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A fundamental solution i1s given for the temperature field due to a line
heat source that moves at a constant speed over the surface of a co-
nvective half-space. On the basis of this solution approximate and exact
solutions to the heat conductivity mixed boundary value problem f[or
the quasi-static temperature field under convection conditions has been
obtained. The influence of the coefficient of heat transfer and speed on
the temperature distribution has been traced.

1. Introduction

In solution to practical problems of thermoelasticity such as thermal pro-
cesses in grinding (cf Sipailov (1978)) frictional heat generation due to sliding
of the two bodies (cf Ling (1973); Barber and Comminou {1989)), laser and
electron beam surface transformation (cf Festa et al. {1988) and (1990)), etc.,
the heat-affected region of the body surface is limited. More often it is assu-
med that the surface of the body outside this region is thermoinsulated. This
assumption permits the corresponding fundamental solutions (c¢f Carslaw and
Jaeger (1959); Roznowski (1989)) to be used in the way enabling the boundary
conditions outside the heat-affected area to be satisfied automatically. Howe-
ver, the convection and radiation conditions are more realistic. The solution
to the thermal conduction problem for a line heat sources with constant power
(plane-strain) moving at a constant speed on the convective half-space surface
were found by Cameron et al. (1965) and by Yevtushenko, Ukhanska (1994).
An simplified solution to this problem in the case of a fast-moving, arbitrarily
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distributed heat source was obtained by Ling and Yang (1971). These results
were obtained for a large Peclet number; i.e., when the heat conduction in
the direction of motion is neglected. In this paper the exact solution for the
temperature distribution in a semi-infinite solid affected by a uniformly mo-
ving distributed heat source is presented. The results are obtained for all the
values of Peclet number accepted within the framework of two-dimensional,
quasi-static, uncoupled, thermoelasticity theory {cf Boley and Weiner (1960)).
Noting that the solution to mixed-value problems for the steady temperature
field under radiation conditions was obtained by Gladwell et al. (1983).

2. Instantaneous line source

We assume that the heat source of power ¢ per unit tength along the line
2 = y = 0 instantaneously acts at the instant 7 = 0 on the surface of the
half-space y > 0. which is initiallv at zero temperature. If there is no heat
flow across the surface plane y = 0, 1.e.

oT

%_0 || < o0 y=0 (2.1)

the solution of the thermal-conduction equation

QT 0T 10T

— = —— 2.2
902 T o2 T T 00 (2.2)
at ¢ > 0 has the form (cf Carstaw and Jaeger {1959))
2 2 2
= X — I —— = —— 2
T= ok &P =™ (2:3)
where
T — temperature
t - time
L - conductivity
k- diffusivity.

Examine the case when on the surface y = 0 the heat exchange is given
according to Newton’s law of cooling
or

by T le| < oo y=0 (2.4)
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where 7 = h/LK. his the coefficient of heat exchange. The fundamental
solution of 12q (2.2) satizlving the boundary condition (2.1) will be presented
im the lorm

N

T = 27—(//\_[ [exp(—h’z) - / (‘.\|>(—/?/2 -4 (2.5)
0
whete :
P N Ak
Codkt Lht

The first of term in Eq (2.5) represents the temperature (2.3) for the ther-
woinstlated surface y = 0 and the sccond term involves heat exchange with
the surroundings and is the solution IEq (2.2) for the hall-space with a line
heat sources distribated in accordance with the exponential formula. ie.

q = qexp(—5u)

We show that the solution ol g (2.5) satisfies the boundary condition
(2.4). We rewrite 12 (2.5) tu the form

| 7 2
AP | - (\x])(f/n’z)[l -9 /(‘x|)<f)(/(—/'Jr - - ‘;!//) f/!//} (2.6)
)

2a N LA/

(

The integral in BEq (2.6) at y = 0 will be transformed as

.' I l
Lty = / <‘M><—_’l}ﬂ - 7.{/) dy" =
0]

£ = —ZL—+\/A_¢ dy' = 2/t dE (2.7)

we have
Iy(t)y = 2\/_/(\\|) ~2hl) /oxp(—{z)dE:

v
(2.8)

= Vrkiexp(y2kt)erfe(y Vi)

10 — Mecchantka I'corcivezna
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where erfe(-) = 1 — erf(-). erf(-) is the probability integral (¢f Abramowitz
and Stegun (1965)).

