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The aim of this paper is to propose a kind of unification within the
framework of continuum mechanics theories, by means of which the in-
elastic behaviour of solids is modelled. In this approach deformation
(kinematics) of the continuum and its substructure is described in terms
of a structure of the Finsler bundle. This new theoretical background,
being physically justified, is used for formulation of an alternative con-
tinuum description of a solid behaviour. The additive decomposition of
the total deformation gradient is defined with no additional assumptions
like: intermediate stress-lree configuration, yield rule, hardening and/or
softening laws. This lcads to new strain measures which are both aniso-
tropic and internal-variable-dependent. The rate-independent. example
of a solid deformation is included to show that this approach requires no
extra theories for description of the residual state, softening and harde-
ning phenoniena.
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1. Introduction

The classical approach to modelling of mechanical behaviour of solids in-
troduces ad hoc conditions such as intermediate configuration, yield rule, har-
dening and/or softening laws, etc., which are not satisfactory for physical
reasons, however, obviously uselul in certain cases. Evolution equations are
generally used to describe a feature of a solid which is unaware that some-
thing is postulated about it. The idea of distinguishing between loading and
unloading processes is also rather misleading since the response of any solid is
in agreement with its internal structure, but not with our ability to analyse
such physical processes.
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The assumption that the plastic strain does not influence the elastic re-
sponse (cl Dafalias, 1987; Pecherski, 1992) accepted commonly is in opposition
to experimental results (Korbel. 1992; Wack and Tourabi, 1992; Young, 1962).
It turns out that an inelastic deformation of solids, even within the range of en-
gineering stresses, is irreversible from the beginning, and such materials never
behave exactly in an elastic manner. The hysteresis phenomenon, recogni-
zed as the dominating phenomenon in solid behaviour, also never exists alone
and it is generally accompanied by other material phenomena like: hardening,
softening, viscosity, relaxation eflects, localization of shear bands, etc.

Despite a very detailed mathematical formulation and treatment of con-
stitutive equations, many problems make their use difficult if one considers
the physical behaviour of the material like the onset of strain localization, the
stability of plastic flow at the micro-structural scale (Asaro, 1979; Asaro and
Rice, 1977; Campbell, 1967; Kocks et al., 1979). These obstacles result from
the assumed differences between kinematics of the continuum and kinematics
of the idealized underlying microstructures. Departures from the idealization
of underlying structure of the material are discussed by Kocks and Mecking
(1981).

These inconsistencies of classical theories of inelasticity can be eliminated,
or at least reduced, within the framework of Finslerian methodology motiva-
ted by Saczuk’s (1996a,b) approach rather than the geometrization of a con-
tinuum proposed by Bilby et al. (1955), Kondo (1952, 1955, 1963). It stems
also from the following observation. The hysteresis effect, a leading pheno-
menon of the inelastic behaviour, is consequence of the anisotropic character
of micro-structural mechanisms ol the deformation process. This lundamen-
tal evidence implies that the geometric nature of inelastic phenomenon has
a non-Riemannian character. On the other hand, anisotropy and hysteresis
loops are modelled easily within the geometry with an anisotropic metric, i.e.
with the aid of metric which depends both on the position and direction. The
anisotropic character of such a geometry is represented properly by the con-
cept of indicatrix used to model a characteristic feature of the solid. A type
of such geometry is known in the literature as the Finsler geometry (Rund,
1959; Matsumoto, 1986).

Notation which will be used in this paper is slightly difTerent form the one
used in continuum mechanics {Truesdell and Noll, 1965). The coordinates in
the reference configuration we will denote by small letters. In the actual confi-
guration we will denote them by capital letters. Ilere we opt for the notation,
which is to a certain degree opposite to the convention used in classical conti-
nuum mechanics, but which is widely used in the differential geometry (Rund,
1959; Matsumoto, 1986).
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2. Alternative decomposition of kinematics

Nearly all formulations of plasticity that have been developed series of as-
sumptions are accepted at the starting point. Two of them are of fundamental
importance for classical approaches (¢f Dafalias, 1987; Pecherski, 1992):

1. The distinction between the kincinatics of the continuum and its under-
lying substructure,

2. The multiplicative decomposition ol kinematics.

The continual description of solid behaviour based on these assumptions
{Fig.1) involves some inconsistencies in comparison with the experimental re-
sults (cf Korbel, 1992; Wack and Tourabi, 1992) sketched in Section 1.
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Fig. 1. Kinematics ol a continuum (a) and a substructure (b)

In Fig.1 F(F,) are the position-dependent deformation gradients composed
multiplicatively from elastic F*(F%) and plastic FP(F?) parts of the continuum
(a substructure), respectively. kg, x; and « denote the reference, intermediate
and actual configurations of the body, respectively.

