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Lagrange’s formulation of system of particles mechanics is based on La-
grange’s description of motion. When a rigid body moves in a velocity
field of fluid it is convenient to use Lagrange’s description of the body
motion and the Euler one for the velocity field of fluid. In such a descrip-
tion a Lagrangian equal to the kinetic energy minus the potential one
does not lead to correct diflerential equations of motion. In our case the
Lagrangian is defined as a function that leads to the correct differential
equations for the problem. The problem is discussed for the case of a
circular cylinder moving in a space and half-space of fluid. First of all
the resultant hydrodynamic forces acting on the cylinder are calculated
on the basis of pressures and the differential equations for the problem
are established. The Lagrangian is given for a general case of motion
in space. In the case of half-space with a perfect bottom, it is assumed
that the radius of the cylinder is small and an approximate description is
introduced. The variational formulations based on Hamillton’s principle
are useful in numerical solutions.
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1. Introduction

The plane motion of a cylinder with radius a in inviscid and incompressible
fluid in motion is considered. This means that viscous effects like separation of
the boundary layer and shedding of vortices are not considered. These effects
are discussed e.g. by Sarpkaya (1976) and Sumer and Fredsoe (1988). The
aim of the paper is to reduce the problem of interaction between the body and
fluid to the description of cylinder motion and thus to a set of two ordinary
differential equations and to find a Lagrangian that leads to these equations.
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It is natural to consider the motion of the cylinder in Lagrange’s description
and the velocity field of luid in the Euler one. Lagrange’s system of particles
dynamics is in Lagrange’s description. Thus, in a general case, a function that
represents the instantaneous kinetic energy of the body and fluid minus the
potential energy considered as a Lagrangian does not lead to correct differen-
tial equations of motion. Luke (1961) used Euler’s description and proposed
a Lagrangian for the case of water waves in a layer of fluid. The proposed La-
grangian leads by Hamilton’s principle of least action and standard procedures
to the known differential equations of the problem.

In our case the resultant liydrodynamic forces are calculated on the basis
of pressures in the fluid and the differential equations for the problem are esta-
blished. The standard two-dimensional formulation of solutions of potential
theory in complex variables is used following Lamb (1957). Firstly, the pro-
blem of motion in the space of fluid is considered. This problem is simple in
calculations and gives a good insight into the analysis and physical meaning.

Similar problem of motion in the upper half-space with a perfect rigid
boundary on the 2 axis is considered. This problem is the basis for the
consideration of the motion of a cylinder placed near a bottom in a wave field.
The problem of motion in a half-space was discussed by von Mueller (1929),
Carpenter (1958), Yamamoto et al. (1974), Wilde (1993), and Wilde et al.
(1993). In the present paper a rigorous formulation is established for the case
of the external velocity corresponding to a field homogeneous in space and
variable in time. Such a case is the standard basis for the formulations used
in engineering applications.

Yamamoto et al. (1974) considered, in some cases, the influence of a
non-homgeneous velocity field. 1In this paper the differential equations for
this problem are derived in a formal way. The Lagrangian obtained for the
homogeneous case is generalised and then Lagrange’s equations are derived
to establish the differential equations for the problem. The formulation is
approximate because the boundary conditions on the cylinder surface are not
satisfled in an exact way.

The final equations may be supplemented by additional terms introducing
the neglected viscous effects. The standard additional terms usually corre-
spond to the Morison formula (cf Morison et al. (1950)).

2. Velocity fields

Let us assume that the external velocity field of fluid has a potential
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&(x,y,1) that satisfies the Laplace equation and that the complex potential
W(z,t), where z = z + iy and ¢ denotes time is an analytic function in the
space for each value of the parameter t. Thus the complex potential may be
represented in the fixed Cartesian co-ordinate system by the following series

VVf = Z g.n(t)z" (2.1)
n=0

The velocities u; and wu, are related to the complex potential by

. oW (z,t
Uy + 11Uy = —8(—2) (2.2)
where the bar over a symbol denotes the complex conjugate.
Let us denote by

the complex number that describes the instantaneous position of the centre
of the cylinder. The complex potential (2.1) may be expanded into a Taylor
series in the neighborhood of the point zp(t). It follows

