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In this study, a computer model was developed to predict the elastic
stresses and strains in an articulated wood member containing a thin
bondline between adherents. This model used the finite element me-
thod with an innovative bondline element to characterize the thin layer
of glue between members. This element was adopted from a published
model for the behavior of massive rock formations containing thin ve-
ins of different materials. Comparisons were made between numerical
results obtained in this study and theoretical predictions derived [rom
certain problems with known closed-form solutions. Very close agree-
ment between numerical and theoretical results were found in all pro-
blems. Also, numerical predictions were compared to experimental data
obtained from instrumented tests of small wood members. Once again,
good agreement between numerical and experimental results was found.
In addition to verification studies, parameter studies were conducted to
determine the numerical stresses in step, scarf, and finger joints in wood
and an isotropic material with similar stiffness.

1. Introduction

A recent issue of the Journal of the International Association for Bridge
and Structural Engineering (see Structural Enginecring Inlernational, 1993,
3. 2) was devoted to new, Jarge and innovative timber structures. The eight
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bridges, sports facilities and convention centers illustrated a variety of struc-
tures which used timber in nontraditional ways. For example, the 192 meter
long pedestrian bridge in Essing, Germany, with the geometry of a catenary
structure, converts about 90 percent of the vertical loads into tension forces
on the glue-laminated (glulam) members. This concept is unique for a timber
bridge of this size. The Swiss Polydome is a 25 meter span timber shell exhi-
bition hall with a spherical cap roof which is modelled as a stiffened shell. All
ribs and decking of the shell are made with one standard small size of dimen-
sion lumber, 27mm X 120 mm (approximately 1 X 5in?). Finally, the Hamar
Olympic Indoor Stadium, built for the 1994 Winter Olympic Games, is the
largest wood structure ever built. With a geometry reassembling an inverted
Viking ship, the structure utilized 2000 m® of glulam members, 40 000 dowels
in the joints, and has arched trusses with spans varying between 30 and 96
meters. The designers claim that the arched truss geometry should span 130
meters without difficulty.

The previously mentioned structures became a reality due to the fact that
solid lumber could be articulated into larger sizes. Glulam structural members
are available due to the existence of finger jointing technology. However, with
the demand for structures with greater span and load-carrying capacity, it
is becoming more important that finger joint behavior under load be better
understood and better predicted. In this paper, a finite element is detailed
which models the glue line in articulated wood structural members. This
element is incorporated into an analysis model to predict the stress and strain
distributions in finger jointed wood members.

2. Statement of the problem

A typical vertical finger joint in a wood laminate is shown in Fig.1. A
sawtooth pattern of cuts is made in adjoining pieces which are then mated
by gluing. This allows the transfer of axial load across the interface in either
direct tension or tension due to bending.

Although the process of making the connection is simple, the mechanical
behavior of the finger joint under applied stress is complex. Because different
member widths are manufactured, the cut pattern is typically unsymmetrical
about the longitudinal centerline. The alternating taper cut and edge inter-
cepts lead to stress concentrations of varying magnitude across the joint. The
small clearance at each tip, made to prevent crushing of the tips, creates a
stress discontinuity. In addition, wood is anisotropic and has natural variabi-



FORMULATION OF A BONDLINE ELEMENT.., 103

Fig. 1. Finger joint and associated nomenclature; L - finger length, & - lanunate
width, @ - taper angle, 1 — tip width, d - tip depth, « — tapered edge length

lity, as such physical properties of each piece are not identical. This is further
complicated by the presence of physical defects such as knots, slope of grain,
grain deviation and many other peculiarities.

Mathematical modeling of a finger joint by a closed-form solution is intrac-
table. Consequently, numerical modeling techniques have evolved as the basis
for studying the mechanical behavior of a finger joint. A number of researchers
have elected to employ the finite element method (FEM) to mathematically
idealize the problem. A particularly challenging aspect is the proper represen-
tation of the extremely thin glueline. However, in research to date. simplifying
assumptions have been made to reduce the engineering mechanics of a glued
interface to a more readily tractable problem (cf Blomer (1961): Ehlbeck et
al. (1985): Leichti (1988)). An important limitation in manyv works has been
the neglect of the glueline itself in the mesh generation {cf Qu and Fan (1988):
Pellicane and Moody (1988); Pellicane (1994)). In this paper, a contact ele-
ment is described whereby this limitation is overcome. The formulation of
this element, as well as validation data and theoretical parameter studies, are
presented herein.

3. Background

Only recently have researchers attempted to mathematically predict the
behavior of actual finger joint geometries. Previously, a number of analytical
studies had been conducted on modeling simpler geometries for glued joints
in wood members.