The inelastic description of solid proposed here utilizes kinematics defined
by means of a structure of the Finsler bundle, without using the notion of
intermediate configuration (Fig.2). Our main assumption is then reduced to
the following:

The kinematics of the continuum and its substructure are described
by means of a structure of Finsler bundle.

Logical implication of this assumption consists in the additive decomposition
of kinematics (Section 4). The decomposition in Fig.2, in contrast to that
shown in Fig.1, is based on the exact geometric background and does not
demand any additional assumptions.

In Fig.2 F is the position-direction-dependent deformation gradient com-
posed additively by hiorizontal F" and vertical FY parts. In the limit transition
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Fig. 2. Kinematics of a generalized continuum

of the internal state F* reduces to the deformation gradient known from the
classical continuum mechanics, while FY vanishes. &g and & denote the
reference and actual configurations of the body, respectively. The symbol &
stands for the direct sum.

3. Comments on experimental results

In this section we only sketch some background for this topic. We present a
general scheme of our methodology without its detailed explanation. Korbel’s
theory (cf Korbel, 1992) of a hicrarchy of c;oll( responses on the applied force
system showed that therc was an obvious intercorrelation between the micro-
events of plastic delormation and global mechanical properties (Korbel and
Berveiller, 1991). The rescarch discussed by Korbel (1992) revealed difTerent,
even of a catastroplhic nature, mechanisms of the metal deformation like shear
bands, Litders and Portevin-Le Chatelier bands originate in the same basic
mechanism. This mechanism depends on the spatial-temporal organization
of dislocation ensecrnbles, avalanche-like movement of dislocation substructu-
res (Basinski and Jackson, 1965) and formation of the micro-shear bands of
non-crystallographic orientations (lorbel and Pecherski, 1997). On the other
hand, direct observation of the deformation substructure in solids proved that
the dislocation distributions were very complex. Thus, it cannot be surpri-
sing that a proper continuous theory describing a delormation process should
be in agreement with these [acts. This progress is to some degree hindered
by specific drawbacks of the experimental techniques (Basinski and Basinski,
1979).

In recent ycars considerable progress has heen made towards modelling of
the polycrystalline material response using approach (cf Asaro, 1979). To-
wever, there is still a gap in our complete understanding of the relationship
between the response of single crvstals and their relation to the polycrystalline
behaviour (¢f Zaoui, 1986). LEven though the literature contains accounts of
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many types of measurements ol mechanical properties of solids, direct com-
parisons are difficult to make and often inconclusive due to quite different
experimental conditions imposed (Nabarro ct al., 1964). The necessity for
changing the present orientation to the description of inclastic behaviour of
solids within the continuum mechanics secms to be evident (cf Section 5).
Our analysis which follows is lree from the “artificial” assumptions and is
consistent with the nature of inelastic behaviour of solids observed in experi-
ments. The present methodology can be illustrated by the scheme presented

in I'ig.3.
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Fig. 3. Scheme of the proposed methodology

The level of correlations and suitable identifications between geometric and
physical counterpartsis of fundamental importance in the above scheme. As an
illustration one can take into account the morphological features of shear bands
in metals at different levels of observation. At the micro-level (say, one visible
in the electron microscope) they are formed by complicated heterogeneous
substructures, but at the macro-level (light microscope) they can be observed
as the single slip lines (Korbel, 1992). 1II this level of description is made
correct then the kinematics allows one to predict the correct deformation path
of the solid under a given load system. In practice this step may be realized
properly on the mathematical level.
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4. Kinematics

We propose a continuous model of inelastic behaviour of solids from the
Finslerian point of view (Saczuk, 1996a,b). We consider an interacting ge-
neralized (microstructural) continuum (a body B), described by the Finsler
bundle structure in static equilibrium within the following assumptions:

e Material body (a continuum) Bis assumed to be a 3-dimensional Finsler
bundle F3 whose points will be called line-elements (Rund, 1959)

e Motion of the body B is defined by mapping
x: BxXR—>E*xE3*xR (z,9,1) — X = x(z,9,1)
where FE denotes the Euclidean space and R is a real number space
e A time-space of events is the product: L3 x E3x R
e The body B is subject to external and internal force fields

e Laws of evolution of the body B result from a variational principle for
the first order functional describing its motion.

