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The behaviour of acceleration wave in a fluid-saturated porous medium
with a structure determined by two parameters has been studied. The
considerations are based on the description of a geometric structure of
such a medium proposed by Kubik (1986a), who characterized the struc-
ture of a porous medium by two parameters: volume porosity and a
structural permeability tensor.

Using the theory of singular surfaces the propagation conditions of ac-
celeration wave are formulated and the growth equations are derived.
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1. Introduction

One of the interesting direction of development of mechanics of fluid-
saturated porous media in the last years have been efforts to provide descrip-
tion of a porous medium structure by two parameters. These investigations
were initiated by Derski (1978), and have been continued by Kowalski (1986)
and Kubik (1986a,b). The complete description of a porous medium structure
by two parameters has been proposed by Kubik in hLis papers cited above. The
author characterized the medium structure by two parameters: volume poro-
sity f,, well known in soil mechanics and in the theory of consolidation, and
the structural permeability tensor P defined in Kubik (1986a). In the case
of medium with an isotropic pore structure, instead of the tensor P its mean
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value A, called a structural permeability parameter appears as the second
parameter in the description of a medium structure.

This kind of description was applied to study the influence of a struc-
ture on the propagation of harmonic wave (c¢f Kubik and Kaczmarek (1988)).
Propagation of a weak discontinuity wave in the case of undeformable solid
skeleton and reflection and refraction of the wave on the interface of two me-
dia were considered by Cieszko (1989). The investigations of the behaviour of
acceleration wave in a fluid-saturated elastic porous medium with a structure
determined by two parameters are presented by Dzigcielak (1995).

The aim of this paper is to study the influence of medium structure on the
propagation of acceleration wave in tlie fluid-saturated porous medium with a
viscoelastic solid skeleton.

2. Fluid-saturated porous medium with a structure characterized
by two parameters

In mechanics of soils and rocks a structure of a medium is usually described
by a volume porosity f,. Other scalar parameter which is sometimes used to
characterize the porosity of medium is the surface porosity fs. If the porous
medium contains pores having the form of parallel tubes then surface porosity
and volume porosity are the same, but il the pores are of arbitrary shapes
and cross-sections and the distribution of channel directions is arbitrary then
usually f, > fs (cf Kubik and Rybicki (1980)), In this case the pore structure
is well characterized by two parameters: the volume porosity f, and the
second order permeability tensor P defined by Kubik (1986a).

We focus our attention on an isotropic pore structure. In such a case
P = A1, where A stands for the effective surface porosity and is called the
structural permeability parameter (cf Kubik (1986b)). Thus, in this paper the
isotropic porous skeleton is characterized by two scalar parameters: the volume
porosity f, and the structural permeability parameter A. The parameter A
(or k= A/f,) is the measure of inhomogeneity of the fluid micro-velocity in
its relative flow and is limited by

D< AL f, or D<rkl (2.1)

A detailed discussion of the structural permeability parameter can be found
in Kubik (1992).

We consider a fluid-saturated porous medium with a deformable solid ske-
leton. This medium may be divided into components from either physical or
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kinematic viewpoint (cf Kubik (1992)). Physical components of the medium
are: the porous solid skeleton moving at a velocity »* and the fluid moving
at a velocity v/. The partial densities of these two components are p* and
pf, respectively, and are related to mass densities of the solid skeleton p* and
of the fluid p/ by the formulas (cf Kubik (1992))

p° = (1= fu)p’® pl = fop? (2:2)

The masses of physical components are conserved, thus the partial density
of each physical component satisfies the continuity equation of the form

s "y
%’; ') =0 a&)il +div(pv!) =0 (2.3)

The kinematic components of a medium result from the description of a so-
lid skeleton structure by two parameters. In such a case we have the following
two kinematic components: the solid skeleton and the fluid associated with it
of partial density p(V) = p* + (1 — x)p/, moving at the velocity (1) = v3,
and the free fluid of partial density p(?) = kp/, moving at its own velocity (cf
Kubik (1992))

vl —»s

v = v 4+ (2.4)

K
The continuity equations written for the kinematic components have the
form (cf Kubik (1992))

(")p(
ot

ap( )

o + div(p®Pp?y = (2.5)