In an early study, Goland and Reissner (1944) examined the stress di-
stribution in a lap joint modeled as a plane-strain system. The joint thev
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examined is shown in Fig.2. It was treated as a plate having the dimensions

2C and 2T for its lap and width, respectively. The edge loads of this plate

were obtained by considering the two bonded sheets to act as a cylindrically

bent plate with a variable neutral plane passing through the points A and B.

The sheet dimensions were taken as I 4 2C in length and T + n/2 in depth,
with 7 representing the glueline thickness.

[ FE N, ¥ s AU
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L T _[B
j

Iig. 2. Elevation view of a joint system

Two limiting cases were analyzed. In the first case, the glueline was as-
sumed to be so thin and stiff, relative to the dimensions and stiffness of the
bonded sheets, that its discontinuity could be neglected. In effect, the plate
was treated as having no glueline. In the second case, the influence of the
bonded sheets in the area of the overlap was neglected, and only the stress
distribution in the glue was studied. Graphical results were presented. Results
showed that in case 1, the peel stress concentration factor was as high as 4.3
for the loading considered. In case 2, the stress concentration was much Jower.
It was also observed that, compared to the shear stresses, the peel stresses
were more sensitive to glueline flexibility. By decreasing the stiffness of the
glueline, stress concentrations of the peel stresses could become lower than
those of the shear stresses.

Erdogan and Ratwani (1971) investigated the shear stresses in the glueline
of lap and scarf joints. They examined the condition of different materials on
either side of the joint but neglected all bending effects. Shear stresses in the
glue were highest at the edge towards the more flexible material. It was shown
that the stress concentrations increase with decreasing glueline thickness.

The influence of orthotropic material properties on the stress distribution
in alap joint was analyzed by Suzuki (1990). He neglected the glueline discon-
tinuity (Goland and Reissner (1944), first limiting case). Results showed that
the stress concentrations are lowered when the stiffer material axis is parallel
to the glueline. Also, the maximum peel stresses do not occur next to the
glueline, but about 0.2 times the lap thickness away from it.

Using the FEM, Goodman et al. (1968) developed a ”joint element”, and
used it to study the effect of joints and seams in massive rocks. Barker and
Hatt (1973) adopted this element to analyze an adhesive joint bonding an
advanced composite to a metallic adherent, and referred to it as an "adhesive
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element”. Schafer (1974) used the same element., for the numerical formulation
of contact problems, but called it a "bond element”. Pellicane (1992) discussed
the potential of the joint for modeling articulated wood members under axial
load. Milner and Yeoh (1991) adopted this element to study the problem of
glued finger joints in timber, but called it a "bond-line element”.

Though various authors attached different names to the element, and con-
sidered it for different applications, the following common basic assumptions
were made:

e The bondline is thin relative to its length

e Only normal {peel) stresses. perpendicular to the bondline. and shear
stresses, parallel to the bondline, are transferred

e Both stresses are constant across the bondline.

4. Objective

The objective of this paper is to describe and demonstrate the validity
of a computer program to predict the stress and strain distribution in finger
jointed lumber exposed to uniaxial tension loading. The key component of the
model which is highlighted in the paper is the finite element used to account
for the thin glueline between adherents. Its formulation is also described.

5. Finite element analysis

The FEM is well established and has been adequately described by many
authors, such as Zienkiewicz and Taylor (1989). Therefore, only a brief ove-
rview of this technique with respect to the present research is given herein.

The FEM for linear orthotropic plane elasticity

In this study, traditional finite elements based on an approximating displa-
cement function were used. The equilibrium equations of a continuum can be
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written as
o5i+ f =0 Pelf
oing = 1 PesS (5.1)
oy = 05

where P is the point in the connected domain {2, and 5 is the boundary
of the continuum. oy;, f; and t; are the stress, body force, and the surface
traction vectors, respectively, at P. For plane elasticity, 7,7 =1,2.

Eq (5.1); is the governing equation of the stated problem, Eq (5.1); gives
the "natural” boundary conditions, and Eq (5.1)3 is a consequence of the
moment equilibrium at every point in the continuum.

The stress-strain relationship can be created in the form

oi; = Cijri€r (5.2)

where € is the strain tensor at P, and C;ji are constant material stiffnesses.
For the case of orthotropic plane elasticity, where the material axes coincide
with the coordinate axes, Eq (5.2) can be written as

o1 = Crien + Craen
o92 = Cor€11 + Cogenr (5.3)

o12 = Ces€12

where
E] /-L‘ZlEI
Cyp = — Cyp = ——
=75 12 D
pi2 b L,
Co = Cyo = 5.4
21 D 2= (5.4)
Ces = G2 D =1- pyapun
and
£ - elastic modulus (MOE) along material axis 1
Ey - MOE along material axis 2
G2 - modulus of rigidity in the 1-2 plane
l12, o1 — the Poisson’s ratios.