We will consider kinematic aspects ol this formulation, while the details
of the static (or dynamic) ones the reader can find in the paper by Saczuk
(1996a,b).

In the classical approach to continuum mechanics (Truesdell and Noll,
1965), by a body B. we understand a pair (B, ), where B, is both an
oriented connected 3-dimensional manilold and a measure space whose any
element z is called a (material) particle, aud vy is a difleomorphism of B,
into the 3-dimensional euclidean space F°. A family of such diffeomorphisms
is called a family of configurations of the body. The fact that B, is a measure
space means that it is endowed with a non-negative scalar measure called the
mass distribution of the body.

If k:B,— E3%is a (reference) configuration ol B, then xis characterized
by three smooth functions ' (the coordinate functions of &) sucl that
k(P) = (zY(P),...,z*(P)), P € B.. Il ¢ is any other (current) configuration
of B, then the deformation from & to ¢, i.e. ¢or™! : k(B.) — ¢(B.);
2t = ¢ o k~I(at), Va! € k(B.) is assumied to be the diffeomorphism. In the
local coordinate system we have

X' = x'(z) or X = x(z) (4.1)
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where x = ¢ox~!: E3 — E3. The classical deformation gradient F € £L(E3)
is then defined to be the tangent map of x:F = Tx. By L(E3) we denote
the set of linear mappings of E3 into itself.

The geometric relation (4.1) within the Finsler formalism can be defined

analogously R
X =X(=,9) (4.2)

where the diffeomorphism ¥ : E® O I3 — F3 C E® is a deformation of the
body B. The line-element (z,y) =(a position vector, a direction vector)
can be identified with an oriented particle of the body B. For our purpose
it is enough to consider the direction vector y as the micro-displacement (cf
Wozniak, 1968), or deviation of the mean displacement (cf Kondo, 1955), at
the micro-level.

To introduce the concept of a deformation gradient in the generalized con-
tinuum we start from the Finsler space with the Cartan connection (cf Rund,
1959). First we define the direct sum of covariant derivatives V* and V? as
the following composition

vh+vv:[1,1][voh Y‘;Hi] (4.3)

where 1 is the identity tensor on B. The operators V* and V? are defined

as follows
Vi) = VE () @ dat (4.4)

where (cf Matsumoto, 1986)

Vib; = I 6; = 9 — Nfo, % = a(z-i % = 0(?/"
and .
V() = V()@ D (4.5)
where '
Vi 0; = Chio DI' = dlI' + Nidz" I= yL—

Here L is the fundamental function, N, Cf] and Fi*jk are connection coeffi-
cients of the Finsler space. One should remember here that the Finsler space
has a structure of the principal bundle over the tangent bundle of the base
manifold (see Matsumoto, 1986).

From the geometric point of view the fundamental function L through
the equation L = 1, which defines the equation of indicatrix, can be iden-
tified with the yield surface (cf Saczuk, 1996b). On the other hand, this

3 — Mechanika Teoretyczna
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function as a distance function (Rund, 1959) is used to define the length (me-
tric) ds = L(z,dz) of a line-element (z,dz) with the origin z and, next,
components of the metric tensor g;; from

ds = L(z,dz) = \/gij(x,(la:) dzidzi

see (4.12). In turn, the metric tensor g;; is applied to definition of connection
coefficients (see Egs (4.13)+(4.16)). From the fact that det[d;d;L] = 0 (the
function L(z,y) is, by definition, homogeneous of degree one with respect
to y) the physical sense of L is attributed to L? = W and it is identified by us
with the strain energy density of dislocations and induced by the delormation
process (see Section 5).

The map X — (Vh 4+ V”)()A() written as
F=F 4P (4.6)

defines F € L(E3) ® L(E?) as the deformation gradient of B. Its vertical
F' € L(E?3) and horizontal F" € L(E3) parts are, respectively, equal to
(Saczuk, 1996a)

F' = V'X = ,X}d; @ DIf
(4.7)

Fh = Vh_i' = ,LX};a- & (lilfk

where §; is the unit vector in the current configuration ¢ and ® denotes the
tensor product.