+ dlv(p(l »(V) )= g0
where ¢(1) and g¢(?) are the mass supply terms satisfying the condition

These terms are defined by the rate of change of the fluid partial density and
the pore structure parameters and have the form

D)

1) — 42 = —x)p! .
g 99 =9 =—5rl(1=r)p] (2.6)
where 0
Dt d
- = (i) . oy _
D1 T + v - grad 1=1,2

from which it follows that virtual components interchange their masses which
therefore are not conserved.
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The equations of motion for the kinematic components are

D)
divT® 4 pWp 4 ¢ = = oY o 4 _/(v(Z) v(1)) (2.7)
(2) 4 H(2) @D ) (2) _ (1)
divT'® 4+ p'% — 1 =p i + g(v -v')) (2.8)
where

TM TG~ stress tensors for kinematic components
pWb, pMb  ~  external body forces
x — viscous interaction force and force.

The term 0.5g(v(1) — (1)) results from the mass exchange between kinematic
components. This physical eflect stems from the influence of pore structure
on the relative fluid flow. The stress tensors T(") and T are related to the
stress tensors for physical components T* in the solid skeleton and T in the
fluid, respectively, by

T =T* 4 (1 - 5)T/ T = T/ (2.9)

Substituting Eqs (2.6) and (2.9) into Eqs (2.7) and (2.8) we obtain the equa-
tions of motion for the physical components as follows (cf Kubik (1986Dh))

Dv
divT? b = 2.
ivT® +p°b + r° P Ty (2.10)
Duvf
divT/ +pfb+rf = /)f +
DJi
(2.11)

+div [(ﬁf — o — /) © (v* — v/ + pP (@ — v/ ® (v — vf)]

where D P

— =~ 4o grad I'=s,

IrAR TR /
p°b, p/b are the body forces in the solid skeleton and in the fluid, respectively,
rs and r/ represent the internal force interaction between physical components

and take the form (cf Kubik (1986b))

rs = _rf =7+ (llV[(l - "‘")Tf] + (ﬁf - p(2))(b h -gi‘:t)
(2.12)
1 -k Dp/
_ @ _ o) (2 4 pldive
(v v )(DS dlvv)

2
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Additional two terms on the right hand-side of Iiq (2.11) and three terms on
the right-hand side of Eq (2.12) result from the mass exchange between the
kinematic components of the mediumn.

The force m of internal interaction in Eq (2.12) must be determined by a
constitutive relation. Variables in this rclation can be, for example, the fluid
partial density p/, the left Cauchy-Green deformation tensor B, the rate of
deformation D, the relative velocity u = v/ —v*, and the relative spin tensor
W. We restrict our further considerations to the constitutive relation

7 = n(p!,B,u) (2.13)

assuming that = is the continuous function of its arguments.

3. Propagation conditions of an acceleration wave

The acceleration waveis a propagating singular surface of order two, across
which the motion and its first derivatives, i.e. velocities and deformation
gradients of tlie components are continuous, but the second (and ligher) order
derivatives, i.e. accelerations and rates of deformation of the components
suffer from finite jump discontinuities. We define amplitudes of this wave by
the relations

(3.1)

ulal =

Dv® Dv/
Dst ] DIt ]
where u is the speed of wave displacement in a medium and the square
brackets denote the finite jump across a singular surface determined by

u2as — [

[H] = H= —n+ (3.2)

where H™ and H™ are definite limits of the function H behind and in front
of the singular surface, respectively.

The mass continuity equations written for a singular surface Cf Dziecielak
(1980), are of the form