Using energy considerations, it can be shown that jpyo/Fy = ua1/FE3,
therefore

Cia=Cn (5.5)

Hence, the stress-strain relationship can be written in the matrix form

o; = Qi]f]' ’i,j = 1,2,3 (56)
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where o0, and €; are the stress and strain vectors. respectively, at P and Q,
is the reduced stiffness matrix.

If the material axes are rotated by an angle /3, with respect to the coordi-
nate axes, the reduced stiffness matrix Q;; has to be pre- and post-multiplied
by the 2D rotation matrices T;; and T;; = Tl-TJ-, respectively. Thus, the redu-
ced stiffness matrix Q;; in Eq (5.3)7 is replaced by rotated reduced stiffness
matrix Q. Q;-]- is generally a full matrix, i.e., the off-diagonal terms in the
third row and third column are non-zero. For simplification, the derivations
given here assume coinciding material and coordinate axes.

Assuming small deformations, the strain-displacement relationship can be
written in the form

1
i(um + uj;) (5.7)

where u; is the displacement vector at P.
Combining Eqgs (5.1), (5.3) and (5.7), the equilibrium equations can be
written as a function of the displacements u; in the form

61‘]' =

(Criurg + Croug ) + (Cesur 2 + Cosuzy) 2+ f1 =0 (5.8
5.8)

(Cesur2 + Cesua1)1 + (Cour g + Coougz) o+ f2 =10

Then, for an element with domain 2, and zero body forces f;, the variational
formulation of Eqs (5.8), can be written as

/awl [(Cnﬂ],l + Craug2)a + (Cegur 2 + Cse’uz,l),z] d2 =20
e
(5.9)
/8102 [(066'“1,2 + Cestiz1 )1 + (Corur g + 022u2,2),2] df2 =0
e

After integrating by parts and specifying the natural boundary conditions Eq
(5.1)7, Egs (5.9) can be written in the form

/[(Cllul,l + Craug,2)0wy 1 + (Cesttr 2 + 066U2,1)aw1.‘2] df? = / dwity ds

£
(5.10)

/[(Ceeum + Cegtin)0wa 1 + (Coyug ; + C22U2,2)aw2,2J a2 = /8w2t2 ds
o, 3,

where S, is the boundary of the element. Eqs (5.10) are often referred to as
the "weak formulation” of the governing equation (5.1);.
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Finally, the finite element approximation of Eqs (5.10) consists of discreti-
zing the continuous displacement vector u;, and the continuous virtual displa-
cement vector w; by appropriate interpolation functions. I'or an isoparametric
formulation, the interpolation functions for wu; and w; are identical, i.e.

(21, 2) Z uyjps(ar, v2) 221, 22) Z ugjp; (e, 22)
(5.11)

A n
wi(21,22) = Y wi;p;(21,72) w1, 29 = Y wo;pi(x1,72)

i=1 ;=1

where
n  — number interpolation points or number of nodes per element
p; — interpolation function for point j or the shape function of node
7j.

Hence, the finite element approximation of the equilibrium Eqs (5.1); for
an element in the continuum can be written in the matrix form

Ki1Kjuy = Fy
(5.12)

K21 Kopuy = Fy
where
Ky = /(Cllpi.lpj.l + Ca3piap;2) deyda;
Qe
K95 = /(Caapz',1pj,1 + Chr2piap;2) depday = Koy
2.
Koo = /(033171',111]‘,1 + Caapiapj2) dxidzy
e
= /flpZ dzydag + /tlpz ds

Fy = / Fops dards + / taps ds

6. Numerical formulation of the bondline element

At each point along the bondline, local orthonormal axes (t,n) are defined
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with ¢ tangent and = normal to the bondline (see Fig.3). The relative
displacement between two points A and B in Fig.3, on opposite sides of the
bondline, but geometrically at the same place, defines a set of two generalized
strains. These are the peeling strain and shearing strain, which produce the
integrated effects of peeling displacement Aw, and shear displacement Auw;
given by

Au, = (ug ~ua)n
Au, = {(ug — ug)t

These relative displacements form the kinematic basis of the element.

Fig. 3. Geometry and local coordinate system of a bondline element

Sinice the bondline elements are written for geometrically linear analysis
only, the first variations of these relative displacements are identical to the
above definitions, except the total values are replaced by their variations. The
contribution 9W., of one element to the virtual work is

@W’e = /(FnAaun + FLAaug) dt (62]
L
where
F, — normal force per unit length of the bondline
F, - shear force per unit length of the bondline.

