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1. Motivation

The idea of adaptivity in numerical analysis expresses a very intuitive con-
cept of enriching the discretization selectively in the regions, where the appro-
ximate solution is essentially less accurate than in the rest of computational
domain. Thus it is expected to improve the solution with least computational
effort. The efficiency of such a procedure is observed especially if solutions are
significantly irregular. This makes approximations of flow problems very likely
candidates for applying adaptive methods, as their solutions are characterized
by irregularities like point singularities, boundary and internal layers (shocks).

A quantitative assessment of advantages resulting from adaptivity in the
finite element method can be illustrated in terms of an idealized problem of
interpolation. The arguments presented below were originated by Babuska
and Rheinboldt (1978).
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We consider a construction of a non-uniform finite element mesh which
would be optimal in a sense of minimizing the interpolation error for a fixed
number of elements. For rectangular elements with bilinear approximation the
interpolation error in the H'-seminorm can be estimated as:

2 2 2 2
|u - ulll,l\' < Ch’l\’/(u,zz + u,yy) dx (11)
K
where
u; — interpolant of u
hy - element size.

We will minimize the sum of the expressions on the right-hand side of Eq
(1.1) with the restriction that the number of elements is N,. That is instead
of the true error, which is a hard to compute quantity, we will rather deal with
an expression which bounds the error (still, for simplicity, calling it ”error”).
Assuming that h(z)is an unknown (piecewise constant) function we formulate
the following minimization problem:

find h(z) such that

jh(z)z(u?m + u’,) dz = €* = min
0

dz
=N,
/h?(m)
n

The last integral in Eqs (1.2) represents the number of elements and e
denotes the total error. We use the standard Lagrange multiplier method to
solve the problem

dz
/2h(ufm 2,6k dz — A/z;ﬁah —0  Véh (1.3)
] 1
which implies the optimality criterion for h(z)

hH (vt +42,) = A (1.4)

This characterization can be reinterpreted in view of the fact that h(z) must
be a piecewise constant function and that derivatives of u(z) vary insignifi-
cantly, if elements are small, resulting in the condition

n2. /(u?u +ul)de = (1.5)
K
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Criterion (1.5) is referred to as the equidistribution of errors principle for
optimal meshes. It provides the justification for the intuitive adaptive strategy
saying: "break elements with the biggest errors”, as such a procedure leads to
the equidistribution of errors. Iqs (1.2); and (1.5) indicate that X = e?/N,.
Thus expressing h(z) from Eq (1.4), h(z) = Q/;/[Na(u?”ql— u? )], and
introducing it to Eqs (1.2) we obtain the relation between e and N,

1 2
N, = s (/ ul . +ul, dx) (1.6)
n

An analogous relation between the number of elements N, and the error for
uniform meshes is obtained by noting that

e? = h? / (v, +u?,) de (1.7)
12
and h? = §/N,, where S = meas({2). Thereforc we have
1
N, = 6—25/(”2‘“ +4?,) dz (1.8)
2

An elementary use of the Cauchy-Schwarz inequality

2
(/ u? gy ](1:1;) < /(U?M +u?,) dz - /1 dz (1.9)
I 2 I

shows that, in view of Eqs (1.7) and (1.8)
Ny <N, (1.10)

which proves the expected superiority of adaptive meshes over uniform me-
shes. To illustrate the savings resulting from application of optimal meshes
we consider a model function with an internal boundary layer

u(z) = arctanfa(r — ro)) z € N =[0,1) (1.11)

where r = /z2+ 92, ro = 1/2, a is a parameter that controls irregularity
of wu(z). Table 1 shows the savings factor N,/N, for various values of
parameter a. We observe that N,/N, grows to spectacular values as u(z)
becomes more irregular. These results indicate overwhelmingly that for some
classes of problems the use of adaptivity becomes simply an inevitable necessity
rather than just a more elegant way of solving the problem.
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Table 1. The dependence of the savings factor on irregularity of the
interpolated function