The additive decomposition (4.6), opposite to the multiplicative one used
in classical plasticity (cf Lee, 1969), is the purely kinematic concept and has
no counterparts in the literature on continuum mechanics.

In the case of convected coordinate system (cf Pietraszkiewicz and Badur,
1983) the definitions (4.7) can be written as

F' = §; ® Dy’ Fh = §; ® dat (4.8)

where §; = 0; — N,-kgk and 5; constitute base vectors of B in the actual
configuration ¢. Relations inverse to Eq (4.8) have the following forms

(F)™ =0, ® Dy (F})~' = 6 @ d7* (4.9)

After introducing an additional intermediate basis one can obtain from Eqs
(4.8) and (4.9) a series of valuable relations. This standard problem is here
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omitted; the reader should consult the paper of Pietraszkiewicz and Badur
(1983).

In classical continuum mechanics (F” = 0) we restrict ourselves with Fh
to the well-known form of deformation gradient

F:fji@dl‘i

We shall denote further the horizontal and vertical components of any
tensor T by hT‘ and T -, respectively. The h-derivative and wv-derivative

of the position-dlrectlon dependent vector X = X(z,y) are defined as follows
(Matsumoto, 1986; Rund, 1959)

(FRY = o XE = 9. X' — 9 X0:.G + I X! (4.10)
(FV)e = o X} = L& X' + Al X! (4.11)

where the remaining unknowns in Eqs (4.10), (4.11) are defined by means of
the components of the metric tensor

10%L%(z,y)
i = - 4.
9:i(2.9) = 5 970y (4.12)
as follows
. IG! IG! led a(;
Ik = Tije — Cjk’é)—yi =ik — Crjio— oy " C,Jla =+ C,M (4.13)
Iy = gl Tijk = gl 2G" = yhy'y* (4.14)
e -
= oG = o = Iy = Iy’
(4.15)
09;; 391L gk
Yijk = ( ok (?:cf)
19g; ) . .
Cijk = 3 8 Cijky® = Cisny’ = Cisey’ = 0
(4.16)
Cijk = g1Cy Al = LCy,

Assume that the deformation Y is an orientation-preserving diffeomor-

phism, i.e. R
J=detF>0 (4.17)
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or }
= F* 0
J—det[ 0 F“}>0

ie. J =JhJ" > 0 with J* = detF" and J¥ = det F. For the mappings
which have continuous derivatives, this is the necessary and sufficient condition
for invertibility. Since F is invertible, one can use the polar decomposition
(see Chevalley, 1946) to decompose F into

F=RU (4.18)

E_| R0 Ut o
"l o R || 0 U

F* = R*Y? F¥ = RUY (4.19)

or

where U or U" and U are the positive definite tensors and since J > 0, R
or R* and RY are the proper orthogonal tensors.

For finite deformation various classical strain measures coaxial with the
Lagrangian triad have been introduced in the literature (Truesdell and Noll,
1965; Ogden, 1984). They are called by Iill (1968) the material strain measu-
res. This class of strain measures requires that the strain should vanish at no
deformation, should be positive and increasing when the corresponding fibres
are extended, and should reduce to the usual linear measure when linearized.
These conditions are satisfied when the function f defining the strain measure
E= f(:\) (A is the principal value of E) has the properties

f(1)y=0 fliyy=1 () >0 (4.20)

The subclass of strain measures whicli complies with these requirements is (cf
Hill, 1968; Ogden, 1984)

By = 5— (X - 1) (4.21)

Various commonly used strain measures result for special values of m. For
instance, for m = 1 we obtain the so-called Lagrange strain tensor. In our
case of the generalized deformation gradient F, Eq (4.6), such an alternative
Lagrangian strain tensor can be put into the form

6
E= Z (:\?a) - l)n(") ® n®) (4.22)
a=1
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where n(®) is the principal direction of the generalized stretch tensor U, or

E=—-(C-1) (4.23)

N —

~ AT ~
where C = F F is the right Cauchy-Green deformation tensor. In the repre-
sentation of the direct sum, Eq (4.23) is equivalent to

e_|EP 0 |_1]C-1 o0
10 B T2 0 C'-1

The other cases of E(a) and the time rates of E(a) can be defined after
Mehrabadi and Nemat-Nasser (1987), Truesdell and Toupin (1960).