The constitutive model for this element is defined as
Fn = knAun Ft = ktAui (63)

where k, = E/h, k;, = G/h, and FE, G and h are the moduli of elasticity
and rigidity, and thickness of the bondline, respectively.

Approximating the continuous functions Au, and Aw,; by a finite set of
nodal points along the bondline, their approximations AU, and AU, can be
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written as
m

AUL(1) = S (pi(1)AT,)

AU(1) = i(?’i(t)AUt)

where interpolation polynomials p,,(t) of order m are employed.

Taking the virtual relative displacements AQu, and Adu, as the interpo-
lation polynomials p,, (1), and introducing Eqs (6.) and (6.4) into Eq (6.2),
the finite element approximation for the virtual work contribution OW'

W' = KAU (6.5)

K:[K” 0 } AU:[AU”] (6.6)

where

with

K, = /[ipi(i)%)j(f)] d
L =1

where L is the length of the bondline.
This element has three noteworthy characteristics

1. The stiffness matrix is diagonal, i.e., K, and K; are uncoupled
2. Both stiffness terms are only integrated over the length L of the bondline

3. The differential displacement of two coupled nodes is interpolated instead
of using the first derivative of the nodal displacements.

Characteristics (1) and (2) are the mathematical formulation of the first
two assumptions stated in the previous paragraph. They constitute the basis
for the numerical advantage of these elements compared to normal elements.
By integrating over the length, rather than over the area, the effect of the
aspect ratio is removed,

Characteristic (3) can be viewed as the finite difference (Awu)/h being
computed instead of the infinitesimal rate of change du/0n across the bondline
of thickness h. Since, according to the basic assumptions, the stresses across
the bondline are constant, the expressions du/0n and du/0h are identical.
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7. Model validity

By considering the equilibrium equations for plane elasticity with zero

body forces
% + éTnt =0 thn + d?nn
ot on ot on
some explanations regarding the three basic assumptions can be given.
According to the second assumption, the normal stresses o, are zero.
It follows from Eq (7.1), that the shear stresses o, across the bondline are
constant. Consequently, the second assumption leads directly to the third one.
Because the peel stresses o,, are constant across the bondline, Eq (7.1),
produces 07y, /dt = 0. Thus, the shear stresses 7, are also constant along
the bondline. However, applying moment equilibrium, yields 7, = 7,,;, and
the conflicting observation that the shear stresses along the bondline would be
constant. This observation is obviously erroneous. The first basic assumption
serves to clarify this apparent contradiction. Basically. that assumption was
stated that the dimension normal to the bondline can be neglected. Thus,
the bondline element is a line element with a normal and a shear stiffness
across the bondline, but no stiffness along the bondline. Hence. a priori, the
equilibrium Eqs (7.1) are reduced to

=0 (7.1)

OT«M _ aann . oy
on 0 on 0 (7.2)

and the mathematical basis for the contradiction is eliminated.

8. Finite element code

The finite element computer code developed for this work is an adaptation
of software written by Thompson (1986). This modified code contains a rou-
tine (CMESH) for the mesh generation, a renumbering scheme (CNEWNUM)
for the nodal points to minimize stiffness matrix bandwidth, and a standard
displacement finite element code (CONTAC) for the stress-strain analysis of
linear elastic solids.

CMESH originally generated a mesh for three-, four- or six-node elements
of any shape composed by straight lines. The adapted code allows the inclusion
of specific bondline elements with the mesh partitioned into three zones. Zone
[ contains all elements on one side of the bondline, Zone Il elements on the
other side, and Zone 11 consists of the elements on the bondline. The extended
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mesh generator also enables the use of triangular-shaped meshes to create an
orthogonal mesh pattern with a diagonal joint. This feature enables local
refinement of the mesh (Fig.4).

Fig. 4. Example of a scarf joint with local mesh refinement

CNEWNUM originally performed renumbering schemes for the nodal po-
ints to minimize the bandwidth of the global stiffness matrix. The adapted
code accommodates elements with different numbers of nodes within the same
mesh. Meshes for each of the three different zones can be renumbered sepa-
rately to minimize the bandwidth of the matrices formed to find the averaged
tensor stresses at each node.

CONTUAC performs the stress-strain analysis computing first the nodal
displacements. The original code was extended to allow the use of different
types of elements in the same analysis. CONTUAC also computes the tensor
stresses within every zone. Particular routines prepare the numeric and gra-
phic output such that the stresses and displacements of each zone and along
their interfaces can be examined.

