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The influence of the rotary inertia and axial load on the natural fre-
quency of non-linear two-member column is studied. The perturbation
method is used for solving the problem. Numerical results concerning
both the vibration frequency and modes are compared with those from
experiment. For equal ratios of the mass per unit length to flexural
rigidity for both members the rotary inertia does not affect the natu-
ral frequency. The critical load caused the divergence instability of the

system 1s also found.
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1. Introduction

The problem of the transverse vibration of beams with attached inertia
elements has been discussed by several authors. Srinath and Das (1967) stu-
died the vibrations of a simply supported beam, carrying a mass and having
rotational inertia at a certain general point along the span. Natural frequen-
cies and modes for beams having a continuous mass distribution as well as a
finite number of concentrated masses with rotary inertia were determined by
Jacquot and Gibson (1972). Both the free and [orced vibrations of a uniform
beam elastically restrained against rotation at one end and against transla-
tion at the other end, and carrying a lumped mass with rotary inertia and



616 L.TOMSKI ET AL.

external loading at an arbitrary intermediate point were analysed by Hamdan
and Jubran (1991). The effects of location and magnitude of the lumped mass
and rotary inertia on eigenfrequency parameters and resonance response of the
beam-mass system on the base of parametric studies were examined in that
work. Hamdan and Abdel Latif (1994) performed a numerical convergence
study of three discretization methods; i.e., Rayleigh-Ritz, Galerkin and finite
element, as applied to the analysis of free bending linear vibration of a beam
carrying inertia elements at intermediate points. A cantilever beam carrying
a lumped mass with rotary inertia at an arbitrary intermediate point and ano-
ther at the beam tip is used as a case of study. The beam mode shapes tended
to change rapidly as the end or intermediate inertia become large. Increa-
sing the end and intermediate rotational inertia resulted in a decrease in the
investigated first five frequency parameters. The deterministic and random
vibration response analysis of a uniform, mass-loaded, hysteretically damped
beam, the left end of which is attached by both translational and rotational
springs and the right end of which is free and carrying a heavy tip mass was
presented by Chang (1995). Geometrically non-linear structures were studied.
Przybylski et al. (1996) demonstrated the influence of prestress, axial force
as well as distribution of both the axial and flexural rigidities on the natural
frequency of non-linear two-member frame on the basis of both numerical and
experimental results. Tomski et al. (1994) found the effect of both the pre-
stressing force and concentrated mass on the natural frequency of a compound
beam. The same system was analysed by Tylikowski (1991) who applied dy-
namic approach to establishing two different kinds of stability. Tomski and
Kukla (1990) observed the effects of initial imperfection and amplitude on the
free vibrations of a system composed of a beam and a spring. All the results
obtained in the above mentioned works prove the necessity of investigation
of the rotary inertia eflect on natural vibrations of geometrically non-linear
beams.

The present contribution aims at examination of the effect of both the
rotary inertia of eccentrically mounted mass as well as the compressive force
on the natural frequencies of two-member geometrically non-linear columns.

The same column, scheme of which is shown in Fig.1, has been investigated
theoretically and experimentally. The construction consists of three rods. The
two identical rods (1) are made of duralumin (forming one rod) and reveal the
bending stiffness E;[l;, while the central rod (2) of the bending stiffness Fyl;
is made of steel. Free ends of the rods are connected by means of the rigid
element (3), in which the rods (1) and (2) are nutted against translation (4).

The block (3) is fixed to ball bearings mounted on the frame (5), what
results in the fixed pivot support conditions. Other ends of the rods (1) and (2)
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Fig. 1. Design of two-member column

are joined by means of the rigid block (6) and nutted. The block is restrained
against rotation in the frame (5) by means of ball bearings, resulting in the
pinned support conditions. There is the rigid rod (7) carrying a lumped mass

fixed to the block (6), (see also Fig.2), as well as a lug (8) ensuring the column
to be longitudinally loaded.

Wi (x,t)

x, Ui(x,1)

Fig. 2. Theoretical model of the investigated system

2. Boundary value problem

The scheme of deformed axes of the column under investigation is given in
Fig.2.

The equations representing transverse vibration of the column ith rod
loaded by the longitudinal force are as follows

(94101'(6, T)
ot
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A TET) | o PET) (2.)
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where
W,-(a:,t) _ 5,‘12 2 p,'A,'.Q,%H

denote non-dimensional transverse displacements, load parameters and non-
dimensional natural frequencies, respectively

f:? T = (2,1

and f2,, stands for the nth natural frequency, E;I; denotes bending stiffness

of the ith rod and p;A; stands for a mass per unit length of the ith rod.
The formulae for the longitudinal displacements of ¢th rod under the

boundary conditions U;(0,7) = U(0,7) = 0 have the following form

3
w(er) = -te- 5 [ D] o (22)
0
where AP U
p; = [; ui(§,7) = i(a;’T)

The boundary value problem formulated above can be solved employing the
small parameter method, i.e., expanding the relevant quantities into the expo-
nential series with respect to the amplitude parameter ¢ (¢ < 0) (cf Evansen,
1968)

