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In 1988 Falade and Brenner obtained the results which enables us to
calculate the low Reynolds number hydrodynamic interaction only for
a sphere moving in a fluid bounded by an arbitrary deformed wall. In
this paper another combined analytical-numerical method for solving the
same problem is presented for a wide class of bodies, shape of which can
be described in separable coordinates (elipsoid, torus, spheroid, sphere).
This method of calculation is based on the perturbation method, linea-
rity of the Stokes equation and the collocation method, respectively. As
an example, applicability of this method is tested for an axisymmetric
translation of a sphere.
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1. Introduction

In many industrial and biological processes the important class of hydro-
dynamic interaction problems is posed by the effect of nearby wall on the
particle motion. In general, such problems are very complicated since non-
planar wall and arbitrary shaped particles are involved. In order to construct
a mathematical model of this physical phenomenon it is necessary to resort to
a number of simplifications, based on its physical analysis. The investigation
of this complicated problem can be started with the Stokes flow past a single
rigid spherical particle, near a curved wall of the constant curvature radiuses
R1, R2. For the plane wall R1 = R2 = oo, for the cylindrical one R1 = ¢l,
R2 = o0, and in the case of spherical wall Rl = R2 = ¢2. Adopting of this
approach has dated back to the works of Lorentz (1896) and Faxen (1924).
The data and results on particle-wall interaction may be found in Happel and
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Brenner (1967), Hasimoto and Sano (1980), Kim and Karilla (1991), Fuillebois
(1989), Falade and Brenner (1988).

Approach to particle wall interactions depends on the ratio of two length
scales: the particle size a and the distance between the particle and wall d
(we denote it k£ = d/a). In spite of verification of the solution methods the
following cases have been studied in earlier papers separately:

o Sphere far away from the wall (£ > 1) - mainly by means of the reflection
technique

o Particles and wall near contact (k — 0) — using a combination of lubri-
cation and numerical methods; matched asymptotic expansion was often
applied too

e Moderate separation (k= 1) - using various numerical schemes.

It is worth mentioning, that the results obtained in the papers cited above
are devoted only to the situation when the wall bounding a flow has constant
curvature radiuses and they prove that a strong dependence between the effect
of a wall on the hydrodynamic force of a moving particle and a particle shape.

The first result for the flow past a sphere in the presence of an arbitrary
curved wall (Rl = R2 < oo) have obtained by Falade and Brenner (1988).
The authors examined translational and rotational motions of a spherical par-
ticle and obtained the results, which were valid within the entire range of the
parameter k. They showed. that the wall curvature the Stokes force F and
torque T depended lineary on the two scalar principal curvature coefficients
R1, R2 of the wall at the foot of the shortest normal to the wall from the
sphere centre.

To construct the method of solution the authors used spherical bipolar
coordinates. It enables description of a sphere and a plane wall surfaces, re-
spectively, by given values of a single variable. Moreover, they used perturba-
tion method for velocity v and pressure p, which permited — after expanding
velocity v in a Taylor series — to transfer curved wall boundary condition to
the plane wall. Unfortunately, this method does not work for the low past a
non-spherical particle due to the properties of bipolar coordinates mentioned
above. So, we need another solution scheme to solve this problem, if we want
to know dependence between the effect of an arbitrary curved wall in the flow
field and a shape of the moving particle.

The aim of this paper is to present a new numerical-analytical method
which allows us to analyze the flow past a non-spherical particle, shape of
which can be described in separable coordinates in the presence of arbitrary
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curved wall in the Stokes approach. It is based on the perturbation method
and the concept, that each of the particular perturbation fields can be sought
as a sum of the fundamental solutions: in the half space above a wall and
outside the moving particle, in the space. The boundary conditions instead
on the curved wall are satisfied on a plane wall after expanding the velocity
v in a Taylor series. The essential difference between the approach given by
Falade and Brenner (1988) and this one consists in the fact, that instead of
the Stokes fundamental solution in bipolar coordinates we use a sum of the
fundamental solutions: in the half space and in the separable coordinates.
Next, we use the collocation method to determine the constants appearing in
those formulas.

