many algorithms for calculation of the inviscid flows
or of the inviscid part in viscous flows, based on the central and upwind dif-
ferencing have been developed. Tliese algorithms are both equivalent, when
to the central scheme some artificial dissipative terms are added. The upwind
methods combine the type of differential operators with the directions of di-
sturbance expan sion in the flow. In the case of the convection effects it allows
for reduction of numerical dissipation and better modelling of discontinuities
in the flow. For these reasons the group of the upwind type methods, covering
a variety of approaches, in which the fux vector splitting and flux difference
splitting are the most popular, recently has intensively developed. The flux
difference splitting methods cover a large category of the so-called Godunov-
type methods. This kind of the diflerencing schemes evolved from the original
idea proposed by Godunov (1959), who first applied the solution of the initial-
value Riemann problem to the nuinerical solution of conservation equations.
Various versions of this approach: e.g.. Godunov (1976}, Osher and Solomon
(1982), Roe (1981), Pandolffi (198.1) constitute a basis for many specific solu-
tion algorithms of the Fuler and Navier-Stokes equations.

The upwind Godunov-type methods are the first order accurate, monotone
scheme. This leads to a poor representation even of linear phenomena. It is
therefore essential to look for ligher order schemes, to reduce the diffusive
character of the first order schemes. The transfer to the high resolution Total
Variation Diminishing (TVD) schemes makes this schemes very attractive for
the analysis of transonic and supersonic flows in turbomachinery cascades.
The TVD-schemes can be applied as to the Euler equations as to evaluation of
the inviscid terms of the Navier-Stokes equations (Chakravarthy and Osher,
1985). According to the studies of van Leer et al. (1987) and Vatsa et al.
(1987) it was found that bnilt-in numerical dissipation terms introduced by
highly accurate TVD-schemes based on the Riemann solvers automatically
become small in boundary layers, so as not to dominate the natural diffusion.
In this paper the numerical experiments to compare the calculation results of
blade cascade 3D inviscid flows obtained applying the schemes with different
degrees of accuracy are presented.

The Reynolds averaged Navier-Stokes equations solved for the turbomachi-
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nery cascade flows required turbulence modelling. Various turbulence models
have been developed in last years. The two-equation models or other com-
plex turbulence models do not guarantee vet good modelling in all cases. In
this algorithm the algebraic two-laver eddy-viscosity model developed by Bal-
dwin and Lomax (1978) is used. Its simplicity makes it attractive while it
was successfully tested on the many examples. This method has been still
widely used in both external and internal flows, especially for the two- and
three-dimensional engineering applications (e.g. Benetschik (1991), Merz et
al. (1995)).

2. Governing equations for inviscid and viscous calculations

The equations of the fluid motion can be presented as follows

X Q) =n (2.1)
ot
The operators L(Q) and values H depend on the flow model, form of depen-
dent variables of the vector € and coordinate systems applied.

For the 3D motion ol the inviscid, compressible fluid Egs (2.1) can be
described by the Euler equations in the coordinate system rotating with the
angular velocity (42,0,0) where {2 is a component placed in the axis z of
the machine, as

J 0 9 J
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where
U, v, W -
u, U’, w -

e —
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density
velocity components in the absolute frame of reference
velocity components in the relative frame of reference

total energy per unit volume.

The static pressure for the perfect gas is defined by:

p=(y- 1)[6 - ép(u2 +v? 4 w2)] (2.3)

where ~ is the ratio of specific heats.

Preserving the same vector ol dependable variables

@ in Egs (2.2) in

absolute and relative [rames of reference facilitates solution of the flow problem
in the systems containing stator and rotor passages.