9. Model verification

To test the formulation and programming, analyses were performed on
several problems with known solutions. Three problems considered and the
outcomes were:

1. Analysis of simple butt joints between isotropic and orthotropic members
under uniform axial tension produced exact results for 4-node and 6-node
bond-line elements (Fig.5)

2. Erdogan and Ratwani’s (1971) analytical solutions for a lap joint, were
reproduced with the same accuracy as obtained by Barker and Hatt
(1973) using the same bondline element (I'ig.6). The discrepancy be-
tween the analytical and numerical solutions is explained by Erdogan
and Ratwani’s (1971) assumption of zero magnitude peel stresses
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3. Near exact comparisons with the numerical solutions for a double-lap
joint, reported by Aivazzadeh et al. (1987) using regular displacement
finite elements, were obtained (Fig.7).

Very limited work has been reported on the subject of accurate measure-
ment of whole-strain fields in the region of a finger joint in wood. In the work
done for this paper, model predictions were compared to results obtained from
tests conducted on an instrumented finger jointed wood member (cf Jaushn
{1992); Pellicane et al. (1994)). Briefly, a specimen of 254 mm long, 10.7mm
wide and 2.8 mm thick with a finger jointed connection at mid-length was
carefully prepared from a sample of material, tested, and monitored under re-
peated uniaxial tensile loadings. The preparation and instrumentation of the
specimen and determination of material properties is described in the project
report (Pellicane et al. (1995))

2.20 ]

e Experimentally-obtained strains
— Numerically-obtained strains

2.15:
2.10F
2.05F -
2.00

1.95¢

1.90f
1.85¢
1.80} i
175l . g
-63 -42 -21 0 21 42 63
Coordinates along the axis [mm)]

Relative strain (0.001 mm/mm)

Fig. 8. Plot ol experimentally- and numerically-obtained normalized displacements
in a finger joint

In one experiment, high resolution photography was used to measure di-
splacement under uniaxial tensile load between various target points along
the specimen. Normalized relative displacements (at the 3.34 kN load level)
along three longitudinal axes were determined from the film negatives, weigh-
ted and statistically analyzed. Resolution proved to be inadequate to trace the
small variations of deformations that occurred in the specimen to accurately
confirm the model. The discontinuity of the deformations at the fingertips
could be observed as a general trend. This is suggested in Fig.8 which com-
pares the weighted average of the normalized displacements for the three axes



15

FORMULATION OF A BONDLINE ELEMENT... 115

with the predicted pattern obtained from the computer model. Unfortunately,
the bandwidth of the possible error was 0.6 thousandths, which exceeds the
magnitude of the apparent discontinuity.

In a second experiment, microstrain sensors (Micro-Gage Inc. (1979a,b);
Pellicane et al. (1995)) were mounted along three longitudinal axes under a
load of 2.22kN, the ratio of the computed and measured strains was calculated
at four sensor locations. The results showed that the strains predicted nume-
rically matched those obtained numerically to within 18 percent on average.
This is an excellent result considering the magnitude of the expected relative
displacements was in the order of 2.5um. The sensitivity of the method was
evidently high enough to record variations in the strain field of the finger joint.
The amount of data was limited due to the high cost of micro- strain gages and
the time element of mounting these minute devices. The active length of the
sensor is (1.27mm) and its width is (0.36 mm). These ultra-thin silicon strips
with a 0.038 mm diameter and electrical leads of 99.9% pure gold required
about 5 hours each to mount.

10. Convergence of the solution

Convergence behavior of solid displacement elements, complete mixed ele-
ments and hybrid elements was examined by Aivazzadeh et al. (1987) in
studies on a double-lap joint. They found that the displacement elements
used were not able to curve down to zero shear stresses after the peaks close
to the edges of the joint. However, the hybrid elements used did properly
converge to zero at the same locations.

The authors solved the same test problem using the bondline elements for
increasing fine meshes in the area of the bondline. The results showed that for
the linear (4-node elements) and the quadratic (6-node elements) cases, the
solution converged to the same values as for the solid displacement elements
studied by Aivazzadeh et al.(1987) (Fig.7). As with the solid displacement
element, the bondline element (being a particular displacement element) was
unable to predict zero shear stress at the edges of the double-lap joint.

11. Sensitivity study of the finger joint

The prediction of finger joint behavior under uniaxial tension is an impor-
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tant application for the element developed in this paper. Finger joint tensile
strength is principally affected by joint geometry, wood and adhesive material
properties, manufacturing procedures. and bondline mechanical and physical
properties. It is not possible to study the parameters in each class independen-
tly from each other. Therefore, analyses were performed to examine extreme
cases on the important variables.

