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The paper presents the numerical solution to the problem of transieut
natural convection in viscoelastic fluid of the second order in vicinity
of vertical surlace temperature of which suddeny rises. To solve partial
differential equations resulting from balance of mass, momentumn and
energy for the item discussed, the method of finite differences has been
applied. As a resull of solution to balance equations transient fields
ol temperature and velocity, and also transient runs of changes of the
Nusselt number, dimensionsless shear stress and relative difference of
normal stresses have been determined. The results obtained have been
compared with the available experimental data for Newtonian fluid in
the steady-state case.

1. Introduction

Failures of cooling systems often give rise to transient convection flows.
Failure-free performance of machines in electronics, lighting, chemical and
power industries depends on natural convection processes. The results coming
from the analysis of processes of natural convection can be used either to
bring intensification of heat transfer or to bring minimization of heat losses
to environment, for example. Majority of published papers to the process
of natural convection for Newtonian fluids {cf Jaluria {1980), Petukhav and
Polakov (1986)).

Owing to the degree of complexity of discussed processes ol natural convec-
tion in non-Newtonian fluids, and especially in viscoelastic fluids. the number
of published papers is limited. The analysis of steady-state natural convection
in viscoelastic fluid by means of approximate integral method was presented
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by Shenoy and Mashelkar (1978). Shenoy and Mashelkar (1978) observed that
the self-similar solution to balance equations existed only in the case of visco-
elastic second order fluid in the outer region of horizontal cylinder of constant
temperature. Problem of transient natural convection in Walter’s B fluid in
the vicinity of vertical plate is presented by Soundalgekar (1971). The method
of perturbation was applied to determine temperature and velocity fields in
fluids. Soundalgekar (1971) took into consideration a constant velocity of fluid
suction on warmed vertical surface. Ropke and Schummer (1982) presented
an analysis of transient natural convection in 4-parameter Oldroyd fluid filling
up rectangular, two-dimensional space. Using the method of finite differences
temperature and velocity fields in the area filled up with viscoelastic fluid were
determined. Ropke and Schummer (1982) obtained transient runs of average
Nusselt number on one of the vertical surfaces of two-dimensional space. Rup
{1994) dealt with the analysis of transient processes of natural convection in
viscoelastic second order fluid in the vicinity of vertical surface, temperature of
which suddenly rises. By means of the finite difference method transient fields
of temperature and velocity in viscoelastic second order fluid of constant a-
terial coefficients were determined. Subba Reddy Gorla et al. (1994) analyzed
the problem of laminar [ree convective flow of the Ostwald de Waele of consti-
tutive equation fluid over a vertical (rustrum of cone with uniform surface heat
flux boundary conditions. The coupled nonlinear partial differential equations
for the momentum and energy equations have been reduced with a powerfu
nonsimilar transformation and then solved numerically. Bian et al. (1994)
reported analytical and numerical study of steady-state natural convection in
a two-dimensional rectangular porous cavity saturated by a non-Newtonian
fluid. The modified Darcy model of power constitutive equation is used to
characterize the non-Newtonian fluid behavior. Numerical solutions for the
flow and temperature fields and Nusselt numbers are obtained in terms of a
modified Ravleigh number, the aspect ratio of the cavity. and the exponential
formula index, respectively.

The present paper deals with numerical solution to transient natural co-
nvection problem in viscoelastic second order fluid of variable material coef-
ficients ¢y and c«g. The fluid under consideration is placed in the vicinity
of vertical surface. temperature of which rises suddenly al a given moment.
The discussed variability of material coeflicients of tested viscoelastic fluid has
been allowed for in form of their power dependence on second invariant of the
rate of deformation tensor II only. The paper studies the effect of indices
values n and s, and the Weissenberg number on: transient changes in the
Nusselt number, dimensionless shear stress, and relative difference of normal
stresses, respectively, determined on the heated vertical surface.



TRANSIENT NATURAL CONVECTION HEAT TRANSFER...