[ﬁs(u - vsn)] =0 [/Sf(u - vfn)] =0 (3.3)

where n is the unit normal to the singular surface; thus in the case of ac-
celeration wave the partial densities of both the constituents are continuous.
For the acceleration wave all arguments of the interaction force =, see Eq
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(2.13), are continuous, therefore [r] = 0. Additionally we assume the conti-
nuous body forces within a mediumn. Using the continuity equations (2.3) and
the well-known geometric and kinematic compatibility conditions (cf Chen
(1976); Thomas (1961); Kosifnski (1981)), we obtain, from the equations of
motion (2.10) and (2.11), the acceleration wave propagation conditions in a
fluid-saturated porous medium with a structure described by two parameters,
in the form

ivT? — k) |divT/] =
[divTs] + (1 - ) [aivT/] o
1

=+ (1 L e - e
1

~E[(a! - a%)n] o+

k|divT/| = p/u?[a! — (1 = K)a*] + pu?(v® - o)) .
7] {3 7

f s
a a
2(g7 - =)}
o7~ eIt
Let us notice that in the propagation conditions two unknown amplitudes a®
and a/ of the wave and three unknown speeds: the speed of displacement u

and two local speeds of propagation U?® with respect to the solid skeleton and
UJ with respect to the fluid, determined by the relations

—k(aln) /v v*
e )

ZRYZARE

K

Us=u—v'n Ul =u—-v/n (3.6)

have appeared. As usual the problem can be reduced to the following three
unknowns: two amplitudes a* and a/ and speed of displacement u.

Description of the porous medium structure by two parameters f, and A
introduces additional terms into the propagation conditions (3.4) and (3.5).
These terms, resulting from the interaction force between components and
the exchange of momentum between kinematic components disappear when
A= f,, i.e. in the case of one parameter description a pore structure.

The propagation conditions (3.4) and (3.5) indicate that in the case of
description of a porous medium structure by two parameters, the speeds of
displacement depend on the relative motion of constituents. This result is new
and is not observed if a structure of a medium is described by one parameter.
The question arises: is the influence of the fluid and solid skeleton relative mo-
tion considerable or may be omitted from the practical point of view? Usually,
in the considered media (for example in oil-saturated sandstone or, generally,
in fluid-saturated rocks and soils), velocities of the solid skeleton and the fluid
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are much smaller then the speed of displacement. The terms on the right-
hand sides of Eqs (3.4) and (3.5) containing the relative velocity of both the
constituents are divided by the local speeds of displacement. Thus, the terms
multiplied by the relative velocity of constituents may be neglected and the
propagation conditions can be reduced to the following, simpler form

[dist] +(1- u)[diva] =¥ p* + (1 - k)p']a*
(3.7)

[diva] = %ﬁfuz[af — (1 - k)@’

The propagation conditions (3.7) are used in our further considerations to
study the influence of the fluid-satureted porous medium structure on the
speeds of displacement of acceleration wave.

4. Growth equations

For the governing differential equations of the amplitudes to be derived,
we consider time derivatives of the equations of motion (2.10) and (2.11) on
either sides of the wave. Using the relations (2.4) and (2.12) and assuming the
continuous distribution of body forces across the wave, we have the conditions

(divT?® D(divT) s Dv?
[ D51 )] [ ((Dsi ] g:;] Dst( th)] (4.1)
+(1 - k) I[Dsﬁ] = D81[(g/s)tf+pfdwv)( - ,,S)”
ivT/ - !
"[D(det )] [th] - [th(”fgif)t)] [D”D”]+ (4.2)
_I_K j Dpf—}-pfdlvv (f—vs)—di"[ﬁ( —v)@ (v — v’ ]}]
Dit D

The jumps of functions that appeared on the right-hand side of Fqs (4.1) and
(4.2) indicate that amplitudes of the wave depend on the mechanical state
(initial disturbances) of medium in front of the wave, independently of the
constitutive relations; this results from the well-known formula

[6H] = [6][H] + [6]H* + [n]G* (4.3)
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In our further considerations we assume that the medium is undisturbed in
front of the wave. To obtain the growth equations, the jumps in Eqs (4.1) and
(4.2) must be determined. Temporarily we do not formulate the constitutive
relations for stresses T°, T/ and internal interaction force 7. We are interested
in the influence of thie medium structure on acceleration wave amplitudes thus
we neglected the influence of geometry, which means that we confine ourselves
to the velocities of components independent of surface parameters. Using the
geometrical condition of compatibility (¢f Chen (1976))

[gradH] = [ngl'aCIH] Qn (4.4)

and the kinematical conditon of compatibility

H
# = %}:] + U‘[gradH]n (4.5)

where §/6t denotes the displacement derivative introduced by Thomas (1961)
and U'is the local speed of propagation, we arrive at the condition of com-
patibility [ ]
. §IH|  rDH
[dlvH] U‘( i D1 )n (4.6)
which is useful for calculation of jumps in Eqs (4.1) and (4.2). From Eqs (2.3)
the jumps of the rate of partial densities change follow

