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A two-dimensional Euler code is developed for predicting the flowfield
of water vapor in turbomachincry channels. The empirical equation of
state given by Rivkin and Kremenevskaya (1967) is chosen for estimating
the water vapor properties. I'he governing equations are discretized by
the cell-centered finite volume formmulation. The numerical procedure
is based on an explicit Godunov-type scheme using the exact Riemann
solver for the real gas.

Key words: Euler cquations, water vapor, upwind scheme, Riemann
problem

1. Introduction

Numerical computation methods based upon the Riemann problem (Godu-
nov-type methods) have met a marked favour during the last decade, mainly
through the emergence of high-resolution upwind methods, which make use
of the basic concepts introduced by Godunov (1959) and Van Leer (1979).
The finite-volume formulation of these methods has led to the development of
powerful codes, which have allowed us to solve a number of problems involving
a complex turbomachinery geometry. The comparison of four Godunov-type
methods and one of the Flux Vector Splitling methods for solution of the
perfect gas flow was presented by Chmielniak et al. (995).

In this paper there are preseuted two iethods of approach to the equi-
librium water vapor flow calculations. In the first one, the behaviour of the
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water vapor is approximated by the perfect gas equation of state with an
"equivalent” gas constant and isentropic exponent. In the second method all
properties of steam on the both sides of the saturation line are computed from
the empirical equations proposed by Rivkin and Kremenevskaya (1967).

Because of the computational speed and difficulties in coding the first
method is more popular and widely used. The main problem of this work is
to find differences between hoth these methods and to show the advantages
and disadvantages of each of them.

In the second part of this paper the method of solution and results of
computations of the non-equilibrium wet steam flow is described. The tech-
nique of calculation is based on the first of the above mentioned methods for
the equilibrium single-phase flows including with the nucleation and droplet
growth processes.

2. Governing equations

The two-dimensional flow of Lhe water vapor is described by the Euler
equation written in the following divergence form

Q OF 0G
o Ay T (2.1)
where
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and p, p, e — density, pressure and energy per unit.
If we deal with a perfect gas equation of state the value of energy e is
calculated as ,
P 02y 02
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where 7 is the isentropic exponent. The value of pressure p at each iteration
step is calculated from the relation

1
p=(y—1)e- §p(iz2 + vz)]
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When using the real gas cquation ol state the energy is calculated from
the relation |
c=hp—-p+ 5/’[”2 + v?)

where h is the enthalpy of water vapor calculated from the relation proposed
by Rivkin and Kremenevskaya (1967).

The pressure is calculated [rom the non-linear equation using the Newton
iteration process

1
p=h(pplp= e+ 5p(u? + %)

3. Homogenous nucleation

The non-equlibrium calculation of the water vapor expansion flow is based
on the classical theory of condensation by homogenous nucleation. In the
zones where the flow is nucleating or wet, equations (2.1) have to be satisfied
simultaneously with the equations describing nucleation and droplet growth.

Condensation on a liquid droplet proceeds at a rate governed by the ability
of the vapor to conduct the latent heat I away from the droplet surface.
The generally accepted form of the droplet growth equation is that due to
Gyarmathy (1960), which takes into account the diffusion of vapor molecules
through a surrounding gas as well as heat and mass transfer, and the influence

of capillarity
I A T -1,

= = 3.1
N (r+ 1.5915)p1 l)vy — hy ( )
where
p,Ti,hi,pr - radius, temperature, enthalpy and density, respec-
tively. of droplets of the ith group
A Tg, hg - thermal conductivity, temperature and enthalpy,
respectively, of the vapor
I, - free path of the group of droplets
dr/dt — time derivative following a particular droplet.

4. Numerical algorithm

The algorithm used to solve the svstem of equations (2.1) and (3.1) is a
time-marching Godunov-type method (cf Chmielniak and Wréblewski (1995),
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Godunov (1959), Hirsch (1990)). The discretisation in space of the flow gra-
dients was carried out using the cell-centered finite volume method. The
explicit, the first order accuracy in time integration is implemented.