a | N,N,
5 1.65
10 2.67
20 5.11
40 | 10.16

The arguments presented above are very strong motivation to apply an ad-
aptive finite element method to computational fluid dynamics. In this work we
present application of adaptivity to solving the incompressible Navier-Stokes
cquations. Our results are a continuation of the experiments with applying ad-
aptivity to simulations of viscous incompressible flows made by Oden (1994),
Ainsworth and Oden (1993), Oden et al. (1990), (1991), (1993), (1994). Their
solutions were based on quadrilateral and brick elements with constrained ap-
proximation while we use triangular elements with the Rivara and irregular
refinement techniques. The work is organized as follows. Section 2 states
the flow problem. Section 3 presents the pressure correction method of Cho-
rin (1973) to solve the Navier-Stokes equations. A residual error estimation
technique due to Oden et al. (1994) and the adaptive strategy is discussed
in Sections 4 and 5. The concluding part of the paper presents numerical
examples.

2. The Navier-Stokes equations and the weak formulation

Incompressible flows of viscous fluids satisfy the Navier-Stokes equations.
The state variables are selected as the velocity vector u = [u;,u] and the
pressure p. The Navier-Stokes equations express the balance of momentum
and the conservation of mass (incompressibility)

u,+ (- V)u—-V - 2ue(u)+Vp=f in 2
V.u=20 in  f2
w=i on Ip (2.1)
o(up) n =g on Iy

with the initial condition

u(z,0) = uo(z) V.uy=0 (2.2)
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In the above v denotes the kinematic viscosity of the fluid,
g(u) = 1/2(Vu 4+ VuT)is the deformation rate tensor, o(u,p) = 2ve(u) — Ip
stands for the stress tensor. I'p and [y are the parts of the boundary 842 of
the computational domain (2, on which the Dirichlet and Neumann boundary
conditions were specified, % and g are the velocity and the stress defined on
I'p and Iy, respectively. fis the field of body forces.

Multiplying Eqs (2.1); and (2.1); by the test functions v and ¢ and
integrating over the computational domain {2 we obtain a weak formulation
of the Navier-Stokes equations:

find u(z,?), p(z,1) such that

/u,t-vdm+/(u-V)u-ver‘+/2u£(u):e(u)dx—!pv-vdz_—:

7 7 2

:/f~vda:+/g-vd5
2 I'n
(2.3)

/V-uqu:O
2

The spaces of trial functions for velocities u and pressure p are defined as

follows:
— the space of velocities

2
v={ve(H'(Q) : v=0 (2.4)
— the space of pressures

M = {q € L} (Q); if I'p = 352, than additionally /q dz = 0} (2.5)
2

With these definitions we seek for a solution w € @ + L2(0,7;V),
p € L*0,T; M), where [0,T] denotes the time interval.

The weak formulation (2.3) is equivalent to the formulation (2.1) of the
flow problem (called ”strong” in this context) providing the solution u, p and
the test functions v, ¢ are sufficiently smooth. (Derivation of Egs (2.3) from
Eq (2.1) was given above, the opposite implication can be shown by selecting
the test functions v such that » = 0 on I'p and integrating eq (2.3); by
parts.) The weak formulation can be considered, however, in a wider class of
functions from the Sobolev spaces. It can be interpreted analogously as the
principle of virtual works in linear elasticity.
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For the stationary Navier-Stokes equations (u; = 0) and with I'p = 912,
the existance and uniqueness of the solution of Eq (2.3) can be shown (cf
Girault and Raviart (1986)).

3. Pressure correction methods (projection methods)
of A. Chorin

The weak formulation (2.3) is a basis for introducing the finite element
discretization of the Navier-Stokes equations. Unlike in the case of classical el-
liptic boundary value problems the incompressibility condition (2.3) restricts
severely the class of element spaces that can be applied as well as the time
discretization scheme of the problem. Automatic satisfaction of the incom-
pressibility was the inspiration of developing a number of "incompressible ele-
ments”, which are useful in discretization of the Navier-Stokes equations (for
an account of finite element methods for fluid mechanics see Becker (1985)).
Yet, in general, these approaches seem to be rather cumbersome in the con-
text of adaptive methods as they involve lowered order of approximation of
the pressure or suffer other drawbacks.