W= g Lol ol = 2 bl 10" (24)

where
b,[20(1),1] = i_o: G (1) ( 7:: ) 20 (1) 2* =z — z(1)

Eq (2.4) is written in a moving Cartesian co-ordinate system.
In applications it is often enough to consider a few terms of the expansion.
If in Eq (2.1) the coefficients ¢,(t) are equal to zero for n > 2, then

Wy = bo[z0(1), 1] + bi[z0(2), ][z = 20(1)] + ba[20(2), t][2 = 20(1)]?
bo[z0(1), 1) = go(1) + g1(1)z0(t) + g2(1)25(2)
bilzo(1), 1] = g1(t) + 292(1)25 ()
ba[zo(1), 1] = ga(!)
and b,[z0(1),t] = 0 for n > 2. If we are interested in the approximation of

velocity field in a neighbourhood of a point zp(t) at a given time and a fixed
radius as then when

Ibn[zo(t),iﬂa’f‘ & [b1[20(2), t]|ay n>2
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we may take b,[z0(1),1] = 0 for n > 2.
It should be stressed that, according to Eq (2.4), b, is a function of zy(¢)
and t. It is easy to calculate that

9]

%bn(ZO,i) = (71 + 1)bn+](20,i)

(2.5)

d . 0
Ebn(ZO,i) = (Tl + 1)bn+1(20,i)20(i) + a—zobn(ZO,i)

According to Iiq (2.2) in view of Eq (2.4) the complex velocity at the time
1 and point zg(t) is

Uz (20, Y0,1) + 1ty (zo, Yo, 1) = b1(z0,1) (2.6)

The corresponding complex acceleration as a material time derivative is

_ Do .
az‘(‘TO, yOfl) + l(Ly(.”Bo, yOai) = [ @(”L, yat) + lé(za Y, t)] .=
Dttoz z=2¢
(2.7)
0— 0 9?
= [EW, W=

. o — —_
s 522 ‘/Vj]z:zo = a—tbl(ZO,i) + 2()](20, t)bg(Zo,i)

where the symbol D/Dt denotes the material time derivative.
Let us introduce the cylindrical coordinates r and «, the origin of which
lies at the centre of the cylinder. The normal unit vector to the surface is

n = e, cos o + e,sin (2.8)

where e, and e, are the Cartesian base vectors. The normal component of
fluid velocity at the cylinder surface is

Up = UN = Uy COS & + Uy SiN (2.9)

In complex variable notations it can be written

oW
Jz

z* = Tela Uy = Re[

e] (2.10)
r=a
where a is the cylinder radius.

Thus the normal velocity on the surface of the cylinder due to the external
velocity field is

oo
Up = Re[z mb,,a™ e (2.11)

m=1]
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To cancel this component, an additional velocity field outside the cylinder
is assumed in the form

W5t = Y f(O(1)] 7 (2.12)

where the time ? is a parameter.
The normal velocity on the cylinder surface due to this velocity field is

(o]

u, = Re Z(—s)fs(t)a_s_le_im (2.13)

s=1

It follows from the boundary condition on the surface of the cylinder for the
instantaneous motion

Js(1) = a®by(1) (2.14)

The cylinder moves as a rigid body without rotations. Thus the velocities
of all points are equal to the velocity of the centre denoted by 2(¢). The
corresponding complex potential due to the motion of the cylinder for r > a

W, = —a?s(t)[* ()]} (2.15)

where éo(t) = Ci?o(t) + iyo(f).
Finally the total complex potential of the complete instantaneous velocity
field of fluid is
W=W;+W, +W, (2.16)

3. Pressures and resultant forces acting on the cylinder

The pressures p in the fluid at the point (z,y) are given by the formula

-1
P ==rgy = pp - 5p(uz + uy) (3.1)
where
p - density of the fluid
g — acceleration of the gravitational field
Uz, Uy — components of the velocity field that is given as the gra-

dient of the potential ¢
and the dot over a symbol denotes the time derivative.
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The resultant hydrodynamic force ( the hydrostatic pressure is neglected)