Using Eqs (4.10) and (4.11) the horizontal and vertical parts of the Cauchy-
Green strain tensor are then equal to

C' = (XX + 0 XTI DGO X 0G4 T THX"X* 4 |
(4.24

— DX U X8y, G = 8, X VB, XF 4 9, XU X k) gisdzt ® dat
CY = I? (a'hxfa',xf + 8 XU C XK + C{.hc;,,Yk,Ym)g;th’ @ DI*  (4.25)

respectively, where () means the symmetric part with respect to the enclosed
indices, the sign || around the index is used to exclude it from the symme-
trization operation and g;; are components of the metric tensor in the actual
configuration ¢. The interrelated pair of measures Eqs (4.24) and (4.25), of
any deformation process is defined in the invariant way.

In the case of classical continuum, i.e. when y=10

Ch = (W X0 X7 + [} [ X" X*)gijda! © da (4.26)
C'=0 (4.27)

where X and g are functions of z. The case y = y, with y, being a
residual or imperfection vector leads to non-singular C* and C¥. To specify
the connection coefficients jk, NJ’f and F]*‘f we first have to estimate the
local internal (dislocation) structure of the solid under consideration defining
its fundamental function L or its metric tensor g.
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5. The rate-independent case

The aim of this Section is to present the unified concept (Saczuk, 1996a)
of modelling the residual states, hardening and soltening phenomena in solids.
We show how this approach makes it possible to describe the above properties
and phenomena in the solid deformed under various conditions and how it can
be used for controlling the solid behaviour through a change of the deformation
path.

5.1. Residual state

The deformation process of the solid below the yield stress is treated wi-
thin the framework of continuum mechanics as the fully elastic regime, and
is not subjected to a detailed microstructural analysis. On the other hand,
the experimental observations show clearly that for stresses below the yield
stress dislocations move back, when the applied stress is released (Marukawa,
1967). Brown and Ekvall (1962) have shown that plastic flow can take place
in single iron crystals at stresses well below the upper yield stress. The stress
relaxation technique used by Shaw and Sargent (1964) to study the pheno-
menon of plastic strain in the pre-yield (the microstrain) region have shown
that the movement of free dislocations at any given stress level, below the
upper yield stress, is a [unction of the loading rate. Extensive studies of chan-
ges in a substructure of crystals during unloading were conducted by Young
(1962), Crump and Young (1968). They have shown that considerable rear-
rangement of dislocations occurs during unloading and significant differences
exist between the dislocation configurations, which appear during loading and
unloading processes, respectively.

5.2. Hardening process

The problem of hardening in solids is sufficiently well documented in expe-
rimental studies presented, among others, by Schmid and Boas (1935), Na-
barro et al. (1964), Basinski and Basinski (1979).

The real nature of the hardening process is still not completely understood.
The reason for this is a very large number of parameters like: temperature
and strain rate, slip system, applied stress, crystal orientation, purity, initial
imperfection, crystal size and shape which influence the delormation of any
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crystalline material (Basinski and Basinski, 1979). It seems that there are
at least several hardening mechanisms. In general, an increase in hardeness
is connected with an increased difficulty of dislocation movement. The work
hardening effect is, following Taylor (1934), a consequence of the strain system
induced by dislocations distributed throughout the lattice and generated in the
process of plastic flow. The mechanisms governing the strain-hardening and
strain-softening in face-centred cubic metals are discussed by Seeger et al.
(1957). The role played by the forest dislocations (dislocations intersecting
the active glide plane) in the mechanisms of strain hardening is analysed by
Basinski and Basinski (1964).

The theories of work hardening, which are based on the concepts of con-
tinuum mechanics, include isotropic and/or kinematic hardening. To predict
more complex hardening behaviour one can use combined hardening rules (Wi-
limas and Svensson, 1971; Baltov and Sawczuk, 1965) to describe translation
and distortion of the yield surface. The two-surface (Philips and Sierakowski,
1965) or multisurface (Mréz, 1967) theories of hardening have led to many pro-
positions of modelling the cases of multiaxial loading. Some ol these theories
were verified by experimental results (Lu and Mohamed, 1987).