12. Geometries and materials examined

() Step joint
I%J

®) Scarf joint

(©) Finger joinl

—

Fig. 9. Step, scarf, and finger joint geometries considered in the sensitivity study

The three geometries shown in Fig.9. Geometry (a) is referred to as a
step joint, geometry (b) as a scar{ joint, and geometry (c) as a finger joint.
By restraining the top and bottom edges of these joints against displacement
perpendicular to the longitudinal axis, geometry (c) represents the symmetric
half of a complete finger joint. Hence, the finger joint can be looked at as a
geometry that is between the extremes of a "step joint™ and a "scarf joint™.
Stated differently, the step joint is the limit case of a finger joint with zero
angle of taper, and the scar{ joint is the limit case of a finger joint with no tip
width.

Various material property conditions were investigated. The chosen mate-
rial properties were:

isotropic material condition 1: E = 13.8GPa, p=0.3
isotropic material condition 2: FE = 138GPa, u = 0.3
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orthotropic material condition 1: E (parallel to grain)= E; = 15.2(CGPa
LI (perpendicular to grain) = £ =
= 0.69GPa
Grr = 0.69GPa. ;= 0.42
orthotropic material condition 2. FE; = 151.7GPa,
Fr = 0.69GPa,
Grr =0.69GPa, p=0.42
adhesive: FE =3.1GPa, G =1GPa

Properties for orthotropic condition 1 are those of test specimen used in the
experimental phase of this study (cf Jauslin (1992); Pellicane et al. (1995)).
The only difference between conditions 1 and 2 (isotropic and orthotropic) is
that the value of Fy is magnified tenfold. This unrealistic value for wood
was used to examine effects of extreme changes. For the material properties
of the glue, the values chosen were those from Erdogan and Ratwani (1971).
Bondline thicknesses of 0.01 and 0.001 times the joint length, denoted 0.01.1
and 0.001L, respectively, were used arbitrarily.

For the sensitivity study, five analytical cases were studied for all joint
geometries. Isotropic cases 1 and 2 had both adherents composed of isotro-
pic material 1 and 2. respectively. Orthotropic case | had both adherents
composed of orthotropic material 1. Isotropic case 3 had the left and right
adherents composed of isotropic materials 1 and 2, respectively. Orthotropic
case 2 had the left and right adherents composed of orthotropic materials 1
and 2, respectively.

13. Analytical results and observations

Normal stresses parallel and perpendicular to the specimen longitudinal
axis and shear stresses in the adherents on either side of the glueline were
investigated. Peel and shear stresses in the glueline were also examined. These
were studied for all three geometries. For clarity, Fig.10 illustrates the type of
stresses examined in subsequent figures.

Extensive graphical results for the above stresses have been reported and
published (cf Jauslin (1992); Jauslin et al. (1995)). Selected graphical results
are shown in this paper. Fig.11 and Fig.12 are for the step joint. while Fig.13
and Fig.14 represent the scarf joint. Fig.15 and Fig.16 are for the finger joint.
These graphs contain analytical results for the isotropic case 1 and orthotropic
case 1 material conditions for a glueline thickness of 0.001L. The solid and
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Normal stress o along the bondline  Normal stress ¢, along the bondline

Shear stress 7.y along the bondline  Shear and peel stresses in the glue

% A

p——— x-coordinate ——|

Fig. 10. Illustration of the relevant stresses considered

broken lines in the graphs refer to the stresses in the left and right adherents,
respectively. Where the stresses in the glue are plotted, the solid line represents
the shear stresses and the broken line the peel stresses. The principal findings
demonstrated in these figures are given below.

14. Characteristics of all the joints studied

Some results that relate to all three types of joints are noteworthy.

o All stresses, whether normal or shear, show their peak values towards the
edges of the joint. For the step joint and finger joint geometries, the peak
stresses are significantly higher than the average (nominal) value. In the
case of the scarf joint, stress concentrations are small in the isotropic case
and essentially nonexistent in the orthotropic case. This fact emphasizes
the influence of joint geometry on the stress concentrations.

e Orthotropic adherents having the strong material axis parallel to the
applied tensile force show lower shear and peel stresses in the adherents
near the glueline than with isotropic adherents. However, the normal
stresses o, parallel to the glueline are higher for orthotropic adherents
than for isotropic ones.

¢ The shear and peel stresses in the glue joining two orthotropic adherents
are higher than in the case of isotropic adherents.

e The plots for the stresses in the left and right adherents are near mirror
images for each other in all cases shown.
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e In the interior, the adherent stresses are nearly uniformly distributed
for the isotropic case 1 and are independent of geometry. Specifically,
for the all joint geometries, o, = 20.1kPa, o, = 16.5kPa, 7 = 0kPa.
The interior shear and peel stresses in the glueline are also essentially
uniformly distributed. The interior glueline shear stress is zero for all
geometries, and the interior peel stressis 13.8kPa, —13.8kPa, —13.8kPa
(step, finger and scarf joint, respectively). Except for the normal stress
o, these levels do not noticeably change for the orthotropic case 1. The
interior non-zero normal stresses for the isotropic case 1 drop to zero
magnitude for the orthotropic case 1 in all joint geometries. Also, the
direction of peak glueline shear and peel stresses are reversed for the
step joint versus finger joint geometry.