2. Problem formulation

131

Transient, laminar momentum and heat transfer driven by natural convec-
tion in viscoelastic fluid in the vicinity of vertical surface, temperature of which

at the moment 7 = 0 suddenly rises (Fig.1) is considered.

<A

Fig. 1. Layout of flow geometry

Due to degree of complexity of general differential equations resulting from
balance of mass, momentum and heat. we are going to introduce the following

simplifying assumptions:

— The geometry of flows analysed justifies the use of the boundary layer theory

— Oberbeck-Boussinesq approximation is assumed

— The viscous dissipation motion pressure and volumetric energy source are

neglected.

Taking into account the simplification resulting from the boundary layer
theory (cf Bilgen (1973); Jaluria (1980)) and changes in fluid density according

to the Oberbeck-Boussinesq approximation

P o 1 4 Bt — 1)
p

one gets the following system of equations

o
dx Oy

(9_u % du 10 10

(2.1)

= _—_Ul‘y + ;—;(0‘1‘1‘ - Uyy) + 0/3(1 - loo) (22)

ar +u0rc +v% pdy
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The above system of partial differential equations together with the follo-
wing boundary conditions

— for 7 <0
w=1v=>0 1=l (2.3)
~Jor 72> 0
r=20 u=1v=90 1= la
y =0 u=0v=0 L =14 (2.4)
Yy — o0 u=10=0 =1

formulates the mathematical description of momentum and heat transfer dri-
ven by the transient natural convection in viscoelastic fluid. Assuming in Eq
(2.2); that o, — 0y, = 0 one gets the classical momentum boundary layer
equation for the natural convection of Newtonian fluid or for viscous fluid.

3. Constitutive equations
The general equations for the modified second order fluid model (¢I Bilgen
(1973): Zahorski (1978)) are of the form
o= —pl+ fIAL A, A (3.1)

in which the A, are kinematic tensors. Viscometric flows may be defined by
the requirement that A, = 0 for n > 3, and Eq (3.1) takes the form (cf
Bilgen (1973); Zahorski (1978))

g = —])I + O’]A1 + G‘QA? + CYBAQ (32)
For isotropic incompressible fluids A; and A; are defined as
A, = (gradv) + (gradv)’

A; = %AI + Ay(grade) + (gradv) A,

}

Tle material constans ay. ap and 3 areonly functions of the second invariant
of the rate of deformation tensor (cf Bilgen (1973); Zahorski (1978)). For the
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type of boundary layer flow discussed here, it is not necessary to specily the
function form of the material constant «s. It has been shown (¢f Shenoy and
Maslielhar (L6574 . restl® o0 trhe o der magnitnde aralysiv, ! the ted s
in which «a; appears in the stress equations vanish. Following the boundary
layer approximation the stress compounents in Eq (3.2) reduce to

o = du ta ( % o d%u . 0%u N 2011 d'u\' O
a be— 4+ v — —— e
W ey T T oroy dady dy? ox dy/ )
(3.
du "
Opz — Oyy = 203(@) +O(6)
Assuming that a3 = —a;@ (where O is the material constant of tire-

dependent (cf Zahorski (1978)) and taking the results ol experimental evidence
that @ =~ 0.01s (cf Bilgen (1973)) for dilute polymer solutions, the second
term of Eq (3.4); can be simplified. The corresponding stress components
include only the terms of the same order of magnitude O(6). For the dilute
polymer it has been found experimentally that the material constants
and a3 = -—a;0 can be approximated by power functions of the second
invariant [/

ay(IT) = k (%11)“_1 as(I) = —m (%H)S_Z (3.5)

where the values of n, s, k and m are constant.
Following the boundary layer approximation, and making use of the power
functions, given by Eqs (3.5). the stress components in Eqs (3.4) reduce to

Oy = A(g:) Ory — Oyy Zm(g?) (3.6)

4. Dimensionless form of balance equations and their numerical
model

The final differential equations are recast in dimensionless form by intro-
ducing

u I i o
I7 = A | -_'l/— Ue - \"//)Lg/}(lw T
c ¢
X =2 %UCQ—H Y = y n %[’éz—n (42)
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R _ t-tx .
=Tl e (4.3)

