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ducational researchers often struggle to draw conclusions from quantitative 
methods in ways that honor local contexts (Casad et al., 2017; Gutiérrez, 2002; 

Valero, 2008). Some in the field of mathematics education have called for more spec-
ificity when developing statistical models and assessments that can inform the field 
about why, how (Cai et al., 2019), and for whom (Adler et al., 2005; Connolly et al., 
2018) interventions and assessments work, even down to the lesson level (Cai et al., 
2020). Such concerns elevate the need to evaluate carefully, with strong methods, 
which curricular interventions and assessments should be brought to scale.  

In educational research, idiographic realities often detract from our ability to 
see consistent results over time and across sites. Berliner (2002, p. 19) pointed out 
that a “ubiquity” of interactions is what helps to make educational research the hard-
est science of all. Still, the field seeks to implement research designs that help to 
identify practical effects of curricular interventions despite any variations between 
individual students, teachers, schools, and districts in which the study is conducted. 
Appropriate use of any methodology requires extensive, sound decision making to 
warrant conclusions drawn from the method.   

Indeed, it can be considered somewhat of an art to parse out the influences of 
situational, organizational, and environmental factors in order to assess impact. At-
tention to good quantitative practice is worthwhile however painstaking. Strong 
methodological practices may help mathematics teachers and practitioners avoid la-
menting the “whiplash” of starting over every few years due to frequent educational 
reforms (Cai et al., 2020, p. 134), which can be based on weak, over-generalized 
evidence.  
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The thread of context should be woven through all stages of the research pro-
cess, from design to reporting, and this focus should include whether the methods 
used are appropriate for the purpose of the research. Unfortunately, methodological 
errors (or perhaps less-than-optimal decisions) can be common. The peer-review pro-
cess helps adjudicate research quality, but it can still result in research with common 
flaws. Though typically highly knowledgeable in their respective fields, reviewers 
are human. They are often very busy researchers bound by time, competing obliga-
tions, and varied methodological expertise. Moreover, the field of quantitative meth-
odology is constantly evolving (see Aiken et al., 2008; Henson, 2006; Hughes et al., 
2010; Thompson, 1999) regardless of the misconception that the field is static. All of 
these factors, and others, contribute to the importance of maintaining a current and 
appropriate understanding of quantitative methodology while considering the context 
surrounding its use and interpretation. Failure to do so may result in flawed research 
practices that can distort applications of theory, misinform policy and budgetary de-
cisions, or even result in negative research funding decisions. As we continue to re-
fine our understandings of best practices for quantitative methodology, it is incum-
bent on researchers, reviewers, and journal editors to stay well-versed in new devel-
opments. 

Toward this end, the purpose of the current article is to review several common 
areas of focus in quantitative methods with the hope of providing Journal of Urban 
Mathematics Education (JUME) readers with some guidance on conducting and re-
porting quantitative analyses. Our intent is to challenge and stimulate strong meth-
odological thinking. After providing some background for the needed discussion, we 
will review briefly the nature of recent JUME articles and then comment on several 
quantitative issues that deserve our attention while referring readers to resources for 
more comprehensive treatments.   

  
Where are We Now? A Brief Review of Some Common Errors 

 
Unfortunately, examinations of analytic and reporting practices underscore the 

prevalence of errors and omissions. Kesselman and colleagues (1998) conducted a 
comprehensive review of 17 education and behavioral science research journals for 
articles that contained at least one of the following: analysis of variance (ANOVA), 
multivariate analysis of variance (MANOVA), and analysis of covariance 
(ANCOVA). They found that statistical assumptions are often not reported or are 
even violated, effect sizes are rarely reported, and sample sizes are not regularly 
based on power analyses (Kesselman et al., 1998). Both inadequate sample sizes and 
non-random sampling introduce bias in the interpretation of results in the form of 
increased sampling error, which decreases the accuracy of findings (Tabachnick & 
Fidell, 1996). In a broader review focused specifically on education research, Zientek 
et al. (2008) examined 174 articles cited by the American Educational Research 
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Association Panel on Research and Teacher Education (see Cochran-Smith & Zeich-
ner, 2005), finding only 13% of the articles reported score reliability, 4% reported 
confidence intervals, and 39% reported effect sizes. Furthermore, in a review of the 
Journal of Applied Psychology, Courville and Thompson (2001) found that 94% of 
articles contained discrepancies between beta weights and structure coefficients 
when ranking predictors in regression analyses. The authors also highlighted other 
common errors and misinterpretations of regression analyses.  

