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The paper presents an adaptive {intte element method for solving com-
pressible fluid flow problems with a special emphasis on techniques of
mesh reflinements. A specially designed lor 3D viscous flows strategy of
applying h-refinements, both anisotropic in boundary layers and isotro-
pic clsewhere, together with underlying technical tools and assumptions,
is presented. Examples of application Lo 313 viscous and inviscid super-
sonic flow problems are included.
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1. Introduction

Wlen solving typical transonic and supersonic flow problems it is common
that the regions with rapid changes in state variables occupy only a small part
of the whole computational domain while in a major part of it the flow is ei-
ther slowly changing or uniform. In such cases good resolution of a numerical
scheme is necessary only in these parts of the computational domain where
changes occur while for the rest of the domain the scheme can be less accurate
still keeping the overall error on the same level. Such selective accuracy can be
obtained by means of adaptivity built into a computer code. Usually its im-
plementation comprise two independent parts: the first devoted to selection of
places where increased accuracy is necessary (here a reliable error indicator is
of primary importance) and the second providing technical tools for improving
approximation.

The technique of h-adaptivity consists in reducing the size of a mesh (the
distance between the neighbouring grid points) locally by introduction of new
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grid points (nodes). Ideally, this procedure should lead to the optimal appro-
ximation where some assumed error level is achieved with the least possible
number of nodes in the mesh. This however would require the use ol local a po-
stertort error estimation quantitatively expressing how by locally decreasing
h one actually decreases the error of computations. No such error estima-
tion exists till now for the compressible Navier-Stokes equations. However, for
practically useful adaptation we often require only some error indicator — a
value computed at each point of a flow field, which allows one to distinguish
between the regions with small and big errors, respectively. Still, when based
on such approximate tools for error indication, h-adaptivity helps to reduce
dramatically the computational resources necessary to perform simulations.
This hecomes especially vital in the case of three dimensional simulations
where time and memory requirements are usually important.

The present contribution presents sone techniques and strategies for im-
plementing h-adaptivity into a 3D finite element code for solving inviscid and
viscous flow problems.

2. Finite element formulation for simulations of compressible
flows

As a mathematical model for numerical approximations of compressible
flows we use the regularized Navier-Stokes equations

Ve, ).+ SEW), = [(KEY (U, V0) + KGOV 5| (2.1)

¥

where U is the vector of conservation variables, f are the Eulerian fluxes and
Kf}v, KY, matrices corresponding to artificial viscosity and natural viscosity
and heat conduction, respectively (for the complete listing ol notation see
Appendix A). Artificial viscosity is included into the model already at this
early stage to emphasize the fact that our numerical approximation will consist
ol two parts: regularization of the problem by artificial viscosity which makes
the problem solvable on practically used meshes, and then application of some
numerical algorithm to the regularized problem. A particular form of artificial
viscosity usually depends on the approximation method (e.g. for ensuring that
with the increased accuracy of computations it convergences to zero). In our
computations we have used the model originally developed for the Streamline
Upwind Petrov-Galerkin method (c¢f Hansbo and Johnson, 1991; Shakib et al.,
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1991) and adapted for the Taylor-Galerkin time approximation algorithm (cf
Banas and Demkowicz, 1996)

E E
(flc,k)Tn,l’Ufk,k

=
UinuvolU,

K3 =Ch 8;;1
where —npp is the symmetric and positive definite Hessian of the nondimen-
sional entropy density 7 with respect to the conservation variables, h is a
representative local size of a finite element mesh and C is a parameter. This
artificial viscosity model, based on the residual of the steady-state Euler equa-
tions ka,k’ played an important role in the first proof of convergence of a finite
element method for nonlinear hyperbolic conservation laws (cf Johnson et al.,
1990). Apart from being theoretically justified it behaves well in practice.
To approximate the solutions to (2.1) we use a sequence of solutions
U™(z) = U(z,1™) of the one step finite element problem given below:

e Find U™"! belonging to the suitable finite element approximation space,
satisfying the Dirichlet boundary conditions and such that for every test
function W the following holds

/WTU‘"+1 dV + Al /W}(Kij)”ugﬁ” dv =
7 7
¢ ‘ (2.2)

- /WTU” AV + At / WT(fEy dv — At / WTI(fE) — (f4)"]n; dS
¢ ¢ 8¢

where f(2¢ is the computational domain with #; the outward unit vector,
normal to its boundary, At¢ = "*! — ¢ is the time step length and

The algorithm (2.2) is a version of the Taylor-Galerkin method for solving
flow problems (the Taylor-Galerkin method is the finite element counterpart of
the Lax-Wendroff finite difference method). In this formulation the matrices
K;; are sums of three elements: K;; = K?;G + Kquv + Kf‘j with the Taylor-
Galerkin method matrices K?;G = S4(f)u(f;) v coming from the second
order accurate approximation in time.