A successful application of adaptivity to the finite element simulations of
the Navier-Stokes equations was recently presented by Oden (1994), Ainsworth
and Oden (1992), Oden et al. (1990), (1991), (1993), (1994). The algorithm
employed for solving flow problems was a version of the pressure correction
scheme due to Chorin (1968), (1973) (also referred to as the projection method,
a review of methods of this class is given in a work of Gresho and Chan (1990)).

The features of the pressure correction methods which make them espe-
cially attractive in combination with adaptivity can be listed as follows:

e The formulations are independent of the finite element approximation,
which suggests a possibility of using adaptive meshes

e The algorithm is a multi-step method. Each of the steps is a classical
elliptic boundary value problem. This enables one to use many standard
and efficient finite element algorithms as a posteriori error estimation or
iterative equation solvers.

The basic idea of the projection methods can be explained as follows. We
express the Navier-Stokes equations in the form of the special evolutionary
problem
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u,+ Vp=5(u) (3.0)

Vou=20

where

S(u)=2vV-e(u)+ f— (v-V)u (3.2)

Equation (3.1) can be interpreted as a continuous projection of the field S(u)
onto the space of solenoidal functions (i.e. u,) and the space of irrotational
functions (i.e. Vp). This continuous process can be approximated in time
by performing the two projections at discrete time instants At,2A¢, ..., kAt
thus leading to the algorithm:

1. Given an initial velocity field u such that V-u =20
2. Anticipate the field Vp(z,t), t € [0, At], being approximation of Vp
3. Solve the evolutionary problem: u,+ Vp = §(u),t € [0, At]

4. Project u(At) onto the space of solenoidal functions. Call the re-
sult u(At)

5. Goto 1.

There exists a few implementations of the scheme outlined above. They
are obtained by different selections of the algorithm defining p, different time
integration schemes used to integrate the evolutionary problem and appro-
priate ways to perform the projection of step 4. The use of specific procedures
in these steps influences the time accuracy of the scheme, the accuracy of sa-
tisfying boundary conditions, the stability and the cost of calculations. From
a number of algorithms presented in the review work (cf Gresho and Chan
(1990)) we chose two schemes which are advocated by the authors especially
useful. The methods are called "Projection 1” and ”Projection 2”. Below we
list subsequent steps of the two methods. For the details of derivation of the
schemes see Gresho and Chan (1990).

"Projection 1” method

Set m = 0.
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1. Find u,,41/2 such that

U, — Uy, . .
_+1£2t__ = $V [20E(Upnsrj2 + )]+ F in 0

Ump1/2 = W(tms1) on Ip (3.3)
20E(Upp1/2)0 = g + NP on Iy
where F,, = —(un - V), + f(1,,), n is the unit normal vector on 912.

The above is equivalent to solving the following elliptic problem

At At
Unt1/z = 5 ¥ [20E(Unpry2)] = U + 7V - [2ve(un)] + AtFn - (34)

2. Find ¢ such that

~V%= -V u,i in £
g% =0 on Ip (3.5)
¢ =—Alg,, -n on Iy

3. Express ;41 as

U4l = 1fm+1/2 - V¢ in £ (3.6)
U+l = U on Ip
4. Update the pressure
1
] = — 3.7
Pm+1 At¢ (3.7)

The problems listed in steps 1,2 and 3 are equivalent to the following weak
formulations:
1. Find 4,442 such that w,,4,/2 = U4y on I'p and

[
/um+1/2 ‘vdx + %/21/5(um+1/2) 1e(v) dz = /um - vdz +
1 ? 7

2 [ove(un) e(v) de + At [ 1, 0dz - At [(un - Dy v o+ (38)
7} 2 7]
1
+é2£/(g+npm)-vd5+%/21/[a(um)n]-v(15 Yv=0 on Ip
FN FN