F:—fp

where ds = ada is the arc element and n is the unit outward normal vector.
In complex number notations it follows

is
nds (3.2)

r=a

. 1 . N i oW oW
F, +iF, —Ep?{(W+IT)e ada+— f——e a da (3.3)

where the values under the integral are taken as in (3.2) for r = a.
Now to calculate the integrals one has to substitute the expressions (2.16),
(2.4), (2.12), (2.14) and (2.15) into (3.3). The final results are

—p}{ Wf + VVf e“’a da = 7rpa2b1 — 27rpa2b220(1)
—pf VV + VV g do = 7rpa21}_;
5/)?{ WC + ;Vj)ei“a do = —mpa®3(1)

oW, oW, gic ny T
2 ?{ zj gy da—wpz (n+ 1)a* b, bypy

L[ OW, W, —
5/) I Pl v e®a da = mp Z (7 + 1)a*brbpyq (3.4)
Z & n=1
8W oW,

e da =0
0z

1 awymv oW, oW, =

?{[ oz Oz Dz 82} ada=0
(9VVJ' (9I/V 8W aI’Vj

82 a: | 92 m] fada=0

1 ?{ 8W ow, 8W aw]
27 0z 0z dz 0z
The total time derivative has to be calculated according to the second
relation in Eqs (2.5). The final formula for the force exerted by the fluid on
the cylinder is

ada = —2wpa® bzzo( )

0b, —_—
F +iF, = —7rpa2'z'0(t)+27rpa2—%ﬁ)+27rp Z (n+1)a*"b,(20,1)bnt1(20,1)
(3.5)

n=1
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In view of Eq (2.7) this expression may be rewritten in the following form

Fp+iF, = —mpaiy(t) + 27 pa’ [al.(zo, ) + iay(zo, t)} +
(3.6)

+ 27?/)2 (n 4 1)a*"by (20, 1)br41(20, 1)

If the external velocity field corresponds to the case g,(1) = 0 for n > 2 then
the term with the summation symbol vanishes and a very simple expression
results that may be written in the following form

: . D .
F, +iF, = —mpa?3(t) + 27ra2p51- [(by_r(rv, Y, 1) +id (2,1 ,t)} (3.7)
A 2=z

This expression may be used if the radius is small compared with a characte-
ristic length, for example the length of the surface water wave. Tt should be
noted that the material time derivative has to be taken.

4. Lagrange’s equations of motion

The Lagrangian of the system is
L=T-V (4.1)

where T is the kinetic energy of the system and V is the potential energy that
depends upon the displacements of the cylinder and results from the action of
elastic supports.

Let us assume that the coefficients ¢,(?) in the formula for the complex
potential of the external velocity field are not changed due to the motion of
the cylinder. In such a case the generalised coordinates of the system ¢, are
zo and yo.

Lagrange’s differential equations of motion are

doky oL
dt

04 94q =F (4'2)

where F, are the generalised hydrodynamic forces

L= %mﬂpc |23ty - w3 - %{kxwé(t) +ky[yo(t) — ]2} (4.3)

where
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Pe — density of the cylinder
kg, k, — elastic spring constants
Yp — defines the position of the centre at rest.

In the considered case system of differential equations (4.2) corresponds to
two equations, the first one is obtained by dilferentiation with respect to g
and zg, and the second one to g and yo, respectively.

The hydrodynamic forces are given by Eq (3.6) and in a simplified form
by Eq (3.7). The first term on the right side may be shifted to the left side.
In a simplified case the final differential equations are

.. D
ma’(pe + p)Eo(t) + kuwo(t) = 2ma’p 5 | B (2, v, )]
t T=T0,Y=Yo

(4.4)

ra*(pe + p)io(t) + krao(t) = 27ra2pD£[d5,y(x, v, 1)]
l T=T0,Y=v0

If there are no springs and the density of the cylinder is equal to the density of

the fluid then the differential equations describe the phenomenon of identical

accelerations of the cylinder and fluid particle at the instanteneous position of

the cylinder centre (in the absence of the cylinder). It is true if the radius is

small and the omitted terms in (3.1) are negligible.