There are common mistakes to be found in studies that use exploratory factor 
analyses (EFAs) as well. Henson and Roberts (2006) conducted a review of 60 arti-
cles that used EFAs and found that some studies contained less than the recom-
mended sample size (median N = 267); Tabachnick and Fidell (1996) would consider 
this to be below the minimum sample size for an EFA. Many studies also contained 
less than the recommended amount of variance explained by the factors, and often 
researchers likely did not extract the correct number of factors. Furthermore, 65% of 
studies did not report which matrix of association was analyzed, 13% did not report 
the extraction method used, and nearly 57% used the default extraction method in 
their EFAs.  

Henson et al. (2010) identified and emphasized deficiencies in quantitative and 
research methods training in education doctoral programs that may lead to usage er-
rors and reporting problems in research articles. They also argued that researchers 
rely too heavily on traditional research designs and statistical analyses, resulting in 
limited learning and application of new advances in quantitative methodology. The 
authors suggested several ideas for advancement, such as additional training and con-
sulting with methodologists early in the process when designing studies.  

The current article can be reasonably considered as one small educational step 
in that direction. Our approach is holistic in the sense that we fully comment on the 
research process in multiple areas (e.g., design, data analysis, and reporting). It is 
impossible to provide comprehensive guidance in one article, but we address some 
key challenges and best practices in quantitative research in the following domains: 
causal inferences, measurement, handling missing data, testing for assumptions, ad-
dressing nested data, and evidence for outcomes. These domains were selected based 
on discrepancies consistently identified in methodological reviews of educational re-
search (Aiken et al., 2008; Connolly et al., 2018; Courville & Thompson, 2001; 
Enders, 2010; Henson et al., 2010; Henson & Roberts, 2006; Kesselman et al., 1998; 
Peugh & Enders, 2004; Vacha-Haase et al., 1999; Zientek et al., 2008).  

 
An Empirical Review of Recent JUME Methods 

 
To provide a baseline for the discussion, we reviewed all JUME publications 

categorized as research articles (N = 24) from 2014–2017 to evaluate the types of 
research methods typically employed in the journal. The 2018 volume was not 
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included because it consisted of reprints from 2008 as a 10-year follow-up. The 2019 
volume was not yet available online. All articles classified under the editorial, com-
mentary, response commentary, or research impact categories were excluded.  

Regular readers of JUME would likely not be surprised that the journal has 
historically tended toward publication of qualitative-oriented articles. Fully 75% of 
the articles reviewed could be classified as qualitative, whereas only 16.7% utilized 
quantitative designs and 8.3% used some form of a mixed methods approach. Table 
1 provides a summary of the review and also illustrates the types of analyses em-
ployed. Because our focus is on quantitative research, we did not delineate types of 
qualitative approaches. 

 
Table 1 

Methodological Approach in JUME Research Articles (2014–2017) 