14.1. Peak stresses

Wood is a material that is brittle in a tensile stress or shear stress mode,
particularly for perpendicular to grain tensile stress. Thus, peak levels of
these stresses are critical values to establish. From the selective results shown
in this paper, it is clear that the scarf joint produces nearly uniform stresses
along the glueline, for all the plotted stresses. Fig.13 and Fig.14. In contrast,
significant peak stresses occur for the step joint (Fig.11 and Fig.12) and finger
joint (Fig.15 and Fig.16), albeit less so for the latter configuration.

14.2. Step joint

Results plotted for the step joint, (Fig.11 and Fig.12), show the peak va-
Iue of o, is increased significantly by changing from the isotropic to the
orthotropic material state. Specifically, o, changes from about 0.155MPa to
0.193MPa. In contrast, the peak value of o, decreases, changing from about
51.7kPa to 34.5kPa. The peak value of 7 also decreases, changing form about
34.5kPa to 22.1kPa.

14.3. Finger joint

Results plotted for the finger joint, (Fig.15 and Fig.16), show the peak va-
lue of o, is increased slightly by changing from the isotropic to the orthotropic



FORMULATION OF 4 BONDLINE ELEMENT... 123

material state. Specifically, o, at one end of the joint changes from about
82.7 to 89.6kPa. At the opposite end o, increases much more dramatically,
changing from about 48.3 to 96.5kPa, the latter becoming the peak stress. In
contrast, at one end of the joint, o, decreases from about 31.0 kPa to 11.7 kPa.
At this end, the peak value of also decreases from about 27.6 kPa to 20.7 kPa.
At the opposite end is essentially halved also. The peak shear and peel stresses
in the glueline are apparently unaffected by the change of material state. but
the interior peel stresses change from zero to about —13.8 kPa.

14.4. Scarf joint

For the scarf joint, peak stresses are not of concern in’the selected graphs
shown (Fig.13 and Fig.14), being either nonexistent or very small compared
to the overall stress distribution. For other hypothetical conditions, this is not
true and is discussed subsequently.

15. Stress concentrations for extreme conditions

As stated earlier, five different analytical cases with various combinations
of adherents were examined. Considering all the analytical results (Jauslin
(1992)), the following observations about stress concentrations were evident.

Peak stresses are generally converted to normalized values using a "stress
concentration factor”. In this study, the stress concentration factor for normal
stresses is defined as the ratio of the maximum normal stress divided by the
stress computed by dividing the tension force by the width of the specimen.
The stress concentration factor for the shear stresses is defined as the ratio
of the maximum shear stress divided by the stress computed by dividing the
tension force by the projection of the joint length along the joint longitudinal
axes.

15.1. Step joint

For the step joint geometry, the maximum stress concentration factors
and their variations due to changes in the material stiffnesses for the different
stresses are reported in Table 1. Based on the complete set of results (Jauslin
(1992)) for the material conditions examined, it is evident that the primary



124 R.M.GUTKOWSKI ET AL.

cause for stress concentrations is the geometry itself. Changes in material
properties, in the adherents as well as in the glue, have a minor influence on
the maximum stresses in the adherents.

Table 1. Concentration factors and maximum variation of the stresses
analyzed in the step joint

Stress | Concentration factors Variation W
[kPa] | Isotropic | Orthotropic ] Isotropic Orthotropic?
| 02 33.8 48 1 28 | 62 ]
Tey 352 | 227 152 | 69 |
o, 11.0 | 6.2 1.4 0.7 |
E 128.9 127.6 103.4 84.1
lon. | 131 | 152 10.3 10.3

15.2. Scarf joint

"For the scarf joint geometry, a distinction must be made on the basis of
the material composition of the two joined adherents. When the material
properties of the adherents are the same, changes in stress concentrations
and distributions are very small with respect to the material properties of
the adherents or the glueline. However, the scarf joint is very sensitive to
differences in the material properties {rom one adherent to the other.