The transformation to the general curvilinear coordinate system (&,%,()
with the determinant of Jakobi matrix J = |0(a,y,2)/d(€,n,()| gives

d - -
Q+—E+——F+55G+H (2.4)
where
[ p pl pV’
~ puU ~ pul’ + &p . puV’' + ngp
Q=J) pv E=1J1 poll'+&p F=J] poV' +nyp
pw pwll’ + €.p pwV' + n,p
| e ell! +pU eV' 4+ pV
i pW'’ 0
R puW' + (op R 0
G=J| poW'+(yp H=| —puwf
pwW' +(.p poi2
| eW’ +pW 0

In these equations the contravariant relative velocity components are de-

scribed as

U'=&u+ (v + 2z) + E(w — Qy)
V= npu+n,(v+ 22) + n.(w — 2y)
W' = Gou+ C(v+ 22) + ((w — 2y)

(2.5)
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and the contravariant absolute velocity components as

U= Eut €0+ €
Vo= 4 g0+ now (2.6)
W = Cout o+ Cow

This form of the Euler equations is useful for construction of the numerical
algorithm for the turbomachinery calculations, especially, when the stator and
rotor are commonly considered.

Assuming for the viscous calculations the two-dimensional flow model, the
Reynolds-averaged unsteady Navier-Stokes equations obtained from Eqs (2.1)
are written in conservation law forin as

0Q JOE OF JE oF
e — —— = R -1 Y Y 2.7
ot dv + dy ¢ ( du + dy ) (2.7)
where
p pu pv
2
Q= pu E = puc+p F= pZuv
pv pur pve+p
e ule + p) v(e+p)
0 0
E, = Tax F, = Try
Try Tyy
UTpz + UTry — (x UTry + UTyy — Gy
In addition, the static pressure is given by
L2, 2
p={(y-1) e—Ep(u + v )] (2.8)
where + is the ratio of specific heats.
Assuming the Stokes hyvpothesis the stress terms are given by
2
Tew = gp,('Zul. —vy)
Tey = Mty + vy) (2.9)
Tyy = §/L(2’Uy — Uy)
where g is the viscosity. The heat fluxes ¢,, q, are defined as ¢, = —k7Tg,

qy = —kTy, where k is the coefficient of thermal conductivity.



310 T.CHMIELNIAK, W.WRGOBLEWSKI

The Navier-Stokes Lgs (2.8) are transformed to the general curvilinear
coordinate system (&,n) with the determinant of the Jakobi matrix J =
|0(z,v)/0(€,m)]. The resulting cquations written in the strong conservation
law form are

9Q OE OF _ _ ,0E, OF,
Tar 9 T gy = Re (05 +52) (2.10)
where the transformed fluxes take the form

0¢ 3 =~ r0n on

E= J(() E+()F) F_J((—ﬂEnL@F)
(2.11)

B—s(%p . % FL= g(Og, O
E, = J(mEU + ayFU) F,= J(axEu + ayFU)

and the stress terms are given after transformation by the following expressions

2 .
Trr = 5,“-[2(61'“5 + 77I'U-'r)) - (fyvt' + Uy”n)]
Tey = :“(E.l/ g + Ny + f.):l’t: + 7]1177;) (212)

2
Toy = Fhl=&otte + ) + 2&yve + 109))

With the Bussinesq eddy-viscosity approximation an effective viscosity pu
has two distinct parts
o=+ (2.13)
where the subscripts [ and 1 denote l[aminar and turbulent quantities respec-
tively. The laminar viscosity depends on the temperature 7' and is modelied
by Sutherland’s law

\/—1+1101/7 (2.14)
T+ 110.4/T,

The algebraic turbulence model of Baldwin and Lomax (1978) is adopted
to estimate the eddy viscosity .

The coefficients of thermal conductivity & have been replaced by assuming
a constant Prandtl number and the heat fluxes are as follows

It

Iz = _lTl‘ _ (Ez7a +77rT)
(2.15)
[2
4y = Jil El/Tt. + 77yT )
—

with the following abbreviation

i fu i
LASR L 2.1
J)l. Pl'[ + Pl't ( 6)
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where Pry, Pr; are laminar and turbulent Prandtl numbers, respectively.
All equations are nondimensionalized by arbitrary reference quantities

using the following formulae

. P N 0 N v - e
p=— U= — D= — e = -
P oo (U Pool
= = ” T (2.17)
a taoo i = e Re — Pool oo
1 Hox Hoo
where
I - flowfield reference length
a - sonic velocity

and subscript oo denotes the total quantity.