It should be noted that p in the first term represents the added mass of
fluid. The equations result from the description within the theory of perfect
incompressible fluids, thus they do not describe the boundary layer and the
detachment of vortices. To obtain a better description one has to take into
account the real added mass represented by an experimental coefficient C,,.
The differential equations of the problem become

. D
702 (pe + pCom)io(t) + ksolt) = 27a2p(1 + C) == [8.0(, 3, 1)]
Di T=To,y=¥yo
(4.5)
. D
7ra2(pc + pCr)Uo(1) + kpzo(t) = 27ra2p(1 + Cm)bf [Q,y(z, y,t)]
4 T=T0,¥=Yo

To obtain a good agreement with the experiments usally a drag force term
is added, for example of the type given by Morison et al. (1950), but this
problem will not be discussed in this paper.

There is no difficulty to take into account the full expression for the resul-
tant hydrodynamic force (3.6), acting on the cylinder.

The motion of the cylinder is described in Langrange’s description, while
the velocity field of fluid is in the Euler one. The formulation given by Iigs
(4.2) and (4.3) is standard.
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Let us look for the Lagrangian L* that leads directly to the equations
of motion from Hamilton’s principle of least action that states a conservative
mechanical system moves {rom time {; to time 7 in such a way that

|2
J = /L* di (4.6)
t

called the action integral, has an extreme value. Lagrange’s equations
d (OL*\ OL*
oLty oLt _, (4.7
dt\ DGy a
should lead to the differential equations of motion obtained previously by
considering the resultant forces due to fluid pressure. Luke (1961) proposed a
Lagrangian of this type for the wave motion. It should be stressed that in his
case as well in our case the formulae for the Lagrangian are not derived in a
mathematical way but stated ad hoc.
It is easy to verify that in our case the Lagrangian is

L = %(p + po)ma?iz — pra(byzo + bi2) +
(4.8)
+ pﬂina?”b b, — l/c..’co - -l—k (Yo — ¥p)
@ Onbn = SRy 5 Ny P

n=1

Let us consider the instanteneous kinetic energy of the external velocity
field that corresponds to the area of the cylinder cross section

W, 9T,
Ty = %p//a AL (4.9)
Ac

0z 0z
Simple integration leads to the expression

1 > —
Tr = §p7r Z na’b,b, (4.10)
n=1

that appears in the Lagrangian (4.8).
Simple transformations lead to the following more familiar form of the
Lagrangian in real variables
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%(p + po)ma?[2d(1) + 33 (1)) +

— 20ma? [0 4(2,y,D0(t) + 8 (2, )io(t)] + (4.11)
2 2 1 2 1 2
+ p [45@(:1;,3/,1‘) + &5, (2, y, t)] dA — §kr$0 - Eky(yo - Yp)
Ac

where the subscript after the comma indicates differentiation and ¢ is the

potential function, equal to the real part of W.
If variability of the external velocity field is small within the area of the
cylinder cross section the integral may be approximated by

// [0 (2, 5,0) + 92 (2,3, 0)] dA m pra? [ 82, (20,0, 1) + B2, (20, 40, )] (4.12)
Ac

Within this approximation the resulting Lagrange’s equations are exactly the
same as exactly differential equations (4.4). Eq (4.12) may be used for the
justification of the introduced simplification.

The variational formulation is very useful when numerical methods are
used to obtain solutions. In such a case the differentials are replaced by finite
differences and analytical integration is replaced by numerical methods. The
final result is a set of algebraic equations containing unknown displacements at
chosen times.The variational formulation is constructed within the framework
of theory of conservative mechanical systems. In the variational formulation
only the first derivatives appear and the numerical approximations of the se-
cond derivatives in the final differential equations are obtained from variational
calculus. When finite differences are introduced into the differential equations
the approximations are done in an independent way that may lead to terms
which introduce energy into the system.

5. The case of a surface wave field

Let us consider a layer of fluid of depth h with gravitational surface waves.
In the classical wave theory the fluid is inviscid and incompressible and the
flow has a potential that satisfies the Laplace equation. For the simplest case
of linear harmonic progressive waves the complex potential is

Hw 1

Wi = 2k sinh(kh)

[sin(kz) cos(wt) — cos(kz) sin(wt)] (5.1)
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where
- wave height
w — angular wave frequency, w = 27 /T
T — wave period
k - wave number, k£ =27/L
L - wavelength

and z = z + iy, the x axis coincides with line of the bottom, z = 0+ iy,
describes the initial position of the centre of the cylinder at rest. The wave
number and angular frequency are related by the dispersion equation

2
W o tanh(kh) (5.2)
g

where ¢ is the acceleration of gravitational field.