2. Find ¢ such that ¢ = —Atg, -non I'nv and

/V¢-qux:—/v-um+l/2qda: Y¢g=0 on I'n (3.9)
0 n
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3. Find #,,4; such that ;41 = Un4q on ['p and

429

/um+1 cvdz = /um+1/2 ~vdy — /VqS ‘v dx Vo=0 on Ip (3.10)
2 1 2

In step 3 we apply the L2-projection to make u,,4, a member of the finite

element space.
”Projection 2” method
1. Given field ug such that V .-ug = 0 find the pressure pq
—V2po = VEF(ug) in 0
%%0 =n- [21/V ce(ug) + Flug) — ;(Z%&o] on Ip

p():I/auon.n — F(ug)-n on In

where F(u) = f— (v V)u.

Set m = 0.
2. Find u,,4;/, such that

u - u i
m+lf2t m + me = %V - [QVE(um+1/2 + um)] + F(u‘m) m

Umyr/2 = Um1 on

2I/E(Um+1/2)n =g+ npn on

(3.11)

9]
I'p

I'n
(3.12)

The above is equivalent to solving the following elliptic boundary value pro-

blem

At At
um+1/2“—2—v‘[2'/5(“m+1/2)] = “m+7V‘[2V5("m)]+4t(Fm—VPm) (3.13)

3. Find ¢ such that

—Vip = =V U1y in £
9¢ _

5% =0 on Ip
¢ = —%(Fm_._l-n-i—pm) on Iy

4. Update the velocities

Um41 = Umyi/2 — V¢ n 2

Umt] = Umtl on Ip

(3.14)

(3.15)



430 W.RACHOWICZ

5. Update the pressure

24 (3.16)

P41 = Pm + Al

6. Go to 2.
The problems listed in steps 1,2,3 and 4 are equivalent to solving the following

weak formulations:
1. Find pg such that pg = vd(up -n)/dn — F(up)-n on I'y and

/Vpo-qu:I::/F(uo)-quz—/F-nqu Vg=0on Iy (3.17)
7] ” I'p

2. Find ., 4q/7 such that w,4y/; = my on I'p and

At
/um+1/2 cvdr + 7/2u£(um+1/z) ce(v)dz = /um -vdz +
2 Q 2

_%/21/6(11171):6(11) d.r—At/(um.V)um .vdm_At/me_vder
(i

n n
(3.18)
At At
+—2— /(gm+1 + npy)-vdS + > / 2u[e(uy )n] -0 dS +
I'n I'n
+/f-vdx Yo =0 on Ip
2
3. Find ¢ such that ¢ = —~At/2[F 41 -7+ pm] on In and
/V¢ Vg dz = —/V “Upy1/29 AT Yg=0 on Iy (3.19)
7] n

4. Find u,,41 such that: ®,41 = 8,4 on Ip and

/um+1«vd:z::/um+1/z-vdx—/Vd>-v(la: Yo=0 on Ip (3.20)
Q2 o) 2

The use of the L2projection in step 4 is motivated as in the previous method.

The following features of the projection methods should be emphasized:

1. The procedures consist of three steps
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2. The weak formulations corresponding to the subsequent steps are sym-
metric and positive definite

3. If the time step At? is fixed, the stiffness matrices corresponding to
boundary-value problems do not change in time. This allows one to
compute and decompose them in the first step and then to use the reso-
lution feature of the equation solver.

"Projection 2” is O(A#3) accurate in time while "Projection 1”7 is only
O(At?). An advantage of "Projection 2” is that the stationary solution satisfies
the weak formulation of the Navier-Stokes equations which for ”Projection 1”
is satisfied only approximately. On the other hand ”"Projection 1” is considered
more stable.