Table 2. Concentration factors and maximum variation of the stresses
analyzed in the scarf joint

Stress f Concentration factors L Variation 7
[kPa] | Isotropic | Orthotropic | Isotropic | Orthotropic |
o, 38.6 38.6 317 1 317 ]
Toy 15.2 6.2 15.2 62 |
oy 4.8 07 [ 212 | 07 ]
T 365 | 372 310 | 296 |
oy 41 | 41 21 [ 34 |

Table 2 lists the stress concentration factors and maximum variations of
the stresses in the scarf joint for the collective material conditions studied.
The high concentration factors in the adherents are solely due to extreme
differences considered for the stiffnesses of the adjacent adherents. The high
variation between the different cases investigated indicates that for equal ma-
terial properties on both sides of the joint, the concentration factor is close to
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one in all cases for all stresses.

The finger joint exhibits a blend ol the characteristics of the step and scarf
joints. Depending on the width of the fingertip, the finger joint proved to
behave more like one or the other of the two extreme cases. Stress concentra-
tions arise as soon as the tip width is assigned a non-zero value and does not
gradually increase with increasing tip width.

For the case of wood such extreme differences in the material properties, as
assumed above, are unrealistic. Iven large differences in the stiffness between
earlywood and latewood do not exceed a ratio of about three. Hence, the
highest concentration factors in the scarf joint for the normal stresses parallel
to the longitudinal axis would be in the order of two.

This study demonstrates that fingertip width is the dominating factor af-
fecting the stress concentrations. As soon as there is a notch at the fingertip,
the influence of the material stiffnesses plays only a secondary role. The me-
rit of developing an economic, dependable procedure to produce intact finger
joints with zero tip width is evident.

16. Conclusions

A finite element program has been developed to predict the stresses and
strains in any isotropic or anisotropic material containing a finger joint. The
bondline element showed good predictive ability in comparison with standard
FEM results of lap joints.

When numerical results obtained from this program are compared to
known solutions for butt-, lap- and double lap joint, the predictions are ne-
arly identical to theoretical results. For these joints, maximum stresses in the
adherents occur at the interface with the glueline. The contrary finding, by
Suzuki (1990), of maximum stresses distant from the glueline must be attribu-
ted to load eccentricities due to moment in the joint he studied. The glueline
stiffness depends on the ratios FE/h and G/h. Hence, doubling the glueline
thickness is equivalent to halving the stiffnesses E and G.

For constant ratios of Eylue/ Eadherend @a0d Glglue/ Gadherend, the stress di-
stributions in a given isotropic joint are identical. Although seemingly obvious,
in past literature the influences of glue and adherent stiffnesses have often been
assessed as independent effects. A high ratio of glueline stiffness to adherent
stiffness tends to increase the stress concentrations at the edges of all joints
studied. In the adherents, this effect is relatively small. but in the glueline,
the stress peaks increase drastically.
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In a step joint, the horizontal glueline constitutes a finger joint of zero
taper angle which is the dominating factor causing stress concentrations. In
a scarf joint. a high sensitivity of the stress concentrations with respect to
differences in the material properties of the two adherents occurs. However, the
extreme case examined is unrealistic for solid wood members. The dominating
factor for stresses concentrations in a finger joint is the notch at the fingertip.
However, the stress concentrations are not as high as in the step joint.

When data obtained from tests on solid wood pieces connected by finger
joints are compared to numerical solutions, the results are very reasonable for
the minute displacements involved and the difficulty associated with measuring
them. Therefore, it is rational to conclude, that the model discussed in this
paper is a rational vehicle to predict the elastic behavior of finger jointed
wood. Regardless, the model fared very well when compared with several
example cases available in the literature that had been solved by non-numerical
techniques.
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Element typu ”bondline” w modelowaniu drewnianych zlaczy klejonych

Streszczenie

W pracy pokazano model umozliwiajacy okreslenie naprezen 1 odksztalcen w
klejonym elemencie drewnianym, posiadajacym miedzy skiadnikami cienka warstwe
taczaca. W modelu wykorzystano metode elementdw skoriczonych oraz wprowadzono
nowy element laczacy, ktéry reprezentuje cienka warstwe kleju miedzy skladnikami.
Model ten zostal opracowany na podstawie spotykanego w literaturze modelu opra-
cowanego dla formacji skalnych zawierajacych zyly innych pierwiastkéw. Przepro-
wadzono poréwnanie otrzymanych wynikow numerycznych ze znanym z literatury
wynikami rozwiazan teoretycznych, otrzymujac duza zgodnosé. Otrzymane wyniki
numeryczne zostaly pordwnane z wynikami doswiadczen przeprowadzonych na maltych
elementach drewnianych, rowniez otrzymano duza zgodnosé. Oprocz weryfikacji prze-
prowadzono takze obliczenia naprezen w stopniowym, skosnym 1 palcowym zlaczu
drewnianym oraz w zlaczach w materiale izotropowym o podobnej sztywnosci.
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