2m . rpyst2 .
Ws = > +\/(E> (981 — too)]2(s=m) (4.4)
Pr = Cip n+\2/< ) [gﬂ( v — ioo)P(”_l) (4.5)

The dimensionless numbers of Weissenberg Ws and Prandtl Pr are defined
here similarly as by Shenoy and Mashelkar (1978).
The simultaneous differential equations are then

U v
ax Tay

oU aU oU d OU~Nn-19U 0 dUNs~10U

7 o Ve = avl(ar) sl tWeav Gy sl T

(4.6)
8_T+(78T _{_VQI—LW‘T
a7 0X oY — Proy?

The dimensionless boundary conditions on velocity and temperature are

—for 7<0
U=V =T=0 (4.7)
—for 7> 0
‘(:0 U:‘/:T:
Y =0 U=V=0 T =1 (4.8)
Y U=V =20 T=0

The system of differential equations (1.6) together with the boundary con-
ditions (4.7) =+ (4.8) has been solved using the method of finite differences
(cf Crochet et al. (1984); Rup (1986) and (1994)). The numerical scheme
used for solving the natural convection problem was also an explicit finite
difference scheme. The solution started at the instant 7 = 0, at which the
temperature of vertical surface suddenly rises. At every time step temporary
temperature and velocity fields were computed. The solution was marched on
in time until a steady-state has been reached. for which the temperature and
velocity fields remain constant. According to the method applied, differential
equations resulting from balance of mass, momentum and energy have been
replaced by corresponding difference equations. Spatial division network has
been buit up of M x N points and a time step AT has been assumed. Taking
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into account that intensive heat, momentum and mass transfer occurs only in
the close vicinity of discussed vertical surface, the following maximum values
of dimensionless coordinates X = 110, Y = 43 have been assumed. Nonli-
near terms containing the higher order derivatives have been approximated by
central differences, characterized by the second degree of accuracy. Forward
differences were used for the first order derivatives with respect 7 and Y,
and a backward difference was used for X derivatives.

The parameters of the problem are: Weissenberg number, Prandtl num-
ber, exponent in shear stress exponential formula and exponent in normal
stress exponential formula, respectively. FORTRAN computer code has been
produced to integrate numerically the system of equations (4.6) - (4.8).

0 4 § 12 16 20 24 28 32 36 40 a4y

Fig. 2. Effect of the mesh size. (Here 7 = 140; two time steps A7 = 0.1 and 0.05
were used for test calculations)

In Fig.2 are plotted predictions of the U velocity variation for various
mesh sizes. As can be expected, the succesive refinement of the mesh tends
asymptotically towards the correct solution. From a series of calculations with
different mesh sizes and time steps, it was concluded that M = 45, N = 47
and A7 = 0.1 would yield acceptable accuracy.
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5. Discussion of results

Clame.sat telds of vemperatare an. velociiy have been calculated for va-
rious values of the parameters Ws, Pr, n and s. On the basis of defined
transient field of temperature in fluid, time changes in the local Nusselt num-
ber Nu,, characterizing the intensity of heat transfer between a vertical sur-
face heated by a sudden temperature rise and viscoelastic fluid, have been also
given. Nu, number is determined by the following expression

ar g 2

Nu, = —

Nty — 1A (5.1)

where the convective heat transfer coefficient « refers to the difference be-
tween the temperature of vertical surface and ¢, temperature. Substituting
dimensionless expressions (4.2) and (4.3) into Eq (5.1) one gets

Nu, 1/ oT
- — P 2—n 2
Vo = VY (5-2)
where )
Gr, = X2 = pnt? (%) [9B(1y — 100)]* " (5.3)

is the Grashof number, characteristic dimensionless parameter for the process
of natural convection.