As an example of efficiency applicability of this method, the axisymme-
trical, the translational flow problem past a sphere in the presence of the
deformed wall z = zo[l + ¢ exp(br?)], b < 0, is solved.

2. Formulation of the problem

Fig. 1. Geometry of the flow

We consider the creeping motion of a solid particle in a stationary viscous
fluid, which is bounded by a rigid, arbitrary curved wall, curvature of which
slowly changes. At infinity the fluid is at rest. The particle moves at a con-
stant translational velocity V. Hereinafter, a stands for the characteristic
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dimension of the particle, and d for the distance between particle and wall.
By introducing the Cartesian coordinate system (z,y,z) origin of which is in
the particle center the wall surface can be described by the function

2= fa(z,y) + 20 fec

which satisfies the condition |fa(z,y)| < la, where 2y and la are con-
stants, [zo| represents the characteristic distance between the two parallel
planes 2 = 0 and z = zy which is defined as the crossing the wall at the
point at which the function fa(z,y) attains the mimimum. For comparing
shapes of different curved walls it is useful to consider the function f instead
of fa, defined as f(z,y) = fa(z,y)/la. In such a case |f(z,y) < 1. It
has been assumed, that the parameter ¢ defined as the ratio ¢ = la/zg is
small, |e] < 1, moreover the parameter 3 = la/a < 1. Then the equation
describing the wall reads z = zo<1 + Ef(;v,y)). In order to find the solution
to this problem the Stokes approach is applied. The range of small Reynolds
numbers Re < 1 is considered, Re = av/v, where v denotes the kinemadtic
viscosity of the fluid.
The governing equations of the fluid motion are

vAv = Vp V-v=20 (2.1)

where v and p stand for the velocity vector and the pressure, respectively.
Because of the connection of the coordinate system with the moving par-
ticle, the velocity wv satisfies the following boundary conditions

-V on the curved wall
v=2¢0 on the surface S of the moving particle (2.2)
-V at infinity

3. Method of solution

The solution to the problem represented by Eqs (2.1) is sought in the form
of perturbation expressions for the velocity » and pressure p. Assuming, that
le] < 1 it is possible to expand velocity v and pressure p into the infinite

series
v = Zs’vi p= Zezpi (3.1)
=0

=0
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Substituting Eqgs (3.1) into Eq (2.1); and then equating terms with the
same powers of ¢, one finds that each perturbation field (wv;,p;) satisfies the
Stokes equations

vAv; = Vp, V-v,=0 (3.2)
and the boundary conditions )
v, =0 1 =0,1,... on the body (3.3)
vop= -V v, =0 1= 1,2,... at infinity '

Some troubles with fulfilling the boundary condition appears at the curved
wall. Namely, after substituting Eq (3.1), into Eq (2.2); we have

—V = wo(w,y o1+ e f(z.y))) + evr (2,y, 20l L+ £ flz,9))) +
(3.4)

+ 52v2(:v,y,20(1 + 5f(rc,y))> + ...

In this formula the perturbation parameter ¢ appears implicitly, in the first
argument of the function, as well as explicitly, so that it is not directly possible
to equate like powers to zero. This obstacle can overcome only by expanding
the perturbation fields v; in Taylor series to exhibit explicitly their dependence
on ¢. If we assume that wv;, like v, is analytic in its dependence upon z, we
can expand it in a Taylor series about 2z = zy. Considering only the linear
terms at € Eq (3.4) is

v
*V = v0($>yyzo)+(Z—50)8—3(55»1720)4‘5”1(%%20)+
? (3.5)
Jvy
)52
Since (2 — 20) = ¢f(z,¥y)20, the boundary condition represented by Eq (3.4)
can be rewriten as

v0+§:5 [vﬁ—z : (z,9y) (aj,vi.—jﬂ = -V at z = zg (3.6)
i=1 :

+ e(z = 20) (2.9, %0) + .