The first terms of the power series expansion in the neighbourhood of the
origin of the fixed coordinate system are

Hw 1
W= ———F
I= "ok sinh(kh)
This expression corresponds to the power series given by Iq (2.1). It should be

noted that all the coefficients ¢,(7) are real functions of time. From definition
of the wave number £ it follows

[-— sin(wt) 4 (kz) cos(wt) + %(lcz)2 sin(wt) + ] (5.3)

27z

L
If the cylinder radius a compared with the wave length is very small, the
cylinder at the initial position is close to the bottom and stays during the
motion in the neighbourhood of the initial position, then the absolute value
of kz is a very small number. For the roughest approximation

Wy = ug(t)z (5.5)

kz = (5.4)

and thus the velocity field may be considered as homogeneous in space and
harmonic in time and corresponds to a rigid body motion of the fluid parallel
to the z axis.

Let us discuss the physical meaning of the coefficients in the case when we
assume that the coefficients are zero for n greater than two. It follows from
Eq (2.2) that the instantaneous components of velocity at the position of the
cylinder centre are

(0, Yo, 1) = g1(1) + 292(t)20(1)
(5.6)

Uy(0, Yo, 1) = —2g2(t)yo(1)
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To calculate the accelerations one has to calculate the material time derivative.
It follows

az(z0,Y0,1) = G1(1) + 262()zo(1) + 292(2)[g1(1) + g2(2)z0(1)] (5.1)

ay(20,Y0,1) = —242(1)yo(t) + 492(1)

It should be noted that the components of velocity and acceleration are not
independent and are fixed by the values of two real coefficients. Qur velocity
field is not arbitrary. The potential has to satisfy the Laplace equation and
the boundary conditions on the bottom.

The potential function in the moving coordinate system with the help of
Eqgs (2.4) is

Wy = [go(t) + g1(t)z0(1) + g2(2)] +
(5.8)

+ [91(t) + 202(1)20(D)][z = 20()] + g2(t)[z — 20(2)]° + ...

The trigonometric functions of complex arguments have convergent power
series expansions for all z and thus the representation in the form (2.1) is
justified. It should be, however, noted that Eq (5.1) holds only for points in
the fluid. Thus the potential may be used only in the case when the distance
of the cylinder to the free water surface is sufficiently long. When the cylinder
is close to the free surface the additional velocity field defined by the boundary
condition on the cylinder surface has an influence on the boundary conditions
on the [ree surface and results in additional progressive surface waves. In such
a case it we can not assum that the external velocity field is independent of
the motion of the cylinder as it is done in the present paper.

Let us consider the simplest case of fluid motion given by the potential
(5.5). The standard method of analysis of cylinder motion close to the bottom
is to consider the motion of two cylinders in the space, the second cylinder
corresponds to the mirror reflection of the first one in the z axis and moving
with the velocities of centre equal to _é—o—(t—). The complex potential that
satisfies the boundary conditions on the surfaces of cylinder and the =z axis

(cf Wilde (1995)) is

I S YO ) ) - (1)
W = ua(t) zgﬂﬂ{z () Fiaqy | 7= 70(t) + [2ya(t) = aqj]} (5.9)

where go = 0, gj41 = 1/(2y0 — agj) and po = 1, pjp1 = pjqt
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The resultant force acting on the cylinder may be calculated from the
hydrodynamic pressures on the cylinder as it was done in Section 4. Another
standard approach is to consider the multiply connected region bounded by
the curve Sy fixed in space, called the control surface, given by the relations

z = Rcosf y= Rsinp 0<f<m

—-R<z< R y=90 (5.10)

and a moving curve S corresponding to the surface of the cylinder.
Consideration of the resulting momentum of the fluid in the region and

the resultant forces on the surfaces Sp and .S leads with the help of integral

transformations to the following formuta for the force acting on the cylinder

d
F(t) = ) j{p@n ds + p}{ (P2, + &° ,)no — nograd@] dsg (5.11)

where
n — unit normal to the cylinder
no — unit normal to the control surface
® ., — velocity component normal to the control surface.