Taking Eq (2.8) into account the temperature of the half-space surface

y=01Is

= zﬁ(/]_nexp(—[{?)[ \/mexp( ‘Af)e1fc( \F)}
) (2.9)

y=0

After differentiating Eq (2.6) with respect to y we find the derivative with
respect to temperature along the normal to the surface y = 0 in the form

()T q ’ o
ay = aek PR )m/y o2 =) @
(2.10)
y=20
The integral in Eq (2.10)
[e¢] y/Z
Ii(t) = /y'eXP(—m —7y') dy
0
after substitution for variables from [q (2.7) can be written as
L) = 2/c/[l — vVrktexp(y2ht )ex'fc(‘,'\/g)}
and from Eqgs (2.10) we obtain
o1 :
- = L", exp(—Rz)[l —yVrkl exp(ka'{,)erfc(*,'\/k—t))}
dy 2w ht
(2.11)
y=0

Putting Eqs (2.9) and (2.11) into the boundary condition (2.4} we obtain
an identity.

3. Continuous moving source

Let the line heat source of power ¢ move over the surface y = 0 of the half-
space at a constant speed V' in the direction of r-axis. The heat conduction
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equation in the coordinate system 0Oxy fixed the source takes the form

Py, 9Ty | VoTy 10T, -
dxr  0y2  k dax kOt '

Satisfying this equation the temperature field will be modified and on the
basis of Eq (2.5) at the time ¢ > 0 under the boundary condition (2.4) we
have

|+

¢
y ! V=124 g
/ / {e“"[—[ 4/;(#—1’J)
v}

(3.2)

s
e+ V=P +wt+y)
- exp|— - vy'| di
7/ p[ Ak(t - t') 'J} ”}
0

Eq (3.2) represents the temperature field due to the moving line heat source
which is continuously acting during the time { on the surface of the convective
cooled half-space. Eq (3.2) can be rewritten as

, q
To QW’]‘.UZ — 5 15) (3.3)
where
B dt’ c + Vit - )]2 + y2 ‘
)= 4k(t — t') } (34)

=
S

a f [+ V-4 (g +y')° .
/G‘\ 4[;(1]_,/) Y -3y | dy" (3.5)
0

By substituting for the variables

7 t— 1/
= -
¢ 4k{t = 1) 4 £

dg

the integral 7o (I2q (3.4)) will be written as
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In a quasi-stationary case | — ~x [rom g (3.6) we obtain

o Voy [ dy B R L
12_2@.)\[)(—727) I—/oxp[—( e -|—4]]_)” (3.7)
0
where
20 /E Ldny o dE
= — 2— = —
b 1 ¢

Since {¢[ Abramowitz and Stequn (1965))

. (%é\]){,(,.l,/;)_l_ l.g)] = hyle)
0

from g (3.7) 1t follows

12:2(>xp< IZA[>AU(2‘/ \/.1'3—1-,1/-)) (3.8)

where Ro(-) is a modified Bessel [unction of the second kind and zero order.
To calculate the integral I3 (Fq (3.5)) we substitute lor g+ ¢ = " and

change the order of integration. Then we have

e { .
' ol AV =Py
Iy = Oxp(w)/ vxn(ﬂu”)/ ,(_ ; exv[—%} dy" (3.9)
Y ¥

The nside integral in 15g (3.9) is equal to the integral 1, of Fq (3.4} and.
consequentlvoat 1 — > it coincides with the value ol [, given by the fornla
(3.8}, Therefore

R

v
[y = 2(‘\|) #i—f— Y /(‘\ [\U(Z/ Vot 4y )f/f/’ (3.10)

Taking Egs (3.8) and (3.10) into account, Eq (3.3) for the uasi-stationary
temperature field in a hall-space takes the form

Tolr.y) = #Mp(—%) [AO(Z‘T‘\/Y—)T(}Z>+

— qexp(hy) /o\p )]\0<2‘/; Vot + _z/2> r/;/’l

Uy

@
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For ~ = 0 from Eq (3.11) it follows a well-known result for the quasi-
stationary temperature field in the hall-space surface of which is thermoinsu-
tated {(cf Festa (1990)).