In order to compare the the numerical results obtained the following cor-
relation formula, received from the experimental study of Newtonian fluid and
given by Petukhov and Polakov (1986) is taken into account

J
\4]/\5_] = K\(Pr)VPr (5.4)

where

3 Pr
NPri=-YYy —m—MM
) .5\/1+‘2\/P1'+‘2Pr

10° < PrGr, < 108

(5.5)

Eqs (5.4) and (5.5) ave valid for a vertical sarface of a constant temperature
within the range of parameter changes. Table 1 collects values of dimensionless
ratios (5.2) and (5.4) for selected values of Ws, Pr, n and s parameters in
the steady-state case.
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Table 1. Ratio Nu,/V/Gr, in the steady-state case (7 = 140) for the
Prandtl number Pr=25

(Ws | n [ s [Nug/VGr, (5.2) [ Nu,/ oS0, (5.
00]1.0] 0.0 1.0815 1.0735
00081 00 1.3217 -
1.0 [08]1.25 1.2859 -
1.0 [ 0.8 ] 1.50 1.2938 -
5.0 0.8]1.25 1.1903 -
5.0 0.8 1.50 1.2222 -
Nux/a‘/G—rx{
3.0
2.5r
2.0r Ws=5.0;, n=0.8; s=1.5
1.0 0.8; 15
1.5t /0.0, 08 0.0
1'0- \\\\
| 1105 1.0; 2.0
1.0.0: 1.0; 0.0
0.5F
0 ) 3 6 8 10 12 14 s

d
>

Fig. 3. Effect of n and s on the local Nusselt number

Time changes of INq (5.2) are presented in Fig.3 and Fig.4. They show that
the increase in Weissenberg number Ws is accompanied by the decrease in
Nu,/+/Gr,. That means that the intensity of heat transfer between vertical
surface and fluid is diminished. Decrease in the value of ratio Nu,/+/Gr, is
particularly visible for higer values of time coordinate, where the convective
heat transfer dominates. At initial moments of the process, i.e., till the ra-
tio Nu,/¥/Gr, reaches its minimum values, conduction is a dominant form of
heat transfer between fluid and the vertical surlace. Fig.3 also shows that the
region of variation of dimensionless time coordinate 7, characteristic for do-
mination of conductive heat transfer, enlarges with the Ws number. Further,
thorough analysis of the results given in Fig.3 reveals that the value of index
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n exerts the most significant influence on Nu,/V/Gr, within the whole range
of time coordinate 7 analysed. Relative variation of ratio Nu,/V/Gr, for the
Newtonian fluid and for the non-Newtonian fluid (Ws=0.0, n = 0.8) reaches
its maximum value of about 22%.

Nu, [3/Gr, i
3.0
2.5 Pr=25
X=100
n=0.8
2.0 Ws=5.0; s=1.25
/o 5.0; 1.50
(1.0; 1.25
/7 1.0 1.50
1.5} ’, /0.0, 0.00
O“T‘ . . . . ‘ -
2 4 6 8 10 i2 R

Fig. 4. Effect of s on the local Nusselt number

Analysis of curves presented in Fig.4 makes it possible to estimate the
influence of the value of index s on time changes of the ratio Nu,/V/Gr,.
[t leads to the conclusion that the increase in index s, causes the increase
in Nu,/V/Gr, for fluids represented by the Weissenberg numbers Ws=1.0
and Ws=5.0. Relative variation of Nu,//Gr, in the case of the steady-
state process is higher for fluid characterized by the value of number Ws=5.0
(s =1.5and s = 1.25) and reaches about 3%.

Fig.5 presents transient changes of the dimensionless shear stress on the
vertical surface heated by a sudden temperature rise. Corresponding relation
for the dimensionless shear stress has been obtained from Eq (3.6); along with
Eqs (4.1) and (4.2)

oy = (aU)n (5.6)
pU2 — \OY '
Fig.5 shows clearly that together with the increase in values of indices n
and s, the dimensionless shear stress on the vertical surface also increases.
Moreover, Fig.5 reveals that while the value of number Ws rises, the dimen-
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1' .
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Fig. 5. Transient run of the dimensionless shear stress on vertical surface

sionless shear stress drops. Relative drop in dimensionless shear stress between
fluids described by parameter values Ws=1.0,n = 1.0, s = 1.5, and Ws=5.0,
n = 0.8, s = 1.5, reaches 16.8%.