3. Numerical algorithm

The algorithm used to solve the system of equations (2.12) is a time-
marching Godunov-type method. The discretisation in space of the flow gra-
dients was carried out using the node-centered finite volume method (Fig.1a).
The explicit, first order accurate forward time integration is implemented.
The algorithm for the viscous flow calculation consists of inviscid and viscous
parts. The inviscid part is the sanie as for the calculation of the inviscid flow

model.

(a) "/‘ (0 ” /

Fig. 1. Calculation cells; (a) node-centered basie cell, (b) special control volume for
viscous Huxes
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3.1. Iutegration in space

In the inviscid part the values of numerical fluxes on the surfaces boun-
ding the numerical cell were calenlated from the solutions of the local one-
dimensional Riemann problems. This method requires:

o Defining the discrete (piecewise constant) values of conservative variables
for time level " on each cell surface & necessary to formulate the
local Riemann problems (left and right-hand initial states are the values
QiL+1/2 and Qﬁl/2 in the adjacent calculation cells)

e The exact or approximate solution of the 1D Riemann problem for the
direction normal to the interface of the cell. In this paper for the inviscid
3D calculation the exact Riemann solver and [or viscous calculations the
approximate Roe solver were used. Detailed description of this solution
is presented by Chmiclniak and Wréblewski (1995), Chmielniak et al.
(1995)

e Calculation of the nunierical fluxes on the cell boundaries and obtaining
the averaged solution in time #*+!,

The diffusive terms are determined using a special central volume (Fig.1b).
To construct the numerical viscous luxes at the cell interfaces it is necessary
to evaluate derivatives of the velocity components. They are treated following
Chakravarthy (1988) and Benetschik (1991).

3.2. High order accuracy in space

The classical Godunov scheme leads to monotone algorithms of the first
order accuracy in space. To obtain higher accuracy preserving monotonicity,
van Leer’'s MUSCL approximation has been applied (see van Leer (1979),
Hirsch (1990)) with the van Albada limiter function s (van Albada et al.
(1982)). In this case, the vector of conservative variables is computed from
the equation

&

; (1= ks)VeQ + (1 + k3)AcQ) |

QiL+1/2 = Qi+ [ ;

(3.1)
QF e = Qipr + H (( L= k) deQ + (14 ks)v&Q)]iﬂ
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The value ¢ was introduced to avoid division by zero (¢ = 1073). For
k = 1/3 we obtain the third order accuracy scheme. With the use of the flux
limiter the scheme shows properties, which are similar to those of the TVD-
schemes. The approximation (3.1)is valid for the uniform grid, otherwise, Q%
and QF are computed from (Benetschik (1991))

k= it [ H{[57 -+ (25 - DIve@+ [+ +(2- )] ace)]
(3.2)

Qs = Qunr = [H{[55 + 12— 2p)]ve+ [5 - e - 1)) ac)]

In Eqgs (3.2) ! means the local coordinate defined along the curve for which
the interpolation is made. Operators A and V are defined as in Eq (3.1).
Interpolation can be defined for conservative or primitive variables.

3.3. Boundary conditions

The appropriate choice and the numerical implementation of boundary
conditions are very important elements ol the whole computation process.
According to the theory of characteristics, three or four physical quantities
for 2D or 3D calculations, respectively, should be prescribed at the subsonic
inlet. The following are implemented: for 2D case — total temperature, total
pressure and flow angle, and for 3D case the second flow angle is added. The
value of Riemann invariant at the inlet houndary

—T” for "C” — type grid(7n = Tmax)
R=< - e (33)
U - ——[a or "H" —1ype grid(€ = 0)

is determined on the Dbasis ol quantities defined for the internal cell adjacent
to the boundary. Tor the supersonic inlet, all components are computed from
the physical quantities prescribed on the boundary.

Only one physical variable is added at the subsonic outlet. For the turbo-
machinery calculations the static pressure is usually assumed. The remaining
quantities are computed from the compatibility relations for Euler equations.
In 3D calculations the radial distribution of static pressure at the outlet is
calculated from the radial equilibrium equation.