In complex number notation the vector n corresponds to e'®a da in a
moving coordinate system fixed at the centre of the cylinder. The function @
is the real part of the complex potential W. Thus

- %(W +W) (5.12)

where z — 2zo(1) = ae'®.
In complex number notation the vector ng dsg corresponds to ePR df3.
The integration is in the fixed in space coordinate system and

oW oW

P2 P2 =
x Ty 0z 0z

(5.13)
where z = Relf,

Finally, the hydrodynamic force on the cylinder is expressed in terms of a
complex function. The real part corresponds to the horizontal component and
the imaginary part to the vertical one. The integration is a tedious exercise

when applying the residiie theorem. An essential part of the calculations
is estimation of the contour integral values when R goes to infinity. In the
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calculations of the second integral on the control surface the following identity
given by Wilde (1995) was used

[ee]

) YTRNTIN 1
z Z — _“f’t 5= =3Cn(v) (5.14)
7=0n=0 [2 o q; qn}

where v = yo/a and the derivative is taken with respect to the dimensionless
variable v and
oo
Crn(v) =142} ptn
n=1

After integration the final formulae for the components of the hydrodyna-
mic force on the cylinder are

F, = wpa*i (1) — mpatCp(v)[Fo(t) — ()] +
=7 paCp(v)lEo(t) = ux(t)]jo(?)
(5.15)

. 1 . .
F, = —mpa*C(v)ijo(t) — §7rpaC,'n(v){—[x0(t) —u ()] + yg(t)}
The final differential equations of the problem are

ra?[p; + pCm(v)]Eo — Tap[1 + Cr(v)]ir +

+mapC, (v)[Eo — uz|yo + k2o =0
(5.16)

Lo 1 . .
ma’{pe + pCm(v)]io + §7rapCIn(v)[—(a:o — w2)? + 3] + ky(vo = 1) = 0

The first terms in both equations show that Cy,(v) is the coefficient of added
mass of fluid which depends upon the distance to the bottom. The differential
equations are conjugate and nonlinear. If there are no springs and the density
of the cylinder is equal to the density of the fluid then @o(t) = u(), 9o(¢t) = 0
is a solution. The cylinder moves like the particle of fluid corresponding to the
cylinder centre. If there is no external velocity field the differential equations
reduce to those given by Wilde (1995) for {ree vibrations. If the cylinder does
not move then

koo(1) = map[L + Con(0)]ita()
(5.17)

Byo(1) = SrapCh(v)d(1)
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If the spring constants tend to infinity then the displacements approaches zero,
but their product is equal to the forces in the springs. The obtained relations
are equal to the standard ones.

The Lagrangian that leads directly to the diflerential equation has the form

1 = Lol 4 ool - P + B} +
(5.18)

1 . . .
+ §7ra2(/)c — P + 93] — Vzo, yo)

where V is the potential energy of the springs
1
V= 5 [krl(z) + kO(?/O - ?/;))2]

Now let us discuss a more general case when the external velocity field is
given by a potential that has terms up to n = 2 in power series expansion.
The external potential has a term g¢o[z — 20(1)]%. It is easy to calculate the
corresponding additional potential to satisfy the boundary conditions (cf Eqs
(2.12) and (2.14 )) for the case of a full space. For the half-space it is necessary
to construct a solution that satisfies the boundary conditions on the x axis.
Then the potential (5.9) has to be supplemented by this solution. The same
procedure may be applied to obtain the resultant forces on the cylinder.