One of the most important quantities describing behaviour of viscoelastic
fluid is the difference of normal stresses ,, —o,,. Dimensionless form of this
difference is obtained by including Eqs (4.1), (4.2) and (4.4) to Eq (3.6)

Oz — Oyy OU s
— = = Ws[ — 5.7
o s(3y) (5.7)

Next dividing by sides Eqs (5.7) and (5.6) one obtains the relative, refer-
red to the shear stress, difference of normal stresses on the discussed vertical

surface s
Our = Oyy  1xs s—n )
Jux = yy _WS(W) (5.8)
Fig.6 presents the transient changes of the relative difference of normal
stresses in fluid, heated by the vertical surface temperature of which sud-
denly rises at 7 = 0. Visible mutual intersections of the curves within the
range of small values of time coordinate 7, i.e., the range of heat conduction
dominance, may be explained by the presence of small gradients of velocity
component (JU/JY < 1) within this region of time.
It is worth while to notice that local extremes of curves given in
Fig.3 + Fig.6, occur within the same periods of time, defined by approximate
values of parameters Gr,, Pr, Ws, n, s.

Ory
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Fig. 6. Transient run of the relative difference of normal stresses on vertical surface

6. Conclusions

On the basis of numerical calculations of the natural convection in viscoe-
lastic fluids with the assumed values of local Grashof number Gr, = 10° and
Prandtl number Pr=25 it comes out that the value of Nusselt number Nu,
actually depends on such parameters as Ws, n and s. It can be observed
that the number Nu, decreases while the Ws increases. whereas drop in
values of indices n and s from n = 1to n = 0.8 and from s = 1.5 to
s = 1.25, respectively, makes Nu, rise. Relative increase in Nu,/v/Gr, in
the Newtonian fluid (n = 1) in comparison with the viscous fluid (n = 0.8)
reaches 22%. The influence of changes of parameters Ws, n and s on the
number Nu, is especially visible for longer time of the process (7 > 70),
where the convective heat transfer dominates. Moreover for the dimensionless
time 7 > 70 the rise in the number Ws causes the decrease of dimensionless
shear stress on the vertical surface. Its relative value for the fluid defined hy
parameters Ws = 1.0, n = 1.0, s = 1.5 in relation to the corresponding shear
stress in the Newtonian fluid reaches 7.7%.

Process of forming temperature and velocity gradients in discussed fluid in
direction normal to the vertical surface heated by a sudden rise of temperature
exists for the same values of time coordinate 7 which points to the analogy of
processes of heat and momentum transfer. Values of the dimensionless time
coordinate 7 which show local extremes of courses the number Nu, visible
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and dimensionless stress o, and relative difference of stresses ¢,,—o0,, occur
within the interval 70 < 7 < 100 for the discussed fluid.
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Nieustalona konwekcja naturalna w plynie nienewtonowskim
wykazujacym wlasnosci lepkosprezyste

Streszczenie

W pracy rozwigzano zagadnienie nieustalone] konwekcji naturalnej w plynie
lepkosprezystym rzedu druglego znajdujacym sie w pobluu pionowe] powierzchni,
ktorej temperatura zwieksza sie skokowo. Do rozwiazania rownai rézniczkowych bi-
lansu masy, pedu 1 energii zastosowano metode réznic skoniczonych. W rezultacie wy-
znaczono nieustalone pola temperatury i predkosci oraz nieustalone plzebiegi zmian
liczby Nusselta, bezwymiarowego naplqzema stycznego 1 wzgledne] rdznicy naprezen
normalnych. Otrzymane przebiegi pordwnano z dostgpnymi w literaturze wynikami
eksperymentéw dla cleczy newtonowskiej w przypadku ustalonym.
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