Integration in space

The values of numerical fluxes on the surfaces bounding the calculation cell
were solutions of the local one-dimensional Riemann problems. This method
requires:

e Defining the discrete { piecewise coustant) values of conservative variables
for the time level 1" on each cell surface necessary to formulate the local
Riemann problems

e Solution of the one-dimensional Riemann problem for the direction nor-
mal to the interface of cell

e Calculation of the numerical fluxes on the cell boundaries and obtaining
the averaged solution in time "+,

High order accuracy in space

The classical Godunov scheme leads to monotonic algorithms of the first
order accuracy in space. To obtain higher accuracy preserving monotonicity,
the van Leer MUSCL approximation has been applied (cf Hirsch (1990), van
Leer (1979)) with the van Albada limiter function s (cf van Albada et al.
(1982)). In this case, the vector ol conservative variables is computed from
the equation

UL jp = Ui+ [i'(( L= 1)Vl + (14 ks) AU )|

1

(4.1)

Ufhﬂ =Uip + [43 <( 1= ks) AU+ (14 ks)V5U>L+1

where
'/—\fl/ = l/i+l — [_.71- VQU = l[, - Ui-]

5 = 2A5(’7v5[7 + ¢
- (At'U )2 + (V5l7)3 + ¢

The value ¢ was introduced to avoid division by zero (¢ = 107%). For k = 1/3
we obtain the third order accuracy scheme. With the use of the flux limiter
the scheme shows properties, which are similar to those of the TVD-schemes.
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5. The exact Riemann solver for the real gas equation of state

In the case when the water vapor is described by the real gas equation of
state only the exact Riemann solver is applied calculation of the fluxes at the
cell boundaries.

Riemann’s viewpoint consists in assuniing that at every point within the
flowfield, any variation will engender a couple ol waves, facing to the right and
to the left respectively. Connection between the two domains (%, 7*) takes
place across the contact surface (Fig.1).

I“ contact
lelt wave surlace right wave

——
X

Fig. 1. Representation ol the Riemann problem of gas dynamics

The strategy of resolution of this problem consists in giving a value for the
pressure in the region between the right and left facing waves: p* = pf = pr.
Knowing this pressure, one determines directly the type of each wave. To
determine the flow parameters behind the waves (r* and [* states), one has
to know the jump conditions across cach type of the wave:

— Riemann invariants for rarcefaction waves

c{p, s
w; =8 wy = u j:/ (p.3) dp (5.1)
Jop
p
where for the perfect gas they have aform wy = s, wy, = u + :’—ETC (¢ denotes
the speed of sound);
— governing equations lor the shock waves (Hugoniot relations for the
perfect gas)

piD — piu; = piD — prul
pi;D = (p; + piu?) = prurD — (pf + prul?) (5.2)
e;D —uile; 4+ p)) =D — (el + pl)
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where D is the actual propagation velocity of the shock wave, i denotes the
state [ or r and across the contact surface the pressure p* and velocity u*
are constant.

The main difficulty for the real gas cquation of state is to integrate the

Riemann invariant

Py
ul = u, / s dp
wo

The first difficulty lies in finding the upper limit of the Riemann invariant
integral and then in numerical solving ol it. The upper limit can be obtained
from the condition of unchanged entropy across the rarefaction wave solving
non-linear equation

s(piopi) = s(pi,pl)

Knowing the both limits the value ol the integral is computed numerically
along the isentrope curve.

The procedure for solving the Riemann problem (or a real gas is exhausti-
vely described by Saurel et al. (199.1).

6. Numerical results

Some selected problems ol the equilibrivin and non-equilibrium expansion
flow of the water vapor were tested. In the [irst test a comparison between the
flows of the water vapor deflined as a perfect gas and the water vapor defined
as a real gas, respectively, is done. In the second test there are shown the
computational results of water vapor flow with rapid nucleation.

6.1. Equilibrimin flow

Three flow problems are selected to test performance of the water vapor
flow. The water vapor flow with the perfect gas equation of state was cal-
culated for the constant iscnpropic exponent v = 1.3. The numerical tests
presented below are very popular and widely described in literature. All the
results are obtained with the 2D code. The first classical, 1D Sod test is used
to investigate the solution accuracy for one-dimensional wave structure. In the
second problem the capabilitics ol the schemes for resolution of the complex
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intersection wave structure for a channel flow over a bump are analysed. In
the third test a flow trough a Laval nozzle is investigated.