4. An a posteriori error estimate for finite approximations of the
Navier-Stokes equations

A successful application of adaptive methods requires a reliable a posteriori
error estimation technique, i.e. a procedure estimating errors of an existing
finite element approximation of the problem. Element error indicators are used
to indicate regions with big errors where enrichment of the mesh (refinement)
is necessary.

A number of error estimation techniques have been developed for linear
elliptic boundary-value problems. A list of them includes interpolation errors,
estimates based on post-processing, techniques using duality and residual error
estimates. Estimation of errors of more complex, nonlinear and other than
elliptic problems is most often done by using estimates valid for linear elliptic
equations to linear steps of iterative solving of a given problem. One exception
to this rule is the residual error estimate due to Oden et al. (1994), which
is proven to estimate the error of the original Navier-Stokes equations. This
section outlines basic components and implementation details of the method.

4.1. A general idea of the estimate

4.1.1. Definition of the norm

Let e:=u—up and E = p — ps denote the errors in the velocity and in
the pressure of the finite approximations uj and p,. We assume that u, and
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pp, satisfy the weak formulation of the Navier-Stokes equations, i.e. Eq (2.3)
with u,, = 0. We define the auxiliary functions ¢ € V and % € M which
solve the following boundary value problem

]21/5 v)a’z—-/?uee) e(v)dx—/EV vdz +

+/(u-V)u-vdl‘—/(uh-V)uh-vdx Vo € V
n

(4.1)
/¢qu:—/v-eqd$ Vg e M
n n
The norm of a pair (e, E) is defined as follows
e M2 = [ 2ve(4,9) do+ [ 4? do (4.2)
n n
This norm turns out to be equivalent to the standard combination of the H'!
and L? norms, |-|; and || - |jo, used for the Navier-Stokes equations: there
exist constants k; > 0, ko > 0 such that, if the element size h — 0 then
kall(e, EM)I? < (14 O(h))lel] + |EI[§ < kall(e, E)||? (4.3)

4.1.2. Fuvaluation of error indicalors

Let ¢ and i (error indicator functions”) be defined on elements K
as solutions of the following local problems

/2u5¢,\ : )d:v—/g vcl5+/f vdz—/Qusuh.(v)der

OKNTI
i (4.4)
+/phV -vdz ~ /(uh -V)up -vda + /(n;\ co(Up, pr))i-a -0 dS YvE V(g
: ¢ oK
/¢Kq do = /v  upg du Vg € Mix (4.5)
Then
fl(e, EMI2 <> nk (4.6)
K
where

nk = /2’/5(¢k) ce(y) dz + /(V cup)? dx (4.7)
K K
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In Eq (4.4) (ng - o(%h,pr))1-o denotes the stress along the interelement
boundary evaluated as a special average of the stress in a given element and
in the adjacent element. This avaraged stress must be in equilibrium with the
remaining forces loading the element which is the key point of the method.

4.2, Evaluation of self-equilibrated stresses

The weak formulation (4.4) corresponds to the Neumann problem of linear
elasticity. It is solvable only if the forces on the right-hand side of (4.4) are in
equilibrium. Such an equilibrium can be attained by appropriate averaging of
stresses along interelement boundaries. An efficient procedure for evaluation
of self-equilibrated stresses (fluxes) was developed by Ainsworth and Oden
(1992). Its application to the Navier-Stokes equations can be outlined as
follows.

e Consider the "Projection 2” method. Adding the weak statements (3.18)
and (3.20) results in

0= /{%[(Q-F npm ) + 2ve(Uy )n] — npm} ‘v dS + /f-v do +

I'n J

- /(um -Vuy, - vde - 21// %[E(Um) + €(Uny1/2)] 1 €(v) dz + (4.8)
n

n
1 1
/g(Pm + Pmt1)V v da + E/(um - "m+1/2) ‘vdz
7 n

We observe that if steady state is achieved, %, = %n41 = ®nii/2,
Pm = Pm+1, the solution satisfies the weak formulation of the Navier-Stokes
equations (except for the boundary term)

0= /{%[(g+nph)+2ue(uh)n]—nph}-vdS+/f-vdz+
2

I'n
(4.9)

—/(uh-V)uh-vdz—Qu/e(uh):6(v)d:c+/phV-vdz
2 7 2

where ug,pp is the steady state solution. Therefore, the residue of the first of
the Navier-Stokes equations is a sum of the residues of the first and the third
steps of the method.

