ORIGINAL SCIENTIFIC RESEARCH PAPER

# **Slovak Women Wage Structure: Does Education Matter?**



### Struktura zarada žena u Slovačkoj: Da li obrazovanje ima značaja?

Pavličková Viera<sup>\*</sup>, Kuzmišinová Ivana, Technical University of Košice, Faculty of Economics, Slovak Republic

#### ABSTRACT

The aim of the article is to analyze changes in the returns to education for women between 2005 and 2009 in the Slovak Republic. A Mincer equation is estimated along the entire wage distribution using quantile and OLS regressions. Data used for the analysis are individual data from harmonized EU SILC statistical survey. The results indicate tree points. Firstly, education affects women's earnings positively. The return to an additional year of schooling is close to 5 %. Secondly, returns to education for women did not change significantly from 2005 to 2009. Thirdly, the influence of education on the women's earnings is more significant than of work experience.

KEW WORDS: mincer equation, returns to education, Slovak Republic

#### Introduction

The wage rewards of schooling – "returns to education" – are a central concern to both labor economics and econometrics. There are numbers of empirical studies documenting the rise in returns to education in transitional economies of Central and Eastern European countries,

<sup>\*</sup> Adress: Nemcovej 32, 040 01 Košice, Slovak Republic

especially among men. The literature on early-transition returns to education for men includes Krueger and Pischke (1995) and Bird, Schwarze and Wagner (1994) for East Germany; Rutkowski (1996, 1997) for Poland; Halpern and Körosi (1997) for Hungary; Orazem and Vodopivec (1997) for Slovenia; Lubyová and Sabirianova (2001) for Slovakia and Russia; Jones and Ilayperuma (1994) for Bulgaria; Flanagan (1995) and Chase (1997) for the Czech Republic. However, there is a dearth of descriptive evidence on returns to education for women. This paper fills the gap for the Slovak Republic by estimating private wage returns to education for women using an EU SILC data in 2005-2009.

Two studies have investigated changes in returns to education for women in Slovak Republic. They dealt with changes in the benefits of education between the final years of communism system and the early years of market economies. Chase (1997) find an increase in annual returns to schooling for women during period of 1984-1993 in the Slovak Republic. He reports that returns to a year of education increased from 4.4 percent for women in 1984 to 5.4 percent in 1993 in the Slovak Republic.

Filer, Jurajda and Planovsky (1999) have estimated the development of returns to education for women in Slovakia, using the enterprise survey data (Information System on the Cost of Labour). There was the finding that returns to education in Slovakia increased substantially between 1995 and 1997, when they reached a level two times higher than in 1984. The rate of increase was approximately equal both for men and women.

Table 1 presents the increase in women's earnings for each additional year of education in the Slovak Republic for 1984, 1993, 1995, 1996 and 1997.

1984 1996 1997 1993 1995 Years of schooling OLS 0.044 0.054 0.063 0.074 0.081 49 984 Number of observations 2 1 3 1 1776 23 849 53 717

Table 1: Trends in coefficients on education for women over time inSlovakia

Source: Chase, 1997; Filer, Jurajda and Planovsky, 1999

46

In this paper, we extend the existing evidence by covering the situation for women after the end of the first transition decade. We provide an estimation of the basic earnings equations for calculating private rates of returns to education and returns to labor market experience for women.

The paper is organized as follows. Section 2 is devoted to the conceptual framework and the methodology used in the paper. Section 3 describes the data set and shows descriptive statistics and changes in wage structure between 2005 and 2009. Estimation results are presented in section 4. Section 5 gives concluding remarks.

#### Methodology

In this study the conceptual framework used is the human capital model of earnings determination. This framework is developed by Mincer (1958 and 1974) and Becker (1975). According to this model wage differences among individuals are the result of the differences in their schooling, training and work experience. Accordingly, log hourly wages are postulated to depend on schooling, experience and other exogenous socio-economic factors. (Tansel, 2008).

Traditionally the rates of return to education are measured on the base of standard Mincer earnings function of the log-linear form. Mincer (1958, 1974) was one of the firsts who applied human capital concepts directly to the personal distribution of earnings and used the standards earnings function for estimation of rates of return to education and experience.

We use earnings equation in the form (Heckman, Lochner, and Todd, 2003):

$$ln[w(s,x)] = \alpha_0 + \rho_s s + \beta_{i0} x + \beta_{i1} x^2 + \varepsilon_i \tag{1}$$

where ln[w(s,x)] is log of wage at schooling level *s* and work experience *x*;  $\rho_s$  is coefficient on education variable, which is often called "returns to education" or "returns to schooling" (assumed to be the same for all schooling levels) and  $\varepsilon$  is a mean zero residual with  $E(\varepsilon|s, x) = 0$ .

The estimation of Mincer earnings function enables us to find the returns to schooling and experience. It is realized using Ordinary Least Squares Method and Quantile Regression based on the following authors: Koenker (2006), Koenker a Bassett (1978), Koenker a Hallock (2001), Koenker a Hallock (2008) and Yu, Lu, Sander (2003).

#### **Data and Descriptive Statistics**

48

The results of the official statistical Survey on Income and Living Conditions (EU SILC) provided by the Slovak Statistical Office is used to estimate the benefits of education in 2005-2009. EU SILC data clearly provide the basis for detailed analysis of the standard human capital model developed by Mincer (see section Methodology). The principal variable in this model is earnings of log form. For EU SILC data, the earnings are measured on annual basis.

The following figure (Figure 1) and table (Table 2) and figure present the descriptive statistics<sup>8</sup> of the annual wages within the analyzed period and box-plot of the wage distribution.

Figure 1: Box-plot of the wage (EUR) distribution in the period 2005-2009



<sup>&</sup>lt;sup>8</sup> For more descriptive statistics, see Appendix A.

Table 2: Mean, median and probability distribution of women wages(EUR) in the period of 2005-2009

|           | Mean                     | Median                   |
|-----------|--------------------------|--------------------------|
| Year 2005 | 4 953.14 (149 218.4 SKK) | 4 461.28 (134 400.5 SKK) |
| Year 2006 | 5 443.96 (164 004.7 SKK) | 4 902.08 (147 680.0 SKK) |
| Year 2007 | 5 605.71 (168 877.5 SKK) | 5 121.52 (154 291.0 SKK) |
| Year 2008 | 6 054.40 (182 395.0 SKK) | 5 642.97 (170 000.0 SKK) |
| Year 2009 | 6 660.22 (200 645.8 SKK) | 6 306.85 (190 000.0 SKK) |

Source: authors

The positive skewness typical for the distribution of income is visible. Moreover, the values of mean and median of wages, although constantly rising over the years and thus corresponding to the economic growth, are not equal. In each case, mean has exceeded median relatively significantly. This evokes the conclusion, that more than 50 % of the sample participants earn less than mean. Therefore, some authors emphasise the importance of the median as more appropriate measure of the average income.

The other main variables in the standard Mincer model include years of schooling and labor market experience. The variable years of schooling accounts for years of schooling adjusted for actual level of education. Based on the information on the highest level of education attained, we impute years of schooling<sup>9</sup>. This allows us to estimate returns to education in terms of the increase in income per additional year of schooling. The variable labor market experience record a worker's actual labor force experience.

#### **Estimation Results**

In this section, Mincerian log-wage regressions were estimated. Earnings equation was applied in the conditions of the Slovak Republic within the period of 2005 - 2009. As mentioned earlier, we modeled the variability of the population wages using both the quantile regression (QR) and the ordinary least squares method (OLS). Concerning the former one,

<sup>&</sup>lt;sup>9</sup> see Appendix A for details

we examined the returns to