6.1.1. Sod’s problem

This is so called Sod’s problem (¢f Sod (1978)); this is a very mild test and
its solution consist of left rarefaction. contact and right shock. This test has
started with the following initial values

pr = 1.25 ur, = 0.0 pr = 3.0
pr = 0.333 up = 0.0 pr=0.5

The computation are done for the first order accuracy scheme in space with
CFL = 0.7. The computational results are compared with the known exact
analytical solution of this problem for a perfect gas (Fig.2).
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Fig. 2. Pressure, density and velocity distribution for Sod’s test
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Fig. 3. The geometry and the pressure contours
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Fig. 4. Pressure, density and velocity distributions for a middle section (y = 0.5)
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For the third order accuracy scheme in space the differences between the
discussed methods almost disappear.

6.1.2. Channel flow over a bump

A channel flow over a bump is a standard test case proposed by Rizzi and
Viviand (1981). In this test the supersonic llow with the inlet Mach number
Ma = 1.6 considered. To the calculation the "11” non-ortogonal numerical grid
(91 x 41) was chosen. The geometry of the channel and the pressure contours
are shown in Fig.3. The bump the thickness ratio equals 4%.

The results are obtained for the third order accuracy in space. In Fig.4
the pressure, density end velocity distributious along the section y = 0.5 are
compared.

Small differences between the flow parameters across the oblique shock
waves along the middle section (Ilig.<) are observed.

6.1.3. The Laval nozzle

The geometry of the Laval nozzle with Witoszynski’s geometry (cf Orze-
chowski (1964)) was chosen. The "H” non-ortogonal grid (91 x 41) was
adopted. For this test the [ollowing inlet parameters were used: total pres-
sure po = 1bar and total density pg = 0.5kg/m>. The outlet pressure was
Pout = 0.1Dbar.

The third order accuracy in the 3D scheme was used. In this case are
compared the pressure, density cnd velocity distributions along the middle
section for the water vapor and perfect gas models, respectively (Fig.5). The
differences appear only in the outlet arca of the nozzle, because of the high
value of velocity.

In this test the distribution of the thermodynamic parameters (enthalpy,
entropy, dryness fraction) of the water vapor for the real gas model during the
expansion flow trough the Laval nozzle with Witoszynski’s geometry (cf Orze-
chowski (1964)), Fig.6, are presented, Fig.7. The values of these parameters
calculated with the perfect gas model with constant 7y are not physical.

6.2. Non-equlibrium flow

For the test computations the Laval nozzle (Fig.9) and the turbine cascade
section (Fig.11) were clhiosen. Two-dimensional computations for the Laval
nozzle with the literature computations and the experiment given by Bakhtar
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Fig. 5. Pressure, density and velocity distributions for a middle section

Fig. 6. Geometry and the wetness [raction contours (w > 0)
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Fig. 8. Expansion lines for two initial data
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and Tochai (1980) were compared. The effect of the inlet parameters, as well
as the location and quantity of nucleation was tested.
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Fig. 9. Geometry, pressure and droplets radius distributions for the Laval nozzle.
Comparison with the literature results

6.2.1. The Laval nozzle

Nozzle computations were done for: inlet pressure py = 0.8bar, outlet
pressure P = 0.12bar and twoinlet temperatures, 383K and 423K, Fig.8.

Fig.3 shows the comparison of pressure and droplets radius distributions
for the middle intersections of the Laval nozzle with the literature results. The
beginning and the quantity of the rapid nucleation is close to the experiment
and literature calculation (¢f Bakhtar and Tochai (1980)).
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Fig.10 shows the effect of the inlet parameters and location of rapid nuc-
leation. There were compared the pressure distributions along the middle
intersection lines for two expansions. The departure of the pressure from the
equilibrium state for both expansions in Fig.10 began in Wilson’s area.

calculated expansion for dry test
—&— calculated expansion A-B for wet test

1.8 2.0
x

Fig. 10. Geometry and pressure distributions for the Laval nozzle. Influence of the
inlet. parameters

6.2.2. The turbine cascade

The calculations of the nucleating flow trough a turbine stator were done
for the same inlet and outlet parameters as the calculation for the Laval nozzle
(Fig.9). For calculation the "II” non-ortogonal computational grid was used.
The location of the liquid phase is conformable to Wilson’s area.