Apart from the boundary conditions discussed, two types of internal condi-
tions remain to be defined: conditions resulting from separation of one passage
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(periodicity condition) and for stage calculations relations, defining the trans-
fer from the stator frame of reference to the rotor one. In the first case, since
the flow is examined in the reference system x,y, z, special attention should
be paid to an appropriate transformation of component velocities. While de-
fining conditions on the boundary line separating the stator from the rotor,
one should use the standard boundary conditions at the inlet and outlet, as
it was described above, taking into consideration the relationship between cir-
cumferentially averaged parameters in the absolute and the relative frames of
reference.

For inviscid flow calculations the impermeability condition at solid walls
is used. A detailed description of the boundary conditions used for the Euler
equations are presented in Chmielniak and Wréblewski (1995). At solid walls
the non-slip condition is used for the viscous flow calculation. The pressure is
found using the high Reynolds-number approximation. For the grid orthogonal
to the walls it is

Op
o 0 (3.4)

Surface densities are computed from a specilied wall temperature.

3.4. Computational grid

For the numerical calculations "("-type and "H”-type grids are used. The
"H”-type grid is generated by the algebraic method and used only for stage
calculations. This makes calculation ol the boundary condition in the sta-
tor/rotor interface simplicr and is for the stage discretisation very popular
(e.g. Merz et al. (1995)). Fig.2 presents the grid used for the stage calcula-
tions.

The grid generation procedure for the "C”-type grid is based on Poisson’s
equations according to the work of Sorenson (1980). This algorithm, which
also reduces the grid skewing in the mid passage is very flexible. The periodic
boundary conditions on the midgap boundary allows the computational mesh
to adjust itself from the initial guess to make the mesh as orthogonal as possi-
ble in this region. As a result. the metrics of the computational grid remain
continuous. The Dirichlet houndary conditions on the wall make the discre-
tisation ol the calculation domain close to the wall very fine and orthogonal,
which is very important for the viscous flow calculations. Fig.3 presents the
grid used for the viscous calculations.
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Fig. 3. "C"-type grid for the viscous flow computations

4. Numerical results

Calculation processes were performed on the examples of blade systems of
steam turbines. The application of the Godunov-type scheme for real geometry
of turbomachinery was presented, with the application of various methods of

discretisation and inviscid and viscous flow models.
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4.1. 3D inviscid flow calculations

Stator of the lurbine (case 1)

(b)

Fig. 4. Static pressure distribution; (a) lor the coarse grid and the first order
accuracy scheme, (b) lor the coarse grid and the third order accuracy scheme, (c) for
the fine grid and the third order accuracy scheme

For test computations, the geometry of turbine stator was chosen, for
which the parameters and experimental results were presented by Bdlcs et
al. (1986). At the outlet. Mach number Ma = 1.19 was assumed. The
numerical "C”-type grid applied to computations contained 101 x 9 x 21
computation points for coarse grid and 201 x 17 x 21 for fine grid. The
distributions of static pressure on the blade in middle intersection of the blade
high are presented in Fig.4. In the case of scheme of higher order, the structure
of the resulting shock wave generated around the outlet edge is better, as it
has been expected. The comparison of the distribution of Mach number on
the profile shows considerable divergence of obtained results while applying
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different orders of accuracy, Fig.5. The results for the first order of accuracy on
the suction side differ considerably from the experiment results. The resolution
improves in the case of scheme of higher accuracy order.
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Fig. 5. Predicted and experimental Mach number distributions

Stator of the turbine (case 2

The considered stator geometry belongs to the last stage of the steam tur-
bine working in the area of the superheated steam. The superheated steam
is treated approximately in the same way as a perfect gas. As it was in the
previous case, the values of gas constants are assumed to be invariable in the
whole area of the examined passage. The numerical grid applied to compu-
tations is of "H”-type, and it has 57 X 17 x 17 points. The numerical grid
is very short in the outlet area, which corresponds to the real configuration
of the stator in the stage. Application of the classical boundary conditions
at the inlet p(@) = const for » = const) results in the elimination of shock
wave formed around the outlet edge, when using the scheme of the first order
of accuracy. The increase of comiputation accuracy leads in this case to the
deterioration of convergence of the iteration process. The shock wave mode-
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(a) (b)