5.3. Rationale

Our rate-independent constitutive modelling has intimate connection with
the classical one. Therefore, for the moment, we shall deal with the classical
methodology. Various rate-independent models of plastic behaviour of one-
phase (poly)crystals, proposed in the literature by e.g. Bishop and Hill (1951),
Hill (1965), Zaoui (1986), are based mainly upon average relations and/or
localization procedures. Typical models, connected with the Taylor (1938)
model, are directed into the accurate description of interaction between a
crystal and neighbouring grains. The extension of the Taylor model proposed
by Lin (1957) assumes uniformity of the total strain, while the plastic strain
differs from one grain to another. Modifications of this approach were given
by Eshelby (1957) and Kréner (1961) for polycrystals. The more general form
of interaction of the whole crystal with neighbouring grains is proposed by
Hill (1965), where the difference between stresses produced by the interaction
of the matrix T,, and the grain T, is expressed by the appropriate difference
of strains E,, — E, as follows

Tn—-Ty=L"(E, - E) (5.1)
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where the "overall” constraint tensor L* is responsible for interactions between
grains (cf Zaoui, 1986; Korbel and Pecherski, 1997). The above relation does
not explain how to calculate E4, E,, and L* and, moreover, their interrelation
with microstructure of any crystal is not clear.

According to our model an inelastic llow of a solid takes place from the
very beginning of deformation process in accord with evolution of its internal
substructures. Therefore, both the yield condition and evolution law are in
general superfluous. The response of the solid depends on the history of its
deformation and the applied external fields. The well-known material effects
of a solid deformation like hardening (Fig.6) and softening (Fig.5) do not need
here extra theories. The calculations made here provide qualitative rather
than quantitative insight into these problems.

5.4. The model proposed

A phenomenological study of plastic flow in crystalline solids is based on
information about the current distribution of dislocations and internal stres-
ses. A description of plastic flow under the applied stress demands suitable
information on the influence of stresses opposing dislocation motion, known as
the internal back stresses. For a given applied stress only certain dislocations
in the regions with low back stresses are [ree to move and contribute to the
plastic flow (Gasca-Neri and Nix, 1974). Ilence, the concept of the effective
stress, defined as a difference between the applied stress and the back stress,
is of fundamental importance for the modelling of the delormation process.
This stress acting on dislocations does some work during their motion. This
situation can be clarified as follows. Suppose that a dislocation line glides
on a slip plane containing point defects. Its movement may be completely
stopped by obstacles if the stress is above a certain level. In this situation
the dislocation segment between the obstacles is displaced to the positive cu-
rvature position and the back stress is generated by its bowing, cutting or
climbing. In order to produce substantial macroscopic strain, a large number
of dislocations must be in motion. That takes place when a sufficient stress
applied to a solid causes spontaneous nucleation of dislocations. The observed
multiplication of dislocations is caused by the T'rank-Read sources and/or the
multiple cross-glide mechanism. To explain the above facts we introduce the
physical model as follows.

We assume that each particle of our body is in a structure-dependent po-
tential well formed by the stresses around neighbouring particles. We assume
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that molecular motions are frozen at the center of each particle. Under exter-
nal agencies a particle moves and meets local obstacles. In consequence of
interactions between neighbouring particles and defects produced as a result
of deformation, the motion of the particle is in general hindered. To consi-
der such a motion we introduce the f-system containing a particle and an
obstacle, which interacts with its surrounding. Along any path connecting
configurations of the particle the internal and effective stresses act on our f-
system. The first stress component compensates the influence of neighbouring
particles and other sources of the internal stress outside the f-system. The
second one acts on the particle inside the f-system and does work during its
motion. Deformation of the body is possible only if the applied stress is raised
to the level that is proportional to the strain associated both with internal
and effective stresses above a certain level.

In the sequel, the internal part ol deformation will be modelled by the
vertical strain tensor, while, the eflective one by the horizontal strain tensor.
This identification is obvious for the following reasons. First, the vertical part
of deformation is responsible for the internal state space in which the act of
slip takes place. Second, the horizontal one describes an average result of
internal interactions and external conditions.

5.5. Algoritlun

An algorithm, which includes the relation (5.1), can be realized within the
Finslerian methodology in the following steps.

1) Calculate the structure-dependent energy distribution in the solid

In general, we have no sufficient knowledge of the energy distribution in
the solid, and no idea of how it changes as the solid deforms. The stored
energy associated with dislocations is very often calculated from the (aniso-
tropic) elasticity theory (Nabarro, 1967; Hirth and Lothe, 1968). The general
conclusion is that this energy is proportional to the square of the Burgers vec-
tor of dislocation. Therefore, we can only proceed by introducing simplifying
assumptions consistent with known general properties of this distribution.