15 — Mechanika Teoretyczna
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e In Eq (4.4) the linear functional on the right-hand side corresponds to
the residue of the stationary Navier-Stokes equations augmented by the
virtual work of the averaged stress. This stress between elements K and

L is defined using weighting functions a(,f)L and a(Lk,){, k£ = 1,2 defined

along the common boundary Ik, a%")L(s) + aLK(s) =1

(i o (un pi))™) = mic - [0l ol (un, p) + af) 0 (unpr)]  (4.10)

where 03 ), O‘(Lk) are the kth components of the stress in element K or L,
respectively. [t is sufficient to assume that Q%)L is a linear function to make

the self-equilibration possible.

o The procedure of establishing a( ) 1(s) for the element K can be outlined
as follows:

1. We identify the actual vertex nodes A of element K. In the case of
l-irregular meshes (with constraints) these vertices do not necessarily coincide
with the ordinary nodes of A: actual nodes correspond to the global degrees of
freedom which define the solution in the element, they are sometimes located
outside of the element. With every node A and with every element-neighbor
L of K we associate parameters a(l\}f)LyA and a'(Lk)\.—]A. The functions a%)L(s)
shall be expressed as follows

Z a[\L 4¢A (4.11)

AcA

where 14 are the global linear base shape functions associated with nodes A.
2. For every actual node A of element A we identify all the remaining
elements L for which A is a node, too — a patch of elements.
3. For every element L, and for every pair A, L of elements in the patch
we evaluate the quantities

b= [9- ¢A”d5+/f P d +

LAY
_/(uh-V)uh-¢A do —2u/a(uh):a(¢£f))dz+ (4.12)
L I
+/phv W dot [ (i o(un i)y ¥ ds k=1,2

K\OR

Q(KLA = /[nK cok(un,pr) + 0L -op(un,pr)l - zj)ﬁ{) ds k=1,2 (4.13)
Fl\'L
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where 1/7541) = (¥4,0), 1/)542) = (0,%4) are the global vector base shape func-

tions associated with A. Parameters b%:)A correspond to the residue on K

evaluated with stresses averaged with weights 1/2. QE\A)L 4 are expressed by a

jump of stresses along I'iy..
4. For every patch of elements identified by nodes A we construct and
solve the system of equations

T Al = p(k) k=1,2 (4.14)

where b;k) = {b(Lk’L}, L — elements of the patch

Cr, L =M
{Tatrme=< -1 if elements L and M have a common edge  (4.15)
0 otherwise

C, denotes here the number of elements in the patch which share a common
edge with the element L.

5. Set parameters a(,f:)L,fl

(k) (k)
1 Axa—ALa
al\"%,A = 5 + () (416)

OKIL,A

6. Evaluate ag\’%(s) according to Eq (4.11).

4.2.1. Delails of numerical implementation

e As mentioned above the residue bg;k)A can be evaluated as a sum of the
residues of step 1. and 3. of the "Projection 2” method. For "Projec-
tion 1” the situation is similar except for the fact that u, i/ # tm.

o Averaging of the pressure as a component of o = 2ve(uy) — Ip, does
not affect the equilibrium as pj is continuous. Thus averaging is applied
to viscous stresses only.

e Exact solutions of Eq (4.4) are, in general, unavailable. In practice
they are approximated with finite element shape functions of the order
extended from p to p+ 1 where p is the order of the original shape
functions..

o If the jump of interelement stresses g%‘%‘A is very small then Eq (4.16)
results in large round-off errors. In such situations, however, no avera-
ging is necessary as the quantities being averaged are almost identical.