Let us look at the approximate formulation. We generalise the Lagrangian
(satisfy the boundary condition only for the first singularity). Let us take the

Lagrangian

L* = %Wﬂzp[l + Cm(v)]{[io — g1(1) — 2g2(1)ao)® + [90 + 292(1)%]2} +
(5.19)

1 o
+ gma*(pe = p)lzg + 95] = V[zo, yol

The generalisation is done with the help of Eqs (5.6). The standard form
of Lagrange'’s equations is used to obtain the differential equations for the

problem
7‘-0’2[/)6 + pCm(v)]xo - ‘I\'(lzp[l + C‘m(v)]a’l'(‘TOa Yo, t) +

+1apC, (v)[Eo — uz(2o, Yo, 1)]%0 + kzzo = 0
(5.20)

7‘_‘12[!’6 + pCom(v)]go — 7"“2/)[1 + Cr(v)lay(zo, yo, 1) +
1 ) .
+57apCr(v) [=(d0 = us)? + 3 — wl] + ky(yo ~ ) = 0
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In the final form Eqs (5.6) and (5.7) were used. It should be noted that acce-
lerations defined as material time derivatives are introduced by the variational
calculus. It should be stressed that the relations are derived for the potential
flow and thus the velocities and accelerations at the cylinder centre can not
be taken in an arbitrary way.

6. Conclusions

The differential equations of plane motion of a circular cylinder in a space of
fluid with a given velocity field are derived within the framework of Lagrange’s
formulation of mechanics. The expression for the Lagrangian is derived, based
on the comparison to the solution obtained by the analysis of hydrodynamic
forces due to pressures in the fluid on the cylinder surface. The Lagrangian
is not a difference between the instantaneous kinetic energy of the fluid and
cylinder, and the potential energy of the springs. Only in the absence of the
external velocity field, i.e. for free vibrations such a statement is true.

It is shown that in the case when the external velocity field changes very
little within the cross-section of the cylinder the final equations are very simple.
It is necessary only to take the material time derivative of the external velocity
field given in Euler’s description at the instantaneous position of the centre.

The case of a cylinder moving in a half-space of fluid is considered when
the external velocity field is homogeneous in space and variable in time with
only one component parallel to the ideal bottom. The Lagrangian is given and
the differential equations are derived.

The formulations may be generalised to the case of a non-homogeneous
velocity field in an approximate way. For a rigorous solution it is necessary
to introduce higher order singularities to satisfy the boundary conditions on
the surface of the cylinder. In the case when the cylinder radius is very small
compared with the length of the water wave the approximate formulation is
justified to get an insight into the behaviour. It should be noted, however,
that the boundary conditions on the surface of the cylinder are not satisfied
and one may expect discrepancies between the theoretical solution and the
experimental values. The expressions reduce to the standard forms for the
cases when the cylinder does not move and as a second one there is no external
velocity field.
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Réwnania Lagrange’a dla dwuwymiarowego ruchu cylindra w cieczy
doskonalej

Streszczenie

Teoria Lagrange’a dynamiki ukladu punktéw materialnych jest sformulowana
w ukladzie §ledzacym ruch poszczegdlnych punktow. W przypadku ruchu ciata sztyw-
nego w cieczy wygodnie jest okresla¢ ruch ciala w opisie Lagrange a, natomiast pole
predkosci w cieczy w opisie lulera. W takim opisie Lagrangian rowny réznicy energii
kinetycznej i energii potencjalnej nie prowadzi do prawidlowych réwnan rézniczkowych
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ruchu. W zagadnieniu rozwazanym w pracy okresla sie Lagrangian jako funkcje,
ktora prowadzi do réwnai Lagrange’a identycznych z otrzymanymi bezposrednio
z réwnan Newtona. Zagadnienie jest badane dla przypadku ruch cylindra w prze-
strzeni i polprzestrzeni cieczy. Najpierw okresla su; wypadkowe sily hydrodynamlczne
dzialajace na cylinder na podstawie analizy cisnien w cleczy 1 wyznacza sig row-
nania rézniczkowe ruchu. Podano wyrazenie na Lagrangian dla przypadku ruchu
w cieczy o polu predkosci okre§lonym poprzez funkcje analityczna. W przypadku
pélprzestrzeni z idealnym dnem zaklada sie, ze srednica cylindra jest mala 1 wprowa-
dza sie opis przyblizony. Sformulowania wariacyjne bazujace na zasadzie Hamiltona
sa dogodne w przypadku stosowania metod numerycznych dla uzyskania efektywnych
rozwiazan.
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