Fig. 6. Influence of boundary conditions on the static pressure distributions (3rd
order accuracy); (a)constant static pressure at the outlet, (b) static pressure
distribution at the outlet

led by the scheme of higher order of accuracy is in this case strong and it
distinctly reflects against the outlet boundary (Fig.6a). Since the distance
between the trailing edge of the profiles and the outlet boundary results in
flow disturbances, oscillations are generated in this area. The applied nume-
rical scheme makes it impossible to eliminate these oscillations. In this case,
the modification of the outlet condition was applied, following the principle
claiming that in the stage computations short areas at the outlet are consi-
dered a rule, so it is broadening will not solve the above problem in case of
computations of the whole stage. The changed distribution of static pressure
around the pitch was used as boundary condition; it was defined in such a way
that its average value corresponds wilh the required p,,: on a given radius.
The circumferential distribution of the pressure at the outlet was defined on
the basis of parameters from the internal part of computation area and it was
corrected at each time step. The effects obtained in result of this modification
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are presented in I'ig.6b. Additionally, the improvement of convergence of the
iteration process was observed.

Stage of the steam lurbine

The computation of low through the blade system of two blade-rings was
made for the geometry of the last stage ol the steam turbine. The geometry
of this stage is characterized by high blades and a small axial-ring gap. The
calculations were carried out using the "H”-type, which contained 51 x 15x 27
computation nodes, both for the stator and rotor. For the computation, the
numerical scheme of the third order of accuracy was applied. The stage under
consideration works in the area of wet steam. For the computation some com-
bination of state equations for the perfect and real gas was applied. Distribu-
tions of the static pressure in the stage are presented in Fig.7. The boundary
conditions applied, with the parameteres defined in the axial gap, made it
possible to eliminate smoothly transfers from the absolute to the relative co-
ordinate system. Strong wave structures generated around the outlet edge of
the stator are modeled in the way eliminating the occurrence of reflections
against the outlet boundary. In the case of stage computations, the number of
iterations to solve the Riemann problem at each grid cell face was controlled.
When applying the optimal iteration process no more than 3 iterations were
needed.

The application of the full Riemann problem requires longer computation
time, but it may be attractive in the case of optimization of the iteration
process and in the cases where strong wave phenomena occur, when detatiled
calculation of entropy changes is required.

4.2. 2D viscous flow calculations

For the test computations a turbine cascade section was chosen. It is the
fourth Standard Configuration proposed by Boles and Fransson (1986) for the
workshop. This configuration was ol interest mainly because it represents a
typical section of modern turbine blades. This type of airfoil has relatively high
blade thickness and chamber and operates under transonic flow conditions.

The cascade configuration consists of 20 blades, each with a chord of
¢ = 0.0744m with the maximum thickness-to-chord ratio of 0.17. The
stagger angle is 56.6° with the pitch-to-chord ratio of the cascade 0.76.

Experiments are performed [or many conditions from which for comparison
two are chosen. There are two diflerent regimes of the work: subsonic with



321

GODUNOQV-TYPE SCHEMES IN THE TRANSONIC FLOW CALCULATIONS

Fig. 7. Static pressure distributions for steam turbine stage (k-grid surface number

in rdivection)
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Fig. 8. Isentropic Mach number distribution, Mag;, = 0.72
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Fig. 9. Mach number contours, May;, = 0.72
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the isentropic Mach number at the outlet Mag;; = 0.72 and transonic with
the Mach number May;, = 1.19.

The computations are performed using the "C”-type grid with 401 x 33
nodes (Fig.2). The minimum grid line distance from the wall was 0.03% of the
chord length. In this case the chord Reynolds number based on the upstream
conditions was 0.8 -10%, the Prandtl nuinber and turbulent Prantdl number
were 0.72 and 0.9, respectively.

Fig.8 shows the comparison of experimental isentropic Mach number di-
stribution and computed results. The good agreement of the calculated data
with the experimental ones is observed. 1%ig.9 shows the isolines of the Mach
number distribution in the cascade.