0z7

Therefore, the boundary condition on the deformed wall, Eq (2.2);, can be
satisfied with respect to any order in ¢ by requiring that various perturbation
fields wv; satisfy the folowing boundary conditions on the flat wall z = zg

v99= -V
° (3.7)

vi:~2]1f(1 y) 2 (a—;vZLJ—J) for i1=1,2,...

J=1
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To solve the flow problem defined above, owing to the linearity of Stokes
equation, we seek the solution v; as a sum v, = w; +u;, where u; is a general
solution of the Stokes equation (2.1); outside the moving body in the space
in the separable coordinates in which the surface of the moving body can be
described. Part w; represents the general solutions in the half space 2z > z.
They are regular in the flow field. In view of the boundary conditions we take
vo to be vy = ug + wg — V, where V is the velocity of the moving particle
under consideration.

The boundary conditions on the wall (3.7) can be rewriten now in the
equivalent form

Uy = —Wo

‘1 ;o ajvi—' .
ui:—wi—zﬁf(x,y)&é(—a(zj—])) for v =1,2,...

i=1

which enables us to express the unknown constants appearing in the global
solution w,; by the constants (still unknown) from the global solution u,.
They can be determined from the boundary condition to be satisfied by the
velocity » on the moving body, Eq (2.2);

ug + wg = -V u, +w; =0 1=1,2,...

applying collocation technique and solving the derived set of equations. Then,
the velocity field is known.

4. Solution for a sphere

As an example of applicability of this method we consider the flow field
resulting from an axisymmetrical translation of a solid sphere in fluid. This
problem was choosen because in this case the accuracy and convergence of the
present method can be verified by comparison with the results presented by
Falade and Brenner (1988).

Let the sphere move at the translation velocity V towards the wall. In
the polar system of coordinates (r,z) with the origin at the sphere centre the
surface of the bounding wall will be given by the equation

z = 20(1 + 5exp(br2)) b<0 29 < 1
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We assume, that |¢] < 1, § < 1 and Re < 1. The governing equations of
the fluid motion are the Stokes equations (2.1) and the boundary conditions
are given by Eqs (2.2). Due to the axisymmetric nature of the flow, we in-
troduce the stream function ¥(r,z) satysfying Eq (2.1),, which in cylindrical
coordinates is given by

169 _1év
vV, = 75—;: V, = . 61‘ (41)

The symbols v,, v, stand for the radial and axial velocities v, respectively.
Now, from Eq (2.1),, the stream function satisfies the equation

D*(D*¥) =0 (4.2)
where D? is the generalized axisymmetric Stokes operator
62 19 62
6r2 b 622
We look for the solution of Eq (4.2) in the form of perturbation expansion
series and expand the stream function ¥(r,z)

(4.3)

>0

U(r,z)= Ze‘%(r,z} (4.4)
=0
Moreover we assume, that each stream function W;(r,z) is composed of
the two parts ¥, = ¥,; + ¥,,;. The part W,; represents the infinite series
containing all simply separable solutions of Eq (4.2) (in spherical coordinates)
which are regular in the flow field, given by Happel and Brenner (1988) as

Vui = ) (Bro ™™ + Dio™" ") 1a(C) (4.5)

Here ( = cosf and 1,(()is the Gegenbauer function of the first kind of order
n and degree —1/2, r and 6 are the spherical coordinates measured from the
sphere centre. B! and D} are unknown constants which will be determined
by satislying the non-slip boundary conditions on the surface of the sphere in
the presence of bounding wall.

The part ¥, represents the integral of all the separable solutions of Eq
(4.2) (in cylindrical coordinates) which produce finite velocities everywhere in
the flow field, given by the Fourier-Bessel integral

/ Bi(a ToE Di(a)aze‘az]Jl(ar) do (4.6)
0



820 A.KKucaBa-PlETaL

Here B'(a), Di(«) are unknown functions of the variable o and J; is the
Bessel function of the first kind of order one. The disturbances produced by
the sphere along the wall can be completely reduced when the proper choice
of the functions B*(«), D*(a) in Eq (4.6) is made.