For steady state problems the algorithm (2.2) is additionally modified by
the introduction into K?;G, instead of the real time step At, of the so called
critical time step Af, = h/(¢+ |u|), where ¢ is the speed of sound and |u]
is the modulus of gas velocity. This corresponds to the assumption of the
uniform local Courant-I'riedrichs-Levy (CEFL) number approximately equal to
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one for all elements in the mesh. The reason for modification is on one hand
to make the converged solution independent of the time step length (At
included in K;’/f” affects the solution while in other places it can be treated
just as a formal parameter on the path to convergence) and on the other hand
to provide the optimal amount of artificial diffusion to the scheme in order
to compensate for the negative artificial dissipation inherent to the central
differencing schemes (typical for the Galerkin finite element method) when it
is applied to convection dominated problems (cf Brooks and ITughes, 1982).

A proper application ol the boundary conditions require that the whole
boundary of the computational dowain ¢ is a priori divided into parts of
different kinds and that this partition does not change in time. This fact
is especially important for the so called open boundary, i.e. the part of the
boundary arbitrarily imposed across the flowfield, where the actual solution is
net known in advance. For the purpose of, presented in this paper, supersonic
caleulations we identily the following types of boundary and corresponing
boundary conditions:

o infllow (un; < 0)

Ulz, )y =U..(z)
U given data

e outflow (u;n; > 0)

Uz ) in, =90
e solid wall with no heat exchange

u=20 A aqin; =0

e sotid wall with a prescribed temperature
u=2>0 A T =T
Tueu specilied
e symmetry hypersurface
i =0 A gn, =0 A “le n;, = u\’; n; =0

w2 are the componenis ol velocity tangent to the boundary df2¢- and
the condition means that normal derivatives of tangential components
of velocity vanish (¢l Dembkowicz et al., 1991)
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When simulating inviscid flows the no-slip condition on walls is replaced with
enforcement of zero normal velocity relative to the wall and all the terms
corresponding to viscosity and heat flux are neglected,

The DiriciJet boundacy conditions arce applied using the penalty method.
The enforcement of inflow values or no-slip condition on walls is realised in
a standard way by scaling diagonal and covresponing right hand side values.
Vanishing of the normal velocity is achieved by adding to the variational [or-
mulation (2.2) the term

l 7 T Tl T
/ E<VV27H + Wang + H’,m;;) <( 2‘“11[ + [‘3“/11 -k 14+1n3> dS

9 2wanl
where € is a small penalty paramecter. Temperature boundary condition is
applied using the relation 7' = = = {~ -2 valid on the wall on which u = 0.
v cyr 1

Addition of the term

|
W[ —ev T UMt 4+ U2 s
/ p ( v b+ Uy )(

I20att

to 15¢ (2.2) enforces a desired constant vahie of temperature on the correspo-
ning wall boundary (cf Tworzydlo et al.. 1992).

Boundary conditions that involves normal derivatives of solution are direc-
tly incorporated into the finite element [orimulation by means of modilications
to the boundary terms in liq (2.2). VFor exaniple. vauishing of heat flux is
simply reflected by neglecting all terms containing ¢. while the enforcement
of zero tangential derivatives of velocity requires traunsforiaiion of fluxes to
the coordinate system with one axis normal to the boundary and modification

of fluxes in this system,

3. Space discretization of the one step problem and h adaptivity

The computational domain is discretized using prismatic elements shown
in Fig.1. In each element the 3D shape functions arc constructed as tensor
products of the standard 2D linear shape functions on triangles (hases) and
the standard bilincar 2D shape funetions on quadrilaterals (sides), ¢f Banas
and Demnkowicz (1993).

[n our time discretization algorithm cacl one step computations constitute
a separate problem which can he solved on a new finite elenient mesh taking the
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interpolated values of the previous one step calculations as an initial condition.
This allows us to introduce /& adaptations of the mesh at chosen instants
during simulations.

\

= By

Fig. 1. Two kinds of the element division

Among many error indicators developed so [ar most are designed for linear
elliptic second order problems. Some of them are based on a priori error
estimation for the finite element method and estimation of interpolation error.
Although straight{forward they can give good results also for flow problems.
We use the error indicator of this kind to adapt the mesh in boundary layers. It
is the error indicator developed by Rachowicz (1997) and based on estimation
of the errors in heat flux and tangential components of viscous stresses.