Type of Method n Primary 
Method  

Qualitative methodology  18 ü 

Quantitative and mixed methodology 6  

Cross-tabulations 1  

Paired sample t-tests 1 ü 

Independent samples t-tests 1  

Propensity score matching 1 ü 

Multiple regression 1 ü 

Meta-analysis 1 ü 

Item response theory 1  

Analytic weights 2  

Chi-square 1  

Coefficient alpha 3  

Descriptive statistics 5  
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Although the nature of JUME’s historical focus may have gravitated toward a 
qualitative emphasis, the policies and procedures of the journal indicate an interest in 
publishing “data based qualitative and quantitative studies, action research, research 
syntheses, integrative reviews and interpretations of research literature” (Journal of 
Urban Mathematics Education, n.d.-a). In many cases, qualitative methods allow for 
strong idiographic exploration of phenomena at the local level (Berliner, 2002; Dem-
erath, 2006). However, appropriate integration of strong quantitative methodology 
could broaden the journal’s goals of publishing data-based research and promoting 
diverse applications to “foster a transformative global academic space in mathemat-
ics” (Journal of Urban Mathematics Education, n.d.-b). Of course, in any study, the 
research question should drive the methods used. If appropriately applied and done 
well, quantitative methods can help bolster research inquiry with measurable and dis-
tinct evidence for effects of interventions and other correlational questions.  

 
Some Key Challenges and Comment on Good Practice 

 
 Below are suggestions and resources for addressing problems in the follow-

ing six quantitative domains: causal inferences, measurement, handling missing data, 
testing for assumptions, addressing nested data, and evidence for outcomes. These 
suggestions are based on previous methodological reviews in the fields of education 
(e.g., Henson et al., 2010) and psychology (e.g., Aiken et al., 2008). It is our hope 
that researchers in the field of urban mathematics education will heed warnings iden-
tified in these related fields in order to produce higher quality manuscripts. Recent 
empirical studies in urban mathematics education are referenced throughout this pa-
per to provide support for methodological recommendations. 
 
Causal Inferences  
 

Researchers are often concerned with making causal claims between variables. 
The field of mathematics education, in particular, would benefit from an increased 
understanding of causal processes within the classroom that influence instructional 
approaches across explicit conditions (Cai et al., 2019; Maxwell, 2004), such as stu-
dent perceptions of equity and access to participation (Vogler et al., 2018). 

It is not uncommon to find statements of causal inference and generalization in 
qualitative studies. Although the claims may be presented tentatively, causal infer-
ences are either explicit or implied far more often than is warranted by our designs 
— whether qualitative or quantitative. Researchers may take for granted the follow-
ing essential elements needed for causation: (a) the independent variable and depend-
ent variable must be correlated, (b) the independent variable should take temporal 
precedence, or come first, over the dependent variable, and (c) there must be no effect 
of extraneous variables (Shadish et al., 2002). Therefore, the ideal approach for 
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researchers to determine causation is through manipulation of variables where any 
outcome differences at post are attributable to the treatment and not pre-existing sys-
tematic differences between groups (e.g., self-selection). Experimental designs are 
considered very strong because they allow the researcher to observe “phenomena 
which are made to occur in strictly controlled situations in which one or more varia-
bles are varied and the others are kept constant” (Zimney, 1961, p. 18). Random as-
signment of participants to conditions helps researchers rule out rival or competing 
hypotheses because theoretically confounding variables are leveled through random-
ization. It follows that experimental research lends itself well to formation of causal-
ity arguments. Still, experimental research is not often feasible for much of educa-
tional research, or even desirable.  

Quasi-experimental studies are not as strong as experimental but are still pre-
ferred over correlational studies because conditions can be manipulated so that (a) 
covariance between the intervention and outcome can be observed and (b) the inter-
vention precedes the effect (Johnson & Christensen, 2019). However, quasi-experi-
mental studies fall short of the third causal criteria, as they do not fully account for 
confounding variables. This is often because researchers cannot randomly assign stu-
dents to conditions (e.g., classrooms or schools) of their choosing or have no ability 
to include a control group. Collecting data necessary to address competing explana-
tions can strengthen causal arguments with this design. 

In educational research, randomized control trials (RCTs), studies in which in-
dividuals or groups of individuals are randomly assigned to treatment conditions, are 
becoming an increasingly popular approach toward the development of evidence-
based practices and theories of change (Connolly et al., 2018). However, to avoid 
overgeneralization of cause and effect claims, Connolly et al. (2018) advised that 
RCTs in education should involve some sub-group analyses and incorporate process 
evaluations as a component of the research. 