We can observe in an increase in the static pressure above the correspon-
ding values of the superheated steam when the condensation occurs (Fig.12).

Fig.13 shows the wetness rate distribution, Wilson’s area is located close to
the trailing edge where the departure of flow parameters from the equilibrium
state is initiated (Fig.12).

In non-equlibrium tests the losses in efficiency for the nozzle and turbine
cascade were estimated.
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Fig. 11, Geometry ol the turbine cascade
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Fig. 12. Pressure distribution for a turhine cascade along the n =0 and 7 = 9pq.
lines
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Fig. 13. Distribution of the wetness fraction
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Fig. 14. Relative change of total enthalpy for Laval nozzle and turbine cascade

In Fig.14 the losses in total enthalpy when the rapid nucleation appears
were estimated using the relation

Ner — 7:,’:”
A= —————
ot

where hyy represents the total enthalpy without condensation and h{S}
represents the total enthalpy with spontaneous condensation. In both cases
we have dealt with supersonic outlet. For the flow through the Laval nozzle
the losses in total enthalpy in the outlet area equaled more than 2% and for
the turbine cascade more than 3%.
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7. Conclusions

The method based on the real gas equation of state is uncomparable much
more time-consuming than the nethod based on the perfect gas equation of
state, mostly because of many iteration processes needed. The tests showed
the differences in the flow variables, mostly significant differences in the values
of velocity obtained by means of these methods. A physical nature of the flow
for an algorithm with real gas equation of state is preserved (it is clearly
showed in the second test). The algoritlim based on the perfect gas equation
of state with v = 1.3 gives approximate values of the water vapor parameters
and false values of the thermodynamic [unctions. Using the real gas equations
when calculating the water vapor expansion all thermodynamic variables can
be estimated with a high accuracy in relation to the real physical phenomena.

Using the perfect gas equation of state with constant isentropic exponent
and the gas constant we cannot describe the properties of the water vapor
expansion flow. Otherwise. this way we caunot calculate precisely the en-
thalpy, entropy and other thermodyvnamic values. Therefore we have to use
an equivalent isentropic exponent and the gas constant. It is relatively inco-
nvenient and a little artificial. Using the real gas equation of state all thermo-
dynamic variables for the water vapor are directly obtained, but it is a very
time-consuming process. However for the fast computer it is not so important.

For the non-equlibrium tests the comparison of calculated results for the
Laval nozzle with the literature data (both theoretical and experimental),
Bakhart et al. (1980), gives satislactory results, Similarly the turbine cascade
calculations gave good results of the location and quantity of rapid nucleation.
In spite the fact that not all complicated physical phenomena appearing in wet
steam flow were taken into consideration in the present algorithm the results
obtained are correct.

A high stability and convergence of this scheme make possible the calcu-
lations for wide rainge of parameters.
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Metoda krokéw czasowych w obliczeniach przeplywu pary wodnej
Streszezenie

W niniejszej pracy przedstawiono obliczenia dwuwymiarowego réwnowagowego
i nier6wnowagowego p17epl)\\n pary wodnej. Obliczenia bazuja na metodzie krokow
czasowych rozwiazania réownania Eulera. Dla rownowagowego przeplywu poréwnano
rozklady parametréw pola prze plywu w praypad ku zastosowania réwnania stanu gazu
rzeczywistego z puypa(ll\lem uzycia réwnania stanu gazu doskonalego. Metodyka
obliczii przeplywu nieréwnowagowego oparta jest na réwnoczesnym rozwiazywaniu
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czastkowych réwnail rézniczkowych Eulera oraz dodatkowego réwnania zachowania,
jakim jest réwnanie wzrostu kropli. wiazacego soba zjawiska wymiany masy i energii
pomiedzy faza gazowsy a ciekla. Do rozwiazania réwnaii zachowania wykorzystano
metode objetosci skoticzonych przy zastosowaniu do dyskretyzaji obszaru obliczenio-
wego siatki regularnej typu "H”. Do wyznaczenia strumieni bilansowych na granicach
komdrek obliczeniowych uzyto schematu upwind wyzszego rzedu dokladnosci w prze-
strzeni. Wyniki obliczen przedstawiono dla geometrii dyszy de Lavala oraz kanalu
lopatkowego turbiny.
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