We shall analvse the influence of the convective heat exchange on the
teperature field affected by a line heat source. Introducing dimensionless
vartables

S oty :
ok Tk -

we rewrite Eg (3.11) in the form

To(X.V) = "[, expl— N VALV X2 4 Y2108 ) (3.13)

™I

[N

N . I o .
[oxp(= Y NGV X2 4 Y1) ay

D(‘;,)A’f) = - ff(‘xl)(,j)h.'))'
l\'(J(m)
where 4 =274/V.

The influence of the heat exchange is determined by the [unction
D(,‘{'.)A"..d)‘ Lq (3.14). We shall estimate the influence of the heat exchange
ou the surface temperature. In this case at ¥ = 0. X — 0. hNo(|.X]) — x
and the numerator of [lq (3.14) is lhmited. Hence. in the neighborhood ol
the source D(X.0.:) — 1. i.e.. at everv method of cooling the influence of
heat transfer is not practicallv veflected on the surface temperature. At a di-
stance froin the source the influence of the heat flow increases (the function
D(“{',O,ﬂ) decreases when approaching zero). but the heat given back to the

(3.11)

surroundings decreases because the difference between temperatures ol surface
of half-space and surrounding decreases appreciable.

In [ig.] one can see diensionless temperature ficlds 75 = a7 /q for a
line source without (J = 0. solid curves) and with cooling (3 = 1. dashed
curves) calculated from FEqs (3.13) and (3.14). It is clear that the influence of
the heat exchange on the surface temperature of the hall-space is reflected at
some distance from the source. The deeper layers do not even feel the influence
of cooling.

4. Continuous moving source

We consider a uniform strip heat source of a width 2¢ moving at the
constant relative speed 1" in the direction of w-axis over the surface of a
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Fig. 1. The distribution of the dimensionless temperature 7§ without cooling
(7 = 0. solid curve) and with cooling (5 =1, dashed curve)

semi-infinite body. The surface y = 0 of the half-space is convective cooled
which is described by the boundary condition {2.4). The temperature field in
the semi-infinite body is defined by integrating the solution of Eq (3.11) in
space. We obtain

Tiz.) ﬂ/ TN [Ro (el — e+ 47) +
(4.1)
-7 exp(vy)/eXp( —7Y )Ixo(;\/(w —a')? +y’2) dy’} da’
Y

The temperature (4.1) can be rewritten now in the dimensionless form

i

1
T)(X.,Y) = ]q /exp[ Pe(X — X')] [A’O(Pe\/(x — X2 4Y?) 4
-1
(4.2)

—Bi exp(BiY)/exp(—BiY')f\'O(Pe\/(X - X2 4Y2) dY'] dX’
¥

where X = 2/a, Y = y/a, Pe = Va/2k is the Peclet number, Bi = ya is
Biot’s parameter. The derivative 971/0Y is given by
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1
0Ty aq ] ) y )
Co = L [expl-Pex — XN[- K (Pey/iX — X4y
e

oo oanahi Biko(Pey/(X — X2 +12) 4 43

—Bi‘lexp(Biy)/exp(—Biy Ko(Pey/LX — X724 Y72) 3] dx”
/

where A'1(-) is a modified Bessel [unction of the second kind and the first

order.
When |X| > 1, then from Eq (4.3) it follows
T -
dyl = BiT} LX) > 1 YV =0 (4.4)
When |X| < 1.thenat X — XY —0
K1(PelX — X'|) !
R Pe[X — X/

and the first term in curly brackets within the integral sings in Eq (4.3) has
a singularity. To open this singularity we use the solution for continuous line
source (3.2) which has been integrated within the limits of —a < @ < «. Tor
v = 0 we obtain

da'dt [1 — 2+ V(=) + y?
hlz.y.1) = 27r1’ //\/1——t’ ak(t — 1) ) @)

—a 0
Putting

. r—2'+V(i-1) du' — dz’

2/k(t — 1) N

from Eq (4.5) we find

dt’ y2

T _—
(,9,1) = 27rIi ,/1_1/ 4At—1)

Jlerf(Ay) —erf(A_)]  (4.6)

where
rta-V(i-t)

2/ — 1)