Finally, in observational studies where random assignment is simply not possi-
ble due to either program criteria or the practical logistics of the setting, propensity 
score matching (PSM) offers a valuable alternative (Austin, 2011; Henson et al., 
2010; Morgan et al., 2010). PSM seeks to reduce selection bias by approximating a 
randomized experiment with “treatment” and “control” groups based on participant 
covariates and evaluating whether differences are likely due to treatment (Austin, 
2011; Rosenbaum & Rubin, 1983). Thus, the PSM process can serve as an analog to 
the random experiment and is superior to drawing conclusions from observation 
alone. One of the major drawbacks to adopting PSM is that it fails to balance unob-
served, or unmeasured, characteristics in the statistical model and it rests on the core 
assumption that all confounders are measured (Austin, 2008; Hill, 2008). RCTs work 
better to balance measured and unmeasured covariates across intervention groups 
(Austin, 2008). Regardless of method, researchers should take care to qualify their 
findings with clear indications as to whether any causal claims are supported. As an 
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example, Howard et al. (2015) demonstrated good practice in tempering causal lan-
guage (i.e., qualifying conclusions) within a PSM study using a secondary longitudi-
nal dataset:  

 
It is important to note that it cannot be inferred that the more negative psychological 
scores were necessarily caused by the failing grades. It is feasible that the students failed 
because they already had more negative dispositions toward mathematics, or conversely 
that negative dispositions emerged following the failure. Regardless of the direction of 
causality (if any), the existence of more negative dispositions towards mathematics in-
dicates that psychological dispositions are somehow associated with mathematics per-
formance in the eighth grade, and placing these students in advanced mathematics 
courses without addressing these dispositions may be inadequate in terms of the support 
they may need. (p. 54) 

 
The reporting in this particular JUME manuscript (included in our empirical 

review) was comprehensive and informed. Further elaboration on limitations of de-
sign in papers such as this will help to move the mathematics education field toward 
an even deeper understanding of the extent to which we can draw causal inferences 
across study designs. 

 
Measurement Issues  
 

Researchers need to either use instruments that yield scores with strong psy-
chometric properties or create measures themselves that yield scores with strong re-
liability and validity. Further, researchers should use caution when creating their own 
measures (e.g., surveys). Scores from every measure should be deemed valid and 
reliable prior to being used in published research, as poorly written surveys that may 
appear to only have face validity can weaken the foundation of entire bodies of re-
search (Borsboom et al., 2004; Lissitz & Samuelson, 2007). Measurement is often 
the Achilles’ heel of quantitative research. If we do not measure what we are inter-
ested in well, then it may not matter what else we do in the study!   

In a classical test theory framework, test scores are considered reliable when 
the test’s “observed scores are highly correlated with its true scores” (Allen & Yen, 
1979, p. 72). This theoretical concept is often operationalized and assessed with test-
retest reliability correlations and, most commonly, with coefficients measuring inter-
nal consistency (i.e., correlation) between items (Hogan et al., 2000). Henson (2001) 
provides a primer on the meaning and interpretation of internal consistency reliability 
coefficients, such as coefficient alpha (see Cronbach, 1951).  

Unfortunately, researchers often ignore reliability or incorrectly assume that a 
measure will yield reliable scores in a current study just because it has in prior sam-
ples. Vacha-Haase et al. (1999) reviewed 839 articles in three counseling and psy-
chology journals and found that only 35.6% of the articles reported reliability coeffi-
cients for the data being analyzed. These coefficients are essential for evaluating good 



 
 
 
Henson, Stewart, & Bedford  Key Challenges and Some Guidance 
 

Journal of Urban Mathematics Education Vol. 13, No. 2 
 

49 

measurement because scores, not tests themselves, are either reliable or unreliable 
(Vacha-Haase et al., 2002).  