We denote by u.;, u,;, w,;, w, the velocity components derived from
Eqs (4.1) after substituting into them the stream functions V,, and W,;,
respectively. Thus the axial v, and radial v, components of velocity v of the
fluid flow are

oo o
U = Zgzz)”- = zgl(un + wr)
=0 =0
(4.7)
co 0o
v = ) e =y e (U + wai)
=0 =0

Now substituting Eqs (4.5) and (4.6) into Eqgs (4.1) and using Eqs (4.7) one
obtains the formulas for the axial and radial components of velocities v,

Upy = Z(B;B,.n -+ D;;P )+ / zjadi(ar) da = wp; + wyg
n=2 0
{=0,1,2,...
o) oo
Vpy = Z(B:Lan + szzn) + /]:i(a’ Z)O‘JO(O‘T) da = Uy + Wy (4.8)
n=2 0
1=1,2

g Ly s

~0"Z(B082n+D0 zn)+/]:0 O‘JO(O‘T) da =V =u+ w,eo -V
n=2

The functions By, Drn, Bop, Doy, E4. F¢ are listed in Appendix (Egs (A.1)).
The boundary conditions which should be satisfled by the velocity v on

the deformed wall are represented now by Eqs (3.8). In order to determine
the velocity field to the first order in ¢ it is reduced to

w’ro(rvzo) = _Uv'O(T,ZO)
br? 6
w,1(7, 20) = —e Zozsjvro('f,zo) — ur1(7, 20)
: (4.9)
woo(7,20) = —Uz0(7, 20)

2 0
wzl(T»ZO) = —e” 30:5—7?):0(7‘,30) - Uzl(T,ZO)
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Substituting Eqs (4.8) into Eqs (4.9) we see that Egs (4.9); 3 can be easily
inverted and integration can be performed using results of Hankel transforms.
It is

[BRBrn(t,20) + DDynl(t, 20)]J1(axt) dt

M8

E%a, zp) = — /t
0

il

n

(4.10)
fo(a,ZO) = —/ Z[B Bcn(t zo) + D° D7,L(t Zo)]]o(at) dt
0 n=1
These integrals can be calculated analytically. We have
B:n = - / tBrn(taZO)Jl(O(t) dt = _i(g@)(n_l)e—odz(ﬂ
n'\ 2
0
) oo an=1) |ZO| " _alzl
an = - /thn(t,ZO)JO(at) dt = — T (—) e~ vz
. n. 20
0
Dy, = —/tDm(t,zo)Jl(at)dt =
° (4.11)
1 alzoy (=3 .
= ~F< L00|> e~@ll[(2n — 3)a|z0| — n(n — 2)]
D:n = —/tDzn(t,zo)Jo(at) dt =
0
a3 ralzo|\n 1, .
= —— (-X) e~ ozl [(271 - 3alzl - (n—1)(n - 3)J
then w?, w9 can be now written as

Wro Z BYWB,,, + DYWD,,
(4.12)

w,o = 3y BIWB., + DIWD,,

n=2

The functions WB,,, WD,,, WB.,, WD,, are listed in Appendix (Eqs
(A.2)).



822 A . KucaBa-PIETAL

Thus, substituting the above formulas into Eqs (4.8); 3 one obtains to zero
order velocity fields v,g, v,0 still in terms of unknown coefficients B?, D9

Yo = Z Bg(Brn +WB.,) + DQL(DT’IZ. + WD,,)

n=2

(4.13)
o0
v0 = Y BUBuy + WB.y)+ DY(Don + WD) — V
n=2
In order to obtain a unique solution, we should apply the boundary con-
ditions imposed on the moving particle (Eq (2.2)2) to the velocities expressed
by Eqgs (4.13) at a finite number of discrete points on the sphere. Next — after
truncating the infinite series which appears in Eqs (4.13) into the finite one
— we solve the derived equations set with respect to BY, D2 and obtain the
velocity field wvg.
Then, beginning with the zero-order field, each higher-order field wv,,,
m > 0 can be successively determined by satisfying the appropriate boundary
conditions at the wall, and the surface of the particle. The wall boundary
conditions to be satisfied by wv,, on z = 29, Eq (3.8), require prior calculation
of w,,_; and its derivatives.
The algorithm for a computing higher order field wv,, can be summarized
as follows:

Stage (1) Compute lower-order field derivatives of vy, k& < m which appear
in Egs (3.8)

Stage (ii) Inverte equations, Eqs (3.8) to obtain &£™ and F™ in terms of
the unknown spherical coefficients B} and D

Stage (ii1) Solve the set of equations in the B, D7 unknown coeflicients
derived from Eqs (4.8); 2 after applying the results obtained at Stage
(i) and boundary conditions on the sphere. The collocation technique
is applied.

After Stage (ii) the final formulas for the first-order velocity fields v,.1, v,y

are
v = S [ BB+ WBpn) + DDy + WD,) + BOWBR, + DSWDR, |
n= (4.14)

var = 3 [BU(Bon + WBin) + DY(Dan + WD.) + BOWBZ,, + DIWDZ,]

n=2
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The coefficients B2, DY are known from zero order solution vy, the coefficients
Bl, D} are unknown yet and should be found at Stage (iii). The functions
WB.n, WD, WB,,, WD,, are the same as in Eqs (4.13) and WDBR,,
WDR,, WBZ,, WDZ, are listed in Appendix (Eqs (A.3)).

5. Force

The non-dimensional hydrodynamic force exerted upon translating
sphere is

]:

I 6 pa (5-1)

where F = Fy +cF + O(&?).
The force exerted by the fluid on the sphere takes the form (cf Falade and
Brenner, 1988)

-6 /D,
- RCERE ¢ X :
F, _,m/7 M( = ) ds (5.2)
S

S denotes the particle surface. Performing the above integration one obtains
the simple relation
F; = 4Dypur (5.3)
In order to determine the force exerted by the fluid on the sphere to the
first order in ¢ we first calculate the fields wg, po and next vy, p;. The
present paper will be devoted to determination of the first order curvature
effects only.

6. Numerical results and conclusions

The scheme of spacing the collocation points on the surface of the sphere
is based on the paper by Ganatos et al. (1980) in which the corresponding
problem of the sphere motion in the presence of a flat wall was considered.
The calculations of the wall correction factor f in this study were performed
using the set of points: 0°, 45°, 90°, 132°, 145°, 175°, 177°, 180°).

It is noteworthy owing to the nature of the problem that each boundary
point represents a ring.

The time necessary for computing the force f for set of equations of the
n collocation points in IBM PENTIUM 100 is about 4n-10~2sec.
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To study this algorithm there were made series of calculations for a sphere
moving towards the wall z = zo(1 +¢cexp(br?), b < 0, zg < 0 for various para-
meters b and . In result, the magnitudes of non-dimensional hydrodynamic
force f (Eq (5.1) were obtained acting on the translating sphere in depen-
dence of the two parameters dis = |zp|/a and b. Parameter dis denotes the
non-dimensional distance between the centre of a sphere and the wall z = zg
and parameter b is associated with the shape of the wall.
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Fig. 2. Typical f (dis) for a moving sphere: (a) towards flat wall O, %b) towards
spherical wall — results derived from Falade, and Brenner (1988) %, (¢) for deformed
wall z = z0(1 ~ 0.2exp(—0.172), 20 < 0, o

In the Fig.2 the presented results are compared with those given by Falade
and Brenner (1988) for a spherical wall and by Ganatos et al. (1980) for a
flat wall for the chosen values of parameters b and €. As an example it was
taken b = —0.1, ¢ = —0.2. To make this comparison, first, the local radius of
curvature of the wall must be calculated and then the tabulated values from
Falade and Brenner (1988) must be used. Because the non-dimensional force
f was given by Ganatos et al. (1980) only for selected values of parameter
dis, so the same values of dis were used in this test. The results of such
computations are plotted in Iig.2 and the curves show the dependence of
force f acting on a translating sphere on its position dis.