Ay =
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We note that Eq (4.6) coincides completelv with the results ol Festa ( L98S).
The derivate of the temperature 17 (£.3) with respect to g is

i
dT, gk dat Y y*
= oXp | —————— el AL) —erf( AL
dy el U= 2k(1 - /')(\P( A (1 = /'))[H” )= erf(A)]
0
(-1.7)
Putting
y' . ydt’
R = eme———————— L =
N T P i = =)
Irom Bq (4.7) we find
t
oT { . ~
'(Tzl = - [\,/ = / oxp( — ) erf( By ) — erl(B_)] dn (4.8)
y Kyr |
2wk
where
By - vt o+ 4:/',:%/)

At ¢y =0. 2] <awehave By = £o¢. So lar as erl(£x) = £]. [rom Iq
(1.8yas ¢ — oc we obtain

’
{

T, 2q ) q
—_— = - xp(— Iy = — =
0y hr oxp(—=n°) dy i
0 (1.9)
lt] < a y=10
Therefore, taking Eq (4.9) into account from Eq (4.3) it follows
o1, aq _ . .
o - 1 / X 1 Y = 4.10
oy [\,+B1T1 X < 0 (4.10)

Thus. the solution of Ioq (-1.2) satisflies the bhoundary conditons (F.4) and
(4.10). The condition (4.10) shows thal. besides inward heal How. there is still
an outward heat flow dependent on temperature. The solution of Eq (4.2) mnay
be used for the analysis of temperature fields in the processes. in which heat
exchange is realized all over the surface simultaneously with rapid inductive
heating, electrospark alloy and ete.
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5. Approximate solution to the heat conduction mixed problem

[n frictional heat generation. grinding, cte.. the heat exchange is realised
on a free surface (condition (4.4)). and in the contact area a heat flow is known
and the boundary condition are given in the form

oT,  aq

— = —— X Y= 5.1)
oy - IX] <1 0 (5.1)

Consider that it is possible to satislv the boundarv condition (5.1 proce-
eding rom the solution of Iiq (4.2) which. as showun. satisfies the conditions
(4.4). (4.10). We replaced the temperature in the right-haud side ol the con-
dition (4.10) by the mean remperature in the heating region

i
|7
6= 5 /’ﬂ(.\'.())(/.\'

-1

We have i
Il _  aq
Y N

The condition (5.2) coincides with the condition (5.1) with the accuracy

x| < | V=0 (5.2)

of some multiplier A. ie.

ag
L

A(—% + Bi6)

Then
]

— >
| - BiZ

where 6 = w'8/(aq). The value of A depends on the product of Biot's
parameter Bi and the mean value of the temperature & in the heating region.
We find A numerically. The dependence of the dimeunsionless parameter A
on the Peclet number Pe for several values of Biot's parameter Biis shown
in IMig.2.

The solution to the problew. which satisfies the condition of heat exchange
in the heating region, can be written

Ty X,Y) = AT (X.Y) (5.

[\
[~
—

where the function Ti(X.Y) can be found from Eq (4.2).
The distribution of non-dimensional surface teinperature 75 = # K15 /(qa)
for Pe = 1.0 s shown in [ig.3. The dashed curve indicates the case of full
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Fig. 2. The dependence of the dimensionless parameter A from Peclet number at

Bi=0.1;0.5: 1; 3; 10
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Fig. 3. The distribution of the dimensionless surface temperatures for Pe = |
(dashed curve — T} at Bi= l; solid curve - T35 at Bi = 1; dotted curve - T3 at

Bi = 0)

heat exchange all over the surface y = 0 of the half-space (A =1, Bi = 1.
solution (4.2)). Multiplying the corresponding values of this curve by A, which
is 1.706 for this case, we obtain the temperature distribution corresponding
to the solution of (5.3) (solid curve). The temperature distribution on the
surface y = 0 without the heat exchange (Bi = 0, dotted curve) is given
here for comparison. One can see that the heat flow lowers the maximum
temperature insignificantly (in this case by 9%). The heat exchange affects
mostly the surface temperature after the source. Soat X = -2, -3; —4; -5
this temperature forms 46.3%; 35.5%; 29.1%; 24.7% from the corresponding
temperature at Bi = 0. At a distance from the source the influence of the
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heat exchange becomes stronger though the absolute values of heat flows into
the cooling surroundings decrease.