1.4
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0.64—
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q o experiment
b — calculation
04 ‘ T T
Tﬁ_lll]llllllillll
0 0.2 04 06 08 1.0
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Fig. 10. Isentropic Mach number distribution, Mag;, = 1.19

The calculations with the same parameters except for the exit isentropic
Mach number equal 1.19 are performed. The isentropic Mach number distri-
bution obtained from the calculation is compared with experimental data in
Fig.10. It is easy to recognise that the agreement between the calculated and
measured data at the pressure side of the blade is very good. In the transonic
and supersonic ranges at the suction side the reflection of first shock wave
generated at the trailing edge region is predicted well, but the second one is
not present. This second shock wave reflection is obtained as a result of the
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two earlier reflections: the first one from the suction side of the blade and
the second one from the wake region. On the numerical grid using for calcu-
lations this second shock wave reflection at the suction side is smeared. The
calculated isolines of Mach number are displayed in Fig.11.

Fig. 11. Mach number contours, Mas;, = 1.19

5. Conclusions

An Euler and Navier-Stokes analysis method for turbomachinery casca-
des has been presented. This method is based on an explicit time marching
scheme. In the solution technique an upwind-biased discretisation of the in-
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viscid fluxes thus avoiding additional artificial dissipation is used. The cal-
culation is performed on the "1I7-type grid and on the orthogonal ”C”-type
grid. The application ol procedures of higher orders of accuracy to calcu-
lation of transonic flows betier resolves the structure of discontinuity in the
blade passages. The inviscid llow calculations show that the choice of scheme
accuracy when the design problem is considered, could be very important.
The increase of computation accuracy while examining the flow through the
whole turbine stage requires the modification of boundary conditions in the
stator/rotor intersection due to the occurrence of strong wave phenemena, to
ensure convergence of the computation process. Such a modification elimi-
nates unphysical disturbances of parameters in the small axial gap, which is
necessary to compute the stationary flow through the stages.

The viscous flow calculations are made on the orthogonal ”C”-type grid
with implementation of the Baldwin-Lomax eddy-viscosity turbulence model.
The accuracy of the computed solutions has been evaluated with experimen-
tal wall isentropic Mach numbers. The resnlts of these comparisons led to the
conclusion that the present method for solving the Navier-Stokes equations
is capable of yielding accurate solutions for the flow in turbine cascades. For
better prediction of the shock wave rellections Muture investigations must con-
centrate on the grid generation procedure that is one of the most important
part of the numerical algorithm. One ol the important task for the next work
will be also implementation in this scheme one of the acceleration techniques.
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Obliczenia przeplywu transonicznego z wykorzystaniem schematéw typu
Godunowa

Streszezenie

W artykule przedstawiono metode rozwigzania réwnan Eulera dla przestrzennego
przeplywu w kierowniczym kanale lopatkowym t w stopniu turbinowym oraz metode
rozwiagzania réwnan Navier-Stokes’a dla dwuwymiarowego przeplywu w kanalach lo-
patkowych maszyn wirnikowych. Do obliczeil zastosowano jawna metode objetosci
skonczonych z komdrkami bilansowymi typu "node-centered”. Dyskretyzacja czlonéw
nielepkich réwnarn zachowania dokonana zostala za pomoca schematéw typu Godu-
nowa z dokladnym i przyblizonym rozwiazaniem zagadnienia Riemanna. Schematy te
sa schematami typu "upwind” i pozwalaja na prowadzenie obliczen dla szerokiego za-
kresu predkosci czynnika: od poddzwickowej do naddiwiekowej. W celu otrzymania
wyzszego rzedu dokladnosel w przestrzeni zastosowano aproksymacje typu MUSCL.
Do modelowania turbulenc)i zastosowano algebraiczny model Baldwin’a-Lomax’a.
Obliczenia prowadzono na ortogonalnej siatce typu "C” wygenerowanej w oparciu
o rozwiazanie réwnan Poisson’a oraz w przypadku obliczen stopnia na algebraicznej
siatce typu "H”. Omoéwiono wyniki obliczen przeplywu w kanalach lopatkowych tur-
bin osiowych 1 poréwnano z dostepnymi w literaturze badaniami eksperymentalnymi.
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