N
wi(fv T) = Zéji_lwz'?j—l(f)T) + O(€N+1)

i=1
N .
A= Ao+ Zé‘z]/\igj(T) + O(€N+1) (23)
J=1
N .
@i =w3i(1+Z€2JU2j) +0(eN T i=1,2
J=1

where vy; stands for the frequency correction coefficient, and
wir(&,7) = wi (§) cos 7 wis(€,7) = i (§) cos T + w(€) cos 37
: — oD 3 (5)
wis(€,7) = wig (€) cosT + w,p (€) cos 37 + w;.’(€) cos 5T (2.4)

Aio(T) = /\(2) cos 21 Ajg = )\fg) + /\gi) cos 27 + /\1(-3) cos4r
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Substituting Eqs (2.3) into the equations of motion (2.1) supplied with the
formulae for longitudinal displacements (2.2), upon equating to zero the terms
of respective ¢ exponents, one obtains the following equations of motion and
longitudinal displacements

0(c°) : umo:-%%

0(51) : w!lv(é.’ T) + )‘iowiIII(Ea T) + wztid}“(fv T) =0
(2.5)

4
A.
0« walen) =52 -5 [[uhcn)] d
0
0(e?) = wly (6,7)+ Now5(&,7) + whibia(€,7) =

= —Xio(m)wH (€, 7) — wEwa(E,7) = 0

Roman numerals and dots denote derivatives with respect to ¢ and 7,
respectively.

In view of Egs (2.3) and (2.5) are to be solved under the following boundary
conditions

w11(0,7) = wy(0,7) = wn(l,7) =0
wlll(O’T):w‘gl(O’T) wlll(lvr):wél(l,‘r):o

Ha 0,y + S (1) = 0 2.6
wyy (L, 7) + pwyi (L, 7) + EIIIw“( ,T) = (2.6)

wll(0,7) + pwif(0,7) = 0

A A 1

2.2 Ao+ Ao— =p

#1 P2 ]
where J is the lumped mass inertial moment about the axis crossing the
symmetry axis of the column at the point of rod (7) attachment (Fig.1), and

perpendicular to the vibration plane and

_ PP _ Eqy
P=EL = EL

(2.7)

Consider free vibration of the system

wi;(€,7) = y;;(€) (2.8)
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General solution to Eqs (2.5b), by virtue of Eq (2.8) has the following form
yi1(€) = Aj cosh(aiiz) + By sinh(ag2) + Ciy cos(Baz) + Do sin(Biz) (2.9)

where

1
o = \/—5/\1'0 + v/ 4/\120 B = V Aio + 4 A+ Wk (2.10)

From the results obtained by Przybylski et al. (1996) it follows that for
the vibration amplitudes small enough, i.e., when the frequency correction
coefficient is close to zero, this problem can be satisfactorily solved when taking
only two terms (g and ¢,) from the expansions (2.3¢) into account.

Since the solution to the boundary value problem given above is well-
known, and can be obtained with the use of standard mathematics programs
on PC-type computers, in Section 3 only the results of natural frequency
calculations are given.

3. Natural frequencies — numerical results and experiments

The research (both calculations and experiments) was arranged in two
series.

The first one aims at examination of the effect of the inertial moment J on
the natural frequencies of the column for different values of ratios p1 Ay /(E111)
and p2A2/(E2l;) at P = 0. The bending stiffnesses and masses per unit
length of each rod are given in Table 1.

The second series concerns the influence exerted by the compressive force
upon the natural frequency curve course as well as the determination of the
divergence critical force magnitude for the geometrically non-linear column
for the three selected values of inertial moment J = 1.65-1074, 0.084 and
0.273 kgm?, respectively.

Table 1. Physical data of columns

Col. | Rod 1 [Rod 2| EL T, Eyl, | pr1Ay || p2Ag , o7y
] | [mm] || [Nm?) | [Nm?) | [kg/m]| [kg/m]|[s%/ m*) [s*/m )
By | 2-014 | 010 | 254.95| 95.72 | 0.866 || 0.619 | 0.003 | 0.006
By [2-014 | @14 | 254.95|367.72 | 0.866 || 1.213 | 0.003 | 0.003
Bs | 2-014 | 020 | 254.95|1532.0| 0.866 || 2.476 | 0.003 | 0.002

p1A) 243
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Fig. 4. Two first eigenfrequencies versus the moment of inertia J for columns of
different physical properties
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Experiments were conducted on the stand, scheme of which is shown in
Fig.3. The compressive force P acting upon the column (1) appears due
to the stretching system (3) supplied with the dynamometer (3). The current
magnitude is read off on the strain gauge fixed to the dynamometer. The rigid
rod (7) is mounted on the block enabling the lumped mass (6) to be attached.

Experimental investigations into natural frequencies have been conducted
with the aid of the Bruel-Kjaer single-channel vibration analyser (5) of 2115
type combined with the accelerometer (8) of 4381 type. The system was
excited by means of the impactor (9).