For the purpose of presentation, we assume the position-direction-depen-
dent functional W being, by definition, an anharmonic approximation of
interactions between dislocations, in the form
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W(z,y) L¥(z,y) = gij(z,9)y'y’ =

(5.2)
= oz, y)(¥")* + Bz, 1)(¥*)* + 1(z, ¥)(v°)?

with the coefficients «, 8 and v homogeneous of degree zero with respect to
y. For simplicity we assume

21'11/1
a(z,9) = = Ble,y) = 22° 1(z,y) = 22°

y
where [, = /(y1)? + (y?)2. According to (4.12) we have

a 0 0 B a~! 0 0
gij(z,y):=]10 B 0 g z,y):=1| 0 B 0 (5.3)
0 0 ~ 0 0 ~1

The metric tensor (5.3) gives rise to the non-vanishing connection coefficients.
Hence, the coefficients of vertical connection C}k, Eqs (4.16), are defined by

the relations )
1
) C}z = -4

1/1 Y
1 - — —_— —_—
Cll - 2 <y] 15
the coefficients of the connection Nj = éjGi, Eqs (4.15), by
1 2 3
. y - 2 Y . 3 Y
G'= — hG* = — 3G° = =
o 221 2 22 Os 223
and finally, the non-vanishing coefficients of the horizontal connection ]*,j,

Eq (4.13), by

1 (y1)2 1 fl,‘] (yl)'Z(y2)3 1 yl (y2)3
Fl*ll == T4zl <1 T2 ) T ga2 [1~2 15 - (;T - ﬁ) 2 ]
Y y y y

1—‘*1 - 1 (y2)2 1"*2 - _ l‘] M

=g g VS iy g

1 1

2 _ 3

Iy = 9222 I35 = 23

2) Calculate the deformation measures

Having defined geometry of the internal state one can then obtain, for a
given position-microposition vector X(z,y), the h- and wv-components of
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the deformation gradient tensor and the strain tensor according to Eqs (4.10),
(4.11) and (4.24), (4.25), respectively.

3) Formulate the strain-stress relation

An analogue of Eq (5.1) within our approach is reduced to the following
natural form

T=C-E (5.4)

where T € C(L(E3) @ L(E?)) (C(-) is used here to denote the set of conti-

nuous mappings on (-)) is the generalized stress tensor and the fourth-order

isothermal material tensor C € L(L(E®) @ L(L?)) is calculated according to
(cf Brugger, 1964)

- 9*F

C - = = 5.5

P OEOE (55)

from the Helmholtz free energy F = .7-'(@,9), with pg being the mass den-
sity in k and @ denoting temperaturc. In terms ol horizontal and vertical

terminology Eq (5.4) can be rewritten as follows
T"+T'=,C-E'+ ,C-E (5.6)

where the material tensors ,C and ,C are defined in the same manner as C.
According to definition of V%, Iq (4.4), one can decompose ,C into the
following parts

JG

JEF (5.7)

xC = ,C - ,C
with ;€ and ,C being functions of E* = E*(z) and EY = E"(y), respectively.
It should be emphasized here that the last step have been made in the direction
of simplification of the physical sense of ,C only.

For the purpose of presentation we assume for Eq (5.4) or (5.6) the linear
relation between strains and stresses (Hooke’s law). Then the elastic stiffness
tensor for isotropic material ,.C takes the well-known form

[ A+ 2u A A 0 0 0
A A+ 2u A 0 0 0
C - A A +2¢ 0 0 O
= 0 0 0 w 0 0
0 0 0 0 p O

. 0 0 0 0 0 pu |
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where A and p are the Lame constants. The second part of ,C in Eq (5.7)
can then be expressed in the following form

G ,_[Al o}

YTOER T | 0 A
where

O H(H+E) A5e0

A= %E%Jr%?) A t2u)dy G{E+h) |
35 n) A(EE) Grang
s(Erm) o0 0

A; = 0 o+ 1) 0
[0 0 i(5rs)

4) Final step

For the assumed function of motion (displacement field) which satisfies the
equilibrium equations (30) in Saczuk (1996a), alter neglecting the body forces,
one can calculate strains (point 2) and stresses (point 3).