In practice we set a%i 4 = 0.5,
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5. h-adaptive strategies

The idea of h-adaptivity consists in reducing of element sizes h in regions
with large errors. The following mesh refinement techniques are in common
use: Rivara method (cf Rivara (1984)), method of 1-irregular meshes (cf Dem-
kowicz and Oden (1989)), "green” elements of Bank (cf Bank et al. 1983))
and remeshing (i.e. regenerating a mesh). In this work the first two methods
are used.

The Rivara technique

In this approach elements are subdivided into two parts such that the
longest side of an element is divided. At the same time an element-neighbor
sharing the broken side is subsected. If this side is not its longest side, an
attempt to divide the element-neighbor along its longest side is made, together
with the subsequent neighbor, etc., until the subsection of two neighbors along
their common longest side is obtained. An advantage of the method is that
it does not introduce irregular nodes, i.e. the nodes which are vertices of one
element and are located inside an edge of a neighboring element.

The method of I-irreqular meshes (constrained approzimation)

The algorithm consists in breaking elements into 4 congruent "elements-
sons”. In this process irregular nodes mentioned above are generated. The
presence of such nodes requires constraining degrees of freedom of neighboring
elements to ensure the continuity of approximation, which can be considered
a drawback of the method. The advantages include: a possibility of easy
unrefinements (essential in transient problems) and a possibility of using some
efficient iterative solvers (cf Rachowicz (1995)).

The algorithm of mesh adaptation

We follow a commonly accepted strategy of mesh adaptation consisting in
subdividing elements with biggest errors. Its implementation to the Navier-
Stokes flow solver is as follows:

1. Integrate the problem in time until the steady state is reached.

2. For all elements K evaluate error indicators nx (4.7). Find 7per =
maxg nk. Interrupt solving if Npee < TOL with TOL being the
prescribed tolerance.
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3. Subsect elements K for which nx > onmer, 0 < o < 1 is a fixed
parameter.

4. Go to 1.

6. Numerical examples

The projection methods have been used to solve example problems of in-
compressible flows. They include flows in model computational domains of
simple geometry as well as flows around airfoils. In these examples the Diri-
chlet boundary conditions were applied along the boundary of an obstacle as
well as on the inflow of the computational domain and along its sides parallel
to the flow. On the outflow boundary the Neumann boundary condition was
applied with zero stress. The problems were integrated in time with the time
step At correspoding to the Courant-Friedrichs-Levy number, CFL = 0.5
(At = CFLming (hx/|ul)). Error indicators were calculated using the Wu-
Oden-Ainsworth method and the adaptive strategy of the previous section was
used to refine meshes.

Ezample 1: Cavily flow

A popular test problem, a cavity flow with the Reynolds number Re = 50,
was solved with the "Projection 2” method on a mesh of elements of the order
p = 2. Fig.la presents the geometry of the problem and an h-adaptive mesh
with 3 levels of refinements. The method of 1-irregular meshes was used to
generate adaptive meshes. Fig.1b-d present the steady state solution. It is
characterized with singularities at upper corners of the computational domain
and with a boundary layer along the upper cdge.

FEzample 2: Flow in a backstep channel

The geometry of this problem and an h-adaptive mesh (order p = 2)
are shown in Fig.2a. The problem was solved with the Reynolds number
Re = 25 (with respect to the diameter of the inflow). A parabolic profile
of the velocity was assumed on the inflow boundary. Like in the previous
example the 1-irregular mesh with 3 levels of refinements was generated. The
solution obtained with the "Projection 2” method is presented in I'ig.2b-d. It
is significantly irregular around the step where we observe a singularity of the
pressure and a recirculation zone. At some distance from the step the flow is
practically uniform.
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Fig. 1. Cavity flow, Re = 50, (a) statement of the problem and an h-adaptive
mesh, (b) u; velocity component, (¢) w2 velocity component, (d) stream function