Table 2. Second mode shapes for columns with different moment of
inertia J

J=1.62510""kg-m2| J=0.032kg-m? J=0.084 kg-m? J=0.084 kg-m?
2, A, |l [ <
[HZ] \_', ~e—— N - e~
B, 116.9 68.19 65.98 65.52
-52 el > =7~ 27T 22
[HZ] N
63.13 56.11 49.87 47.15
-QZ &v ﬁ‘\ /-\w
[Hz] "
B 136.67 74.61 61.92 56.83
2
2| N, e N i N
[HZ] N i N — - e — e
77.6 77.6 77.6 77.6
2 PSS P =N
[Hz] =7 ~ e
174.2 114.65 95.59 90.45
By
€2, Q.’ Q, &,
[Hz] ~——” | T -
| 841l 82.06 77.63 72.0

Fig.4 shows the results obtained when performing the first series of tests,
with dots denoting the experimental results and solid lines representing the
numerical ones, respectively. Fig.4 provides the opportunity to study changes
of the natural frequency as a function of the inertial moment J. Increasing
the end rotary inertia yields the decrease in frequency. It is worth noticing

that there are two second frequency curves for each column marked by f)g
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Fig. 5. Comparison of eigenfrequencies for a single and two-member columns
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Fig. 6. Eigencurves for columns B, with a lumped mass of different rotary
inertia J
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14
horizontal — an increase in J does not affect this frequency. Explanation of

such a phenomenon is easy when studying the vibration modes. In Table 2
the second modes are shown for four values of J. Each mode has two nodes
with the exception of modes for the column B, and frequency (22 The
characteristic shape of those modes (zero deflection angles at both ends of the
column) makes clear that an arbitrary value of J cannot influence the natural
vibration when the column vibrates in that mode.

and 52. The curve 52 for the column B; (%‘.—AI‘— = %2244,;—) is parallel to the

In the case when the free vibration amplitude takes very small values
(the measured values were about 10um), it affects the natural frequencies
of the geometrically non-linear column insignificantly (comp. Przybylski et
al., 1996).

e iF I T
c . 2
2 9 | (@) “
P

80 .'. u
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o 1,2,3(¢5)) ..l‘\

60
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3Aa J=0.273 kg-m?

450 500 550

Fig. 7. Eigencurves for columns By with a lumped mass of different rotary
inertia J

Courses of the second vibration frequency curves are compared in Fig.5
with adequate curves for a single-member column of bending rigidity and
mass per unit length equal to the corresponding sums for a double-member
column, respectively, i.e. EI = F1Jy + F2ly, pA = p1 Ay + paAg. Curves for
single columns are marked with C;(2,), and the C; column has its FI and
pA as the column B; (1 =1,2,3). The curves C(2;) and C3(22) are placed

between curves Bl(fzg) and B](?jz), and Bg(;)g) and Bg(ﬁg), respectively,

whereas the curve Cy(f22) overlaps the curve Bg(;)g).
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The runs of dimensionless natural frequencies w, of the system versus
the load parameter A obtained numerically (solid lines) and experimentally
(dots) were plotted in Fig.6 for the column By, and in Fig.7 for the column B,
for three magnitudes of the inertial moment J. A good correlation between
the corresponding results should be noted. Despite of a different course, the
second eigenvalue curves for columns B; and B, for different J coincide at
the point of coordinates (0, /\£2)) where the column loses its stability through
divergence (second critical load).

4. Conclusions

For compound geometrically non-linear columns, in contrast to the single
column configurations, within the range of the first and second frequencies an
additional natural frequency appears, involving an additional mode shape.

For two-member columns the natural frequency 52 is independent of the
rotary inertia of a lumped mass fixed to one end of the column if '%‘-li}l‘— = ”22‘43 .
It happens because the corresponding mode is characterised by zero deflection
angles at the column ends, and in result the mass remains immovable during
vibrations. For all cases when %’-ﬁ‘— # %?2—’}:— the increase in the rotary inertia
causes the decrease in the natural frequencies.

The pinned compound column with rotary inertia elements attached to one

end of the column, subject to the compressive force loses its stability through

divergence: for 2; — 0 the first critical force appears, while for fzg and 52,
despite different courses of the natural frequency curves, they coincide at one

L3

point (for f)g = {22 — 0), where only one value of the critical force appears.
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Drgania wlasne obciazonej wzdluzuie kolumny dwupretowej z elementem

inercyjnym

Streszczenie

W pracy zbadano wplyw sily wzdluznej oraz inercji obrotowej masy skupionej
zamocowane] mimosrodowo na koncu swobodnie podpartej geometrycznie nielinio-
wej kolumny dwupretowej na drgania takiego ukladu. Do rozwiazania zagadnienia
zastosowano metode malego parametru. Wyniki otrzymane numerycznie byly weryfi-
kowane doswiadczalnie na stanowisku. Stwierdzono, ze przy réownych relacjach masy
na jednostke dlugosci do sztywnosci na zginanie dla obu pretéw istnieje postaé drgan
ukladu, przy ktérej zmiana momentu inercyjnego nie wplywa na czestosé drgan. Wy-
znaczono takze dwie pierwsze sily krytyczne okreslajace niestatecznosc dywergencyjna
ukladu.
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