Out of the boundary layers we are mostly interested in the error in the
solution itsell not in the gradients of solution, and we use the residual error
indicator (cf Bana$ and Demkowicz, 1994) based on the error estimates develo-
ped by Johnson et al. for linearized convection-diffusion equations (cf Eriksson
and Johnson, 1993). In each element as an error indicator we compute the
approximate integral of the residual of the steady state Euler equations

Ly = W fnuu f

Although developed for linear problems the error indicator behaves well also
in nonlinear flow simulations.
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3.1. Techniques of element division

We have used in our flow simulations two kinds of element division, see
Fig.1. One, called the vertical or /h2 division, consist in breaking an element
into two "sons” sharing a common base while the other, horizontal or A4,
consist in breaking an element into four sons sharing sides. Both divisions
introduce anizotropy into a mesh by changing the element aspect ratio, which
in our 3D mesh of prizmatic elements is measured as the ratio of the height of
an element to some characteristic linear parameter corresponding to the size
of bases.

The straightforward application of the adaptivity concept would consist of
computing error indicators (of both kinds) and then dividing elements with
biggest errors to improve the quality of approximation. However due to requ-
irements imposed on meshes and approximate solutions one cannot divide an
element without considering all its neighbours. At this stage a certain strategy
of dividing elements in the neighbourhood of an indicated element has to be
applied. The aim of introducing particular, sometimes complicated, strategies
is, on the one hand, to lead to the most efficient reduction of error and, on
the other, to maintain the consistency of the data structure and to allow for
further element divisions. In order to preserve the continuity of finite element
approximation after the insertion of new nodes the technique of constrained
approximation is introduced. This means that at the nodes which lie in the
middle of any edge of bigger, neghbouring elements solution values are simply
interpolated. The constrained approximation allows two clements of different
sizes to lie adjacent to each other and thus makes possible to confine mesh
modificiations only to the regions where they are necessary without introdu-
cing new kinds of elements or temporary data structure constructs. However,
it further complicates the data structure and introduces new requirements
imposed on the strategy of adaptation.

The strategy of adaptation implemented in our code is based on several
assumptions. First, we require that anisotropic divisions are limited only to the
boundary layers where the solution changes substantially only in the direction
normal to the boundary, so only in this direction the refinements are necessary.
Since the solid wall boundaries in the mesh generation algorithm which we used
are covered with the triangular mesh this implies that in boundary layers we
use exclusively A2 divisions. On the other hand, within shocks we always
try to maintain isotropy of the mesh which allows the mesh to adapt more
easily to moving shocks. Hence, in the places indicated by the residual error
indicator we always apply to each element a sequence of two divisions: A2
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followed by /hl.

Several {urther requirements are of more technical nature and are introdu-
ced to make changes in elements sizes smooth and to maintain compatibility
between different generations of clenicuts so as to further divisions are possible.

These requirements include:

s liach node of a divided clement must be a real, not constrained, node —
if it is not the case, the neighbours of the element are divided as long as
this condition is satisficd

e The number of 22 refinements must be greater than the number of hi4
refinements for cach element of the initial mesh

e After /12 reflinenmients all nodes of two new elements must be real (not

constrained)

e Two elements sharing a common base should not differ by more than
oue 2 generation Jovel

e Some further conditions for avoiding inconsistencies of the data structure
when two different relinement zones meet at some element.

4. Numerical examples

We show two numerical examples ol steady state problems, one inviscid
and one viscous Both present basic capabilities of the fi adaptive code and
the strategy implemented. although tlic refinciments are of limited depth an({
plead due to limited compufler time and MCHOry resources.

4.1. Flow over a bluut body

The first example is the inviscid flow over the half-sphere, which, due
to symmetry of the problem, is computed as the {low over one cights of a
sphere. In Iig.2 the geometry of the problem is presented together with the
solution on the final adapted miesh. I'he inner sphere is a solid wall boundary,
the outer spherc is an inflow boundary. with the inflow Mach number of the
flow equal to 3. The boundary conditions on two planes (z = const and
y = const) enforce the symmetry of the problem (the condition for inviscid
flows is the same as on solid wall bonndaries) and the 2 = const planc is an
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Fig. 2 The mesh and density contours for the flow over a sphere problem

outflow boundary. The solution of the problen is represcented by 20 density
contours ranging from 0.9186 to 1.037. The bow shock which forms in front
of the sphere is clearly visible as well as refinement zone which improves shock

resolution.