For simplicity, let us assume a displacement field which is linear both with
respect z and y. To this end we assume that the position vector X in the
actual configuration is expressed by

/\A’](a:,y,t) = a(t)at + ¥ + v(t)y?
Xz, y.1) =22 +y° (5.8)
X3z, y,1) = a® +
Here (z!,z2,z3) are the components of the position vector z,and (y!,y?,y%)
are the components of the micro-displacement vector g in any slip system.

The motion (5.8) is superposition of the simple macroextension along the z!-
axis and the simple microshear in the (y!,y?)-plane.

5.6. Numerical results

Mechanical behaviour of the solid under the given loading is most com-
pactly described by means of a set ol stress-strain curves. For this reason, our
numerical calculations will be restricted to such curves.
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5.6.1. Residual stale
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strain x 100%

Fig. 4. Cyclic loading-unloading curves for showing the residual state effects

To describe the plastic deformation of material, a conventional approach
uses generally the yield surface to distinguish between loading and unloading.
In our case the differences between loading and unloading processes are due
to the irreversible character of dislocation motion at the microlevel. The
situation depicted in Fig.4 was realized by changing the distance travelled
by dislocations backwards when the applied stress is removed. The residual
state (point A in the first cycle, point I in the second cycle) is the limit point
of the unloading process under the condition of recoverable initial macrostate.
From Fig.4 the following features can be scen:

(a) Loading and unloading curves are nonlinear and concave downward
(b) Cycles of loading-unloading curves show open hysteresis loops. An amo-
unt of openess of the hysteresis loop is a measure of the residual state

resulting from inelastic flow under loading-unloading cycles.

Our numerical results are in close agreement with the experimental results

of Lukas and Klesnil (1965).
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Fig. 5. Strain-stress relation for a tension test
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Fig. 6. Strain-stress relations for different simple shear tests
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5.6.2. Hardening/softening behaviour

The effect of the change of deformation path on the mode of inelastic flow
is presented in Fig.5 and Fig.6. The results were obtained under different load
systems while our numerical calculations were recorded by means of changing
the direction of slip with respect to the direction of dislocation glide. The
program of change of the deformation path was set up. The curve in Fig.5 is
the result of tension in the z!-direction, and the curves in Fig.6 are consequ-
ence of the simple shear in the z!a2-plane. The strain and stress values are
calculated from the intensities of the deviatoric strain tensor and deviatoric
stress tensor (Urbanowski, 1965), respectively.

It is seen that the mechanical properties of a solid may be profoundly alte-
red by the change of deformation path. They depend not only on the history
of deformation, but also on the stress system used to study these properties
(Basinski and Jackson, 1965). They clearly show a practical possibility of
non-monotonic behaviour of strain-stress relation induction. Such a possibi-
lity results from the instability of a metal substructure after changing the of
loading path (Korbel and Martin, 1988). Fig.5 is in close agreement with the
experimental data of Korbel and Martin (198R).

As a conclusion one may state that the presented approach is thus capable
of describing residual state, hardening and softening phenomena of a solid
behaviour at the same foundation.
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O pewnej unifikacji w mechanice kontinuum

Streszczenie

Celem pracy jest zaproponowanie pewnej unifikacji w ramach teorii mechaniki
kontinuum, ktdra modeluje niesprezyste zachowanie sie cial stalych. W tym pode-
Jjsciu, deformacja (kinematyka) kontinuum i jego substruktura opisane sa za pomoca,
struktury wiazki Finslera. Nowe teoretyczne podstawy, fizycznie uzasadnione, zostaly
wykorzystane do sformulowania alternatywnego kontynualnego opisu zachowania sie
ciala stalego. Addytywny rozklad gradientu deformacji zostal zdefiniowany bez wpro-
wadzania dodatkowych zalozen takich jak posrednia beznaprezeniowa konfiguracja,
regula plyniecia, prawa wzmocnienia i/luly oslabienia. Prowadzi to do nowych miar
deformacji, ktére sa zaréwno anizotropowe, jak i zalezne od zmiennych wewnetrznych.
Przytoczony przypadek deformacyjnej teorii zachowania sie ciala stalego zostal zamie-
szczony celem pokazania, ze w tym podejsciu stan residualny oraz zjawiska oslabienia
i umocnienia nie wymagaja do opisu dodatkowych teorii.
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