It can be observed that from a qualitative point of view, the results pre-
sented are similar to those obtained by Falade and Brenner (1988). The dif-
ferences can be explained by the fact, that the results given by Falade and
Brenner (1988) refer to the spherical wall with the same curvature radiuses at
the foot of the sphere as the considered wall.
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To study the effect of deformation of the wall and possible gains from the
presented algorithm there make the calculations of non-dimensional force f
for various values of the parameter (3 = la/a. Fig.3 presents the results
obtained for 5 = 0.2, 0.25, 0.3 and 6 = —0.01.
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11.4I — - ]2.41 D ’3.4’ - — ‘4.4‘ Idis

Fig. 3. Comparison between the results for various deformation of the wall:
(a) b=-0.01,3=02 0O, (b) b=-0.01,3=0.25 %, {c) =6=0.01,8=0,3 x,
(d) p=0-flat wall e

Summing up, the following conclusions can be drawn:

e The numerical method presented in this paper enables one to determine
the hydrodynamic interaction between an arbitrary deformed wall and
a moving body, the shape of which can be described in the separable
coordinates

e The area of an active interaction between a body and a wall is the most
important factor which increases the drag.
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Appendix

The functions Byns Drn, Bans Din, £ a, z), Fi{a, z) which appear in Eqs
(4.4) and (4.5) can be expressed as

B = n+1 -1—[ ( z )
7‘n‘\/(—7“2—m7' n+1 m

n+1 1 z
Dip = ———————Tp1| —=—
(T2+22n27~ +1(«/7~2+ )+

2
\/(7 + z2)n- T, ”< 72+Zz>

1
Ban = n(m) (A1)
D= () P )
N GE e A Ry == (7=

Ela,z) = (1 - 0)e & a, 20) + e " F¥(a, z0)
Fla,z) = —ae " a, 20) + (1 + a)e " Fila, z)

The functions, which appear in Eqs (4.12) and (4.13) are as follows

(o]

WB,, = — /[(1 —0)e By, + 0e B}, alJi(ar) da
0

8

WBa = = [[=0e7B;, + (0 + D)o B2l o(ar) da
0 (A.2)

[oe]

WD,, = — [[(1 -0)e D}, +0e D} alJi(ar) da

80

WD,, = - /[—oe_"D,’fn + (0 + 1)e7? D}, alJo(ar) da
0

The functions, which appear in Eqs (4.14) were obtained using the trans-
formation and can be written as

WEBR, = - /[(1 ~ 0)e BBy, + 0e7 BB, laJi(ar) da
0
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WBZ, = - /[—ae“"BB;‘.n + (o + 1)e"? BB}, oladolar) dea
0
(A.3)
WDR, = — /[(1 —0)e7 DDy, + 0e DD} JaJi(ar) da
0
WDZ, = — /[—oe“’DD:n 1 (0 + 1)e=7DDx, |adolar) de
0

where the symbols BB,,., B8,,, DD,,, DD,, denote derivatives of the func-
tion given by Eqs (4.11) and (A.2) and can be written as

_ 0By, | OWB., _9D;, WD,

BB;n DDn +
0z 0z 0z 0z (A4)
aB: OWB., aDr, OWD,
BB, = — = DD,, = - o
T T o RN
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Wspdlezynnik oporu czasteczki poruszajacej sie w obecnosei scianki

Streszczenie

W pracy zostala przedstawiona nowa analityczno-numeryczna metoda na wyzna-
czanie sily dzialajacej na poruszajaca sie czastke w obecnosa scianki o dowolnym
ksztalcie, w przyblizeniu Stokesa. Opiera sie ona na liniowosci rownan Stokesa, me-
todzie zaburzen oraz metodzie kollokacji. Umozliwia wyznaczenie sily dla dowolnego
ciala, ktorego ksztalt jest opisany we wspolrzednych krzywoliniowych. Jako przyklad
obliczono sile dzialajaca w ruchu osiowosymetrycznym czastki kulistej 1 poréwnano
z wynikami otrzymanymi przez Fallade i Brenner (1988).
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