Dp _ —5 s D/)f S j
[Dst] —p’a’n th]_Ufpa (4.7)

To calculate the jumps on the right-hand sides of Eqs (4.1) and (4.2) we use
the definitions (3.1) of acceleration wave amplitudes, the condition (4.6) and
the geometrical and kinematical conditions of compatibility of the second order
(cf Kosinski (1981); Thomas (1961)), yielding the following growth equations

D(divT?)
Dst

ivT/)
-0 250 + [50] =

da
= u’[p* + (1~ N)ﬁf](C + 26_1> + p°Usu*(@n)a® +

1-k v/ —ps da’ Us\ éal
~f.2 J s 5 _ Y NI
+ o plu s [c c 5 + (2 Uf) 5 ]n+ (4.8)

1 - K Us u
7 2,2 / /f f _ a®) — —(a’ /f I _ s
+ o pu { (a n.)(l a ua ) Us(a n)(L a ua )+



BEHAVIOUR OF ACCELERATION WAVES... 529

+(of = v*)[(an) = (e/n)(a*n)]}

S

K[D(%j;rf)] fo] _ 1_h)p1u2(c +26<5t ) N

6 - Us §a’ sa’
+pfu2<cf+2:t)+lﬁh /ZS{UI(/Jr(;)_(cs ;)“L
T ) (4 B )+ 0w e 00
41 ;”ﬁfuﬂ'{[("(j/;’)u(g—// — Z’T) + u((‘j—ff — ;_i)]n}(as —al)

1-kK_ Ul
EELVN
K

oo e -] [(5 - 7))+

us U/t

L= hp w? (v — v*)[(a/n)? - (¢! n)(a’n))]

where ¢/ and ¢® are the induced discontinuitics associated with the accele-
ration wave. Some terms are small in comparison with the other ones on the
right-hand side of Eqs (4.8) and (4.9). For example in Eq (4.8) the second
term on the right-hand side is multiplied by (v/ — v*)/U?®, thus this one is
small in comparison with the first one. I we neglect such terms and take
into account that in real media U® ~ u and U/ x~ u we obtain the growth
equations in the form

S

)+

[D(di—m]+(1—f:)[%:t-ﬂ) +[%] w2+ (1= m)pl) (e + 270

%4 10)
1 {1 (@ - @)~ @)l + (e
D(divT/) D= _ L éal N s o0a°
r;[ DI ] - th] —pfu2<c/+27) - (l—h)pfur"(c +2 5 ) +
(4.11)
~f,3 5(1 - K’) S s S s S
+p’u {—T(a —a®)[(a’ —a®)n|+a’(a n)}

In the second part of the paper these growth equations will be used to study
the influence of a medium structure on the amplitudes of acceleration waves.
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5. Concluding remarks

The propagation conditions and the growth equations have resulted from
the above considerations. In the second part of this paper these equations
will be used to study the influence of medium structure on the propagation of
acceleration waves in the linear viscoelastic fluid- saturated porous solid.

The propagation conditions (3.4) and (3.5) indicate that independently of
the constitutive relations, the speeds of displacement depend on the relative
motion of constituents. This result is new and is not observed if a medium
structure is described by one parameter.

This research was supported by Poznan University of Technology under the grant
No. BW 21-684/94.
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Zachowanie sie fali przyspieszenia w lopkosplqustym osrodku porowatym

ze struktura. Czesé I — warunki propagacji i réwnania amplitud

Streszczenie

W pracy bada sie zachowanie sie fali przyspieszenia w nasyconym ciecza osrodku

porowatym o strukturze opisanej przez dwa parametry: porowatos¢ objetosciows
1 tensor strukturalnej przepuszczalnosci. Podstawa rozwazai jest opis takiego osrodka
zaproponowany przez Kubika (1986a).

Korzystajac z teorii powierzchni osobliwych sformulowano warunki propagacji

i wyprowadzono réwnanie amplitudy fali przyspieszenia.
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