-5 4 -3 ) -1 0 ;. X
Y
-1\\__»_/1 08 060402
2k
/ Pe—]
4 Bi=0
i -4 3 2 -1 0 1 X 2
! V \\\\J//
-1f 1= 20806 0.4
¥_//().2
2k
Pe=1
4 Bi=0
-5 4 3 2 -1 0 1 X 2
0 - ¥ T
y | (© K/‘\—\//
2k
Pe=3
Bi=1
3

Fig. 4. The isothermas of the dimensionless temperature 775 in the half-space:
(a} — Pe=1, Bi=0; (b) - Pe=1, Bi=1; (¢) - Pe=3, Bi=1

Iso-temperature 75 contour plots are displayed in Fig.4. It can be stated
that in the presence of the heat exchange the depth of the penetration of high
temperatures decreases. The depth decreases of penetration with the increase
in the Peclet number.

6. FExact solution to conduction mixed problem

The solution to the quasi-stationary boundary problem of conduction may
be obtained by using directly the method of the compensation of heat losses
(cf Sipailov (1978)). The essence of this method is as follows. The solution
of Eq (4.2) as it was mentioned above, satisfies the condition of the heat
exchange all over the surface y = 0 of the half-space. It means that the
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integration of the fundamental solution ol Eq (3.11) has brought the heat
exchange in the heating region. For the density heat llow ¢ directed inside a
hall-space, it follows from Eq ({1.10) that a heat flow has appeared by the heat
exchange directed [rom the half-space to the cooling surroundings without the
heating area. To vemove this discrepancy it is necessaryv. within the linnts
of the conract area. to add the heat flow distributed according to the losses.
e, as BiT) where 77 is defived by Eq (4.2). This additional source locally
compensates the heat losses in the source region but simultaneously it also
brings in the partial heat losses allected by the solution construction. 'To
compensate these new losses it is necessary to add one source defined BiT(®)
where 719 is the temperature distribution in the heating area from the (irst
compensating source. This elemnent will also have its losses but significantly
smaller. The process of such compensations may be theoretically infinite. As
a result we obtain an exact solution. i.e.. completely compensated losses for
cooling it the heating region satisfving the external heat exchange condition.
The exact solution will be represented by a series with an infinite number of
termis in the form

TNy ) = lim 709X (6.1)

N —aoa

N .
T Yy = (X)) + @ Z{/ TU[PeX — (Y = X

I

n=u 7
Cexp[=Pe( X - _x")][]\'u(l)o\ﬂ.\' S YR 4 (6.2)
“Biexp(BiY) fexp(—Bi)-")/\'o(Pow X - X2 g )"2) d)-”] (/,-\"}
i

where TO(X 1Y) = Ty(X,Y).

Using £q (6.1) can be shown that the heat exchange influences insignifican-
tly the temperature distribution in the heat-alfected area. The dimensionless
temperature distribution 75 = #N15/(qa) on the surface y = 0 at Pe=]
(Bi=0. dotted curve) and the intensive heal exchange (Bi=1. solid line) is
shown in Fig.5. The approximate temperature distribution (5.3} 1s given here
for comparison (dashed curve). The drop ol the maximum temperature in
comparison with the case ol thermoinsulated surlace ol the hall-space is not
large and does not exeed 5%. To reach a relative accuracy of calenlations
equal to L% it was necessary to take seven terms of the series (6.2),

We note that some obstacles can be found when using Fq (6.1) and since
the law ol distribution of the heat flow in the heat-affected arca does not
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Fig. 5. The distribution of the dimenssonless surface tetperatures for Pe=l1

(dashed cnrve

T at Bi=1 solid curve - 75 at Bi=1, dotted enrve - 75 auv Bi=0)

affect significantly the temperatare distribution it is more convinient to use

the approximate solution (5.3).
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Pilaskie quasistacjonarne zagadnienia termiczne z konwektywnym
warunkiem brzegowym

Streszczenie

W pracy podano rozwiazanie podstawowe zagadnienia rozkladu temperatury

w polprzestrzen wvwo}anego lintowynu Zrédlami ciepla poruszajacymi sie ze stala
predkoscia po powierzchni clala z uwzglednieniem konwekeji. Na podstawie otrzyma-
nych rezultatéw podano przyblizone lub dokladne rozwiazania mieszanych zagadnien
brzegowych. Zbadano wplyw predkosci poruszania sie zrédla ciepla oraz wlasnosci
termicznych materialu na rozklad temperatury w polprzestrzeni.
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