4.2. Flat plate problem

The second example is the viscous flow over a {lat plate with the Revnolds
nuwmber equal to 10000 and the AMacle wumber equal to 3. Tu Pig.3 the
bottom boundary consist ol the left-liand part with svaimetry condition and
the rest, starting al « = 0.1 being a sohd wall with specified trmperature. The
left-hand and upper sides of the computational domain are inflow bonndaries
and the right-hand side. (o = const) boundary is an ontflow. The rest of
the boundary (2 = const) enforcos the svinmetry of the problem. which
essentially is two dimensional. The solution. once again illustrated by the



536 K.Banas

1.6194

Z~x 0.38202

Iig. 3. The mesh and density contours for the flow over a flat plate problem

density contours, depicts creation of a boundary layer, and a shock which
results from separation of the boundary laver at the tip of plate. Refinements
of both kinds, isotropic in shock regions and anisotropic in the boundary layer,
are visible.

5. Conclusions

Combining isotropic and anisotropic A refinements in one finite element
code creates a challenging and technically difficult problem. To help solving
this problem not only sophisticated strategies, as the one presented in the
article, could be used but also hybrid data structures with different kinds of
elements and robust mesh generation procedures compatible with particular
data structures. This constitutes the next steps in the development of the 3D
code for flow simulations presented in this article.
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Appendix A. Notation

point inside §2¢

moment of time

computational domain, /- C IR*, n=1,2,3
outward unit vector, normal to the boundary 02¢
density

ith component of velocity

total specific energy, € = e + ¢

specific kinetic energy, ¢ = %111111
specific internal energy, ¢; = (T/—’xﬁ
P L)

pressure, p = (v — 1)(pe — é—/)ul-ul)

ratio of specific heats, 5 = cy/c,, cv at a constant
volurme, Cp at a constant pressure

speed of sound, ¢ = \/yp/p

vector of conservation variables. U = [p, pug. pe] T
cocflicients of viscosity. (A = *%}[ by the Stokes hvpo-
thesis)

components of the lieat llux vector ¢, ¢ = —xT;, and

i is the coellicient of thermal conductivity
temperature, 1 = flv—fl

."L'
nondintensional entropy densitv, 9(U) = pla(pp™)
hiessian of nondimensional entropy with respect to conse-

rvation variables (—uy ¢ is svmmetric and positive defi-

nite)
2 2 o .
1 yCy + ey SN e — €
o =T —uier o+ ouug =y
I o — e —u; 1

Eulerian fluxes, f* = [pu;, pu, w; + pbij, (pe+ plug’

natural viscosity and heat flux matrices
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| 0 0 0
Kf; = = | —pugbi; — pwgog — Xugdy b idp + b + Aéén 0| 4+
P (A4 )iy = 20 gty b + Augdie 0 ]
. 0 0 0
+ 67J-Cvp 0 0 0
e =g |
KZ‘-'}V('U,VU) - matrix functions corresponding to a particular mo-
del of artificial viscosity
K;CG - madtrix functions of the second order Taylor-Galerkiu
(Lax-Wendrofl) approximation method,
KLY = St faolfe
At time step leagth, AL = (7 — ¢
%74 test [unction
k characteristic linear Tocal mesh (element) size
- constant
| identity matrix
b;, Kronecker delta
()ijkt subscripts corresponding (o space dimensions,
o h=1,.n
(Vee subscript for free stream values
()n subscript denoting the normal componeni of a vector
() superscript for values at instant ("
() () - partial derivatives. 9/01, d/dw;

in all vectors and matrices the middle rows and columns should be expan-

ded according to the number of space dimensions »

h-adaptacyjne symulacje tréjwymiarowych lepkich 1 nielepkich
przeplywéw gazu metoda elementéw skonczonych

Streszczenie

Przedstawiono sformulowanic algorytmu metody clementdw skoriczonych do apro-
ksymacji scisliwych rownari Navier-Stokesa. U \\/g_)lt dniono zagadnienia postawienia
warunkoéw brzegowych 1 oszacowania bledu aproksymacji. Opisano implementacye
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algorytmu w programie h-adaptacyjne] metody elementdw skoriczonych do symu-
lacji zadan trojwymiarowych. Nacisk polozono na specjalnie dostosowane do symu-
lac)i przeplywéw, zwlaszcza lepkich, techniki 1 strategie adaptacji siatki elementdw
skonczonych. Zaprezentowano przyklady obliczen dla zagadnien tréojwymiarowych
naddiwiekowych przeplywdw lepkich i nielepkich.
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