Regarding measurement validity (i.e., measuring what you claim to be measur-
ing), researchers should expect evidence for construct, content, convergent, and dis-
criminant validity before assuming that scores on a measure may be valid in a current 
or future sample (Borsboom et al., 2004; Cronbach & Meehl, 1955; Lissitz & Samu-
elson, 2007). In order to consider a measure good enough to be included in one’s 
research study, there should be sufficient evidence for score validity from prior work 
in similar samples. Failure to evaluate and report the validity evidence for scores on 
a measure amounts to rolling the dice on whether one’s obtained scores in a current 
study will mean anything at all. Score reliability and validity cannot be assumed even 
if an instrument was previously published in a reputable journal and used widely in 
the literature (see Henson et al., 2001).    

Not only do researchers need to select measures that will yield reliable and valid 
scores, they must also be aware of measurement invariance between samples or 
groups (i.e., there may be systematic biases in measures based on the sample being 
tested; Millsap, 2011). Researchers often believe that “reliability coefficients from 
previous samples or test manuals are psychometrically applicable for their current 
published work,” but this is simply not true in an absolute sense (Vacha-Haase et al., 
2002, pp. 563–565). Factor structures of the measures should be assessed (Henson & 
Roberts, 2006), and researchers should “investigate the invariance of the measures 
implemented before comparing the results from the measure in a study” (Henson et 
al., 2010, p. 234). Millsap (2011) provides a review of measurement invariance test-
ing. 

Of course, understanding these measurement implications can be difficult when 
not regularly part of researcher training. In a survey of psychology doctoral programs 
in the United States and Canada, Aiken et al. (2008) found that only 64% of all de-
partments provided a doctoral course in measurement. Furthermore, the researchers 
found that 40% of departments taught sections that included item response theory 
(IRT) as an element every 2 years, with only 9% teaching a full semester of IRT. IRT 
is an advanced measurement approach that allows for item parameters and test-taker 
ability to be assessed on the same scale (Reise et al., 2005). For example, one study 
focused on understanding the Flynn effect was able to separate out general intelli-
gence, an ability parameter, from item parameters (e.g., discrimination and difficulty) 
on a mathematics achievement test (Beaujean & Osterlind, 2008). IRT is a key 
method in modern test development (Embretson & Reise, 2000), and recent studies 
have utilized IRT to create and validate scores on mathematics assessments (e.g., the 
Probabilistic Reasoning Scale; see Primi et al., 2017; the Abbreviation Math Anxiety 
Scale; see Sadiković et al., 2018).  
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Missing Data Techniques  
 

Missing data is a common occurrence in educational research, yet modern miss-
ing data imputation techniques, such as multiple imputation (MI) and full information 
maximum likelihood estimation (FIML; Schafer & Graham, 2002), are not regularly 
taught in doctoral programs (Aiken et al., 2008). Researchers often address missing 
data by either removing the cases that contain missing values (i.e., listwise deletion) 
or with mean, median, or regression imputation of the missing values (Peugh & 
Enders, 2004). Listwise deletion leads to biased parameter estimates if the data are 
not missing completely at random (MCAR; Little, 1988; Peugh & Enders, 2004). 
Furthermore, even if the data are MCAR, mean imputation can produce biased pa-
rameter estimates (e.g., inaccurate R2 effect sizes in regression models). Morales-
Chicas and Agger’s (2017) math achievement study highlighted the limitations intro-
duced when data are missing and reported the listwise deletion of cases. A description 
of the missing data and a statement about whether the data were MCAR would 
strengthen the reporting and allow readers to better interpret the final results. 

Newer methods of missing data imputation, such as MI and FIML, can produce 
unbiased estimates for missing values that are either MCAR or missing at random. It 
should be noted that values that are missing not at random (i.e., systematically miss-
ing) will tend to produce biased parameter estimates regardless of which missing data 
technique is utilized (Peugh & Enders, 2004). Howard et al. (2015) provided trans-
parent and detailed reporting of their missing data decision-making process wherein 
the authors compared results from multiple imputation data and the original data but 
ultimately used the original data due to negligible differences between the two: 

 
Little’s MCAR statistic (SPSS Missing Values 22.0) revealed that the missing data met 
the assumption of MCAR, χ 2(39) = 52.84, p = .07. There were no systematic patterns of 
missing data when compared to the observed values for all of the matched covariates, 
the prior mathematics assessment and psychological measure scores, and the college-
bound variables. (p. 48) 

 
FIML uses a maximum likelihood estimation instead of the least squares esti-

mation that other imputation techniques utilize. MI creates multiple imputed datasets 
and pools the estimates in a two-step process (Enders, 2010). The primary benefit of 
both techniques is that they require less strict assumptions regarding the missing val-
ues (Peugh & Enders, 2004). FIML is slightly more accurate (Schafer & Graham, 
2002), but MI can be more versatile in the imputation process (Peugh & Enders, 
2004). See Enders (2010) for a full guide to missing data techniques.  

 
Testing for Assumptions  
 

Because inferential statistical analyses use data from samples to generalize to 
populations, each analysis is accompanied by a set of assumptions (Cohen et al., 
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2003; Tabachnick & Fidell, 1996). Thus, the key assumptions need to be tested and 
reported in published articles. In the event that an analysis’ assumptions are violated, 
researchers should evaluate the implications based on the severity of the violation 
and consider either data transformations, seek out correction methods, or switch to 
nonparametric tests to ensure the most accurate results (Osborne, 2013).  

 Researchers should also be aware that assumptions change based on the anal-
ysis used. For instance, the assumption of multivariate normality is a prerequisite for 
an analysis that involves the simultaneous prediction of multiple outcomes (Henson, 
1999). In turn, homogeneity of variance is assumed for between-group comparisons, 
and sphericity is assumed when testing change within subjects over time (Tabachnick 
& Fidell, 1996). The assumption of homoscedasticity, wherein all values of X share 
the same scatter around a regression line, should be met in order to draw accurate 
conclusions from analyses under the general linear model, such as multiple regres-
sion (Cohen et al., 2003). Yet, in a review of 61 articles that utilized between-subject 
analyses, Kesselman et al. (1998) found that only one study reported testing for both 
normality and homogeneity of variance. Furthermore, Onwuegbuzie and Daniel 
(2005) conducted a review of articles submitted to Research in the Schools and noted 
that 91% of submitted manuscripts did not discuss model assumptions. It is not un-
common for reporting of these assumptions to be omitted in published multiple re-
gression articles in the field of mathematics education (e.g., Irvin et al., 2017; Lee, 
2018; Morales-Chicas & Agger, 2017; Smith & Hoy, 2007). Reporting assumptions 
is essential to good quantitative practice, for when we report results without checking 
or meeting the assumptions, we risk publishing results that are not replicable (Kes-
selman et al., 1998). 

 
Addressing Nested Data 
 

The complex research questions that drive our analyses of program effective-
ness are often concerned with data at multiple levels (e.g., classrooms, schools, dis-
tricts, and states). People or students in these naturally occurring hierarchical group-
ings, also referred to as clusters, often share variance on outcomes because of their 
common experience, setting, and so forth. Therefore, when researchers treat clustered 
data as independent, they are at an increased risk of making Type I errors (Ferron et 
al., 2008). Instead, we can consider the data as nested (i.e., students at level 1 nested 
within schools at level 2) and adjust our model to account for these cluster effects 
(e.g., non-independence of data). These multilevel models, also referred to as hierar-
chical linear models and variously as mixed models, mixed effect models, and ran-
dom coefficient models (McCoach, 2010; Raudenbush & Bryk, 2002), allow for in-
terpretation of both fixed effects, which may be estimates of slopes and intercepts that 
do not vary by cluster, and random effects, which are allowed to vary by organization 
unit or by individual (Woltman et al., 2012).  
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Multilevel research questions related to cross-sectional analyses often seek to 
account for variability stemming from student-level differences and any cluster ef-
fects of the aggregate unit (e.g., Does class size moderate the relationship of student 
self-esteem and mathematics achievement?). To illustrate the benefits of multilevel 
modeling for addressing complex research questions in mathematics education, con-
sider a study by Young (1997). The author employed multilevel modeling to decom-
pose science and mathematics achievement by simultaneously investigating predic-
tors at the teacher/school level (e.g., student support or mission consensus), class-
room level (e.g., student cohesiveness or task orientation), and student level (e.g., 
self-concept and satisfaction). In that study, class and school effects were present, but 
ultimately student self-concept explained the most variance in achievement. This im-
portant finding informs educators’ ongoing engagement with students. In urban 
mathematics education, Lekwa et al. (2019) also used multilevel modeling, this time 
with students nested in classrooms, to measure “the predictive relationship between 
teacher practices, as measured by the CSAS-O, and gains in student achievement in 
reading and mathematics” (p. 15).  

Use of multilevel modeling in longitudinal designs can additionally allow ex-
ploration of differences in student growth rates (e.g., To what extent do boys and girls 
differ in their rate of change in self-confidence based on program involvement?). 
Multilevel modeling also offers the advantage of increased statistical power to detect 
growth effects when student data is missing at various waves (Kwok et al., 2008).  

In order to determine the degree of dependence of the data and provide some 
preliminary guidance on whether a multi-level model would even be appropriate, re-
searchers can compute an intraclass correlation coefficient (ICC). The ICC provides 
a proportion of variance that can be explained by hierarchical groups, and it is com-
puted as a ratio of between group variance divided by the sum of the between group 
variance and within group variance in a model with no specified predictors (Raud-
enbush & Bryk, 2002, p. 71). The ICC can also be more simply explained as the 
degree of similarity we might expect for any two randomly selected student scores 
within the same organizational unit. In an instructive chapter on good reporting prac-
tices in hierarchical linear modeling, McCoach (2010) explained, “An ICC of 0 indi-
cates independence of observations, and any ICC above 0 indicates some degree of 
dependence in the data” (p. 134). For instance, Matthews’ (2018) study on urban 
adolescents’ cognitive flexibility and views of mathematics exhibits use of the ICC 
to make statistical decisions:  

 
The intraclass correlation coefficient for year-end attainment value was .042, which in-
dicated that the large majority of variation in attainment value existed between students 
and very little, 4.2%, between classrooms. Little variation at the classroom level reduces 
the need for multilevel modeling (Bryk & Raudenbush, 1992). (p. 6) 
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Evidence for Outcomes  
 

 Perhaps the most central question regarding quantitative analyses is the de-
gree to which they provide information about evidence for study outcomes. Any 
study can typically yield multiple pieces of information that can be consulted as evi-
dence that helps communicate the story found in the data. It is generally important to 
consider several elements when evaluating outcomes, such as effect size (i.e., practi-
cal significance), confidence intervals, power, and statistical significance.  

Regarding traditional null hypothesis statistical significance testing, Onwueg-
buzie and Daniel (2005) found that 86% of studies did not include any discussion of 
a priori or post-hoc statistical power analyses, while 14% clearly lacked adequate 
statistical power. If null hypothesis statistical significance testing is going to be used, 
sufficient power is necessary to provide context for interpreting obtained p values 
(Cohen, 1983). Furthermore, 33% of the studies had omitted one or more appropriate 
statistics (e.g., degrees of freedom, p value), and 33% confused statistical with prac-
tical significance. The majority (65%) of articles had no discussion of limitations and 
legitimacy of findings.   

These omissions are not uncommon in the literature, and they reflect a general 
lack of understanding of the importance of providing clear evidence to support claims 
regarding study outcomes. For example, it is now commonly accepted that multiple 
pieces of evidence should be reported and that this should include effect size inter-
pretation and confidence intervals beyond traditional statistical significance testing. 
Henson (2006) argued for stronger meta-analytic thinking across the literature when 
evaluating study outcomes with emphasis on reporting and interpreting effect sizes. 
Young et al. (2019) demonstrated careful interpretation of results in their study on 
effects of urban mathematics teachers’ professional development and stated, “alt-
hough isolated effect size results suggest an overall positive outcome for the profes-
sional development, meta-analytic thinking can contextualize the results and provide 
a broader interpretation of the professional development effectiveness” (p. 322). 
Along with other meta-analytic considerations (see Cumming & Finch, 2005; Quin-
tana & Minami, 2006), Henson (2006) suggested reporting confidence intervals 
around obtained effects (see also Thompson, 2002).  

Indeed, the most recent Publication Manual of the American Psychological As-
sociation noted that “for readers to appreciate the magnitude or importance of a 
study’s findings, it is recommended to include some measure of effect size in the 
Results section” (American Psychological Association [APA], 2020, p. 89). Past lan-
guage also stressed, “it is almost always necessary to include some measure of effect 
size in the Results section” (APA, 2010, p. 34). Effect sizes can be reported in origi-
nal units (e.g., a regression slope) or standardized units (e.g., Cohen’s d value), and 
researchers should use their best judgement about which approach is preferred for 
better interpretability when communicating magnitude of effect (APA, 2020). 



 
 
 
Henson, Stewart, & Bedford  Key Challenges and Some Guidance 
 

Journal of Urban Mathematics Education Vol. 13, No. 2 
 

54 

Common effect sizes include variance-accounted-for measures (e.g., R2, h2) and 
standardized mean differences (e.g., Cohen’s d, Hedges’ g).   

Finally, in many analyses in which interesting effects are observed with suffi-
cient evidence for the study outcome, researchers must evaluate the role of variables 
in the model. For example, an interesting multiple regression model would necessi-
tate interpretation of which predictors were most impactful in explaining variability 
in the outcome. In such cases, a traditional approach would focus only on the stand-
ardized coefficients, or perhaps unstandardized versions, of the predictors. However, 
comprehensive researchers will also include interpretation of structure coefficients in 
conjunction with beta weights to evaluate potential impacts of multicollinearity, the 
relative strength of predictors, and possible suppressor effects. Readers are referred 
to Courville and Thompson (2001), Henson (2002), and Kraha et al. (2012) for de-
tailed explanations of structure coefficients.  

 
Summary  

 
Our primary goal as researchers is to produce good research that implements 

strong research designs with results that are understood by both researcher and prac-
titioner in a way that can be practically applied. Although not always the case, we 
also often care about whether outcomes are generalizable and replicable. Before par-
ticular methods are considered and employed for these ends, however, we should be 
asking strong research questions that are grounded in theory and contextualized in 
appropriate settings. Only then should our consideration turn to the appropriate use 
of methodology to help answer our questions.  

This article highlighted key challenges and some best practices we find in quan-
titative research in several areas. Decisions made in these domains should be reported 
in manuscripts whenever possible for transparency. We also offered resources to pur-
sue in order to strengthen quantitative research designs and practices. Editors and 
peer-reviewers are essential to this process, as they are gatekeepers to the publication 
of good research. When relevant, peer-reviewers should understand these quantita-
tive practices and apply that understanding with thoughtful and detailed feedback to 
authors. It is also very helpful to provide resources and relevant citations to assist 
authors with the publication process. 

Aiken et al. (2008) noted glaring weaknesses in the quantitative training pro-
vided in psychological doctoral programs. Many programs do not teach modern 
measurement analyses, advanced techniques for handling missing data, or complex 
inferential analyses. Henson and Williams (2006) found similar outcomes in educa-
tion doctoral programs. Conducting quality quantitative research is obviously a com-
plex process, but training in terminal degree programs is certainly a piece of the puz-
zle. It is also reasonable to think that the professional development of researchers 
would play a role in whether or not quality methodology is used in the literature. Like 
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other fields, quantitative practice changes and improves through methodological and 
technological advancements. If we are going to conduct and publish quantitative-
oriented research, we need to do it well, and doing it well requires that we make good, 
contextualized decisions throughout the entire research process. 
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