Ezxample 3: Flow around a NACA 0012 airfoul

Flows around airfoils are typical problems of aerospace engineering. As
a first of problems of this class we present an analysis of the flow around
NACA 0012 airfoil with the angle of attack 5° and with the Reynolds num-
ber Re = 100. A rectangular computational domain around the airfoil was
covered with an unstructured mesh of 900 linear elements distributed with
nonuniform density allowing for an accurate approximation of the geometry.
Fig.3a presents an h-adaptive mesh of 2100 elements obtained with 3 levels of
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Fig. 2. Backstep channel problem, Re = 25, (a) geometry and an h-adaptive mesh,
u; velocity component, (¢) ua velocity component, (d) distribution of pressure
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Fig. 3. Flow around NACA 0012 airfoil, Re = 100, (a) geometry and an h-adaptive
mesh, (b) u; velocity component



AN h-ADAPTIVE FINITE ELEMENT METHOD... 441

@

(®)

Fig. 4. Flow around NACA 0012 airfoil, Re = 100, (a) u» velocity component,
{b) distribution of pressure
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Fig. 5. Flow around airfoil NACA 66-215 a = 0.6 with a flap, Re = 100,
(a) geometry and an h-adaptive mesh, (b) wu; velocity component
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(b)

Fig. 6. Flow around airfoil NACA 66-215 a = 0.6 with a flap, Re = 100, (a) u»
velocity component, (b) distribution of pressure
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refinements performed with the Rivara algorithm. The solution obtained with
the use of "Projection 1” method is shown in Fig.3b and Fig.4. Tt is charac-
terized with a typical features of such flows: large pressure along the leading
edge, the pressure jump across the thickness of the airfoil and the boundary
layer.

Example {: Flow around airfoi! NACA 66-215 a = 0.6 with a flap

This is a problem of a more complex gecometry as shown in Fig.5a. The
computational domain was discretized with an unstructured mesh of 1600
linear elements of density increasing around the wing. As in the previous
example the Rivara technique was used to generate the adaptive mesh of 3300
elements. The Reynolds number was set to Re = 100. Fig.5b and Fig.6
present the solution., Besides the typical features of the flow we can observe
an especially large pressure gradient across the space between the two parts
of the wing. A precise resolution of the characteristics of the problem in such
a small region was possible because a very fine approximation was introduced
automatically by the adaptive procedures.

7. Concluding remarks

In this work we present application of an h-adaptive finite element method
to simulations of incompressible viscous flows. The paper is an introductory
study of the problem as the range of Raynolds number Re considered was
much below the values of Re for realistic engineering applications (Re ~ 10°).

We report successful numerical cxperiments with triangular elements of
the order p = 1 and p = 2, and with the Rivara and the l-irregular me-
shes techniques of adaptation. Triangular elements seem to be more suitable
than quadrilateral elements to discretize domains of complex geometry. On
the other hand, quadrilateral elements can be refined directionally allowing for
introducing significantly stretched elements which are a necessary tool in di-
scretization of boundary layers, especially for high Reynolds number problems.
Combination of these two kinds of approximation seems to be necessary in an
efficient Navier-Stokes solver. Another area of the future research is develop-
ment of the adaptive strategies lor transient problems.
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h-Adaptacyjna metoda elementéw skoriczonych dla réwnan
Naviera-Stokesa

Streszczenie

W pracy przedstawiono zastosowanie adaptacyjne] metody elementéw skonczo-
nych do réwnan Naviera-Stokesa dla dwuwymiarowych przeplywdéw niescisliwych.,
Zadanie zdyskretyzowano w czasie stosujac metode projekcji A.Chorina Smetodq po-
prawek ci$nienia). Elementy tréjkatne stopnia p = 11 p = 2 zostaly uzyte do
dyskretyzacji przestrzennej. Do tworzenia siatek adaptacyjnych zastosowano metode
Rivary 1 metode siatek l-nieregularnych. Strategia adaptacji siatek wykorzystuje
rozklad wskaznikéw bledu obliczanych metoda Odena, Wu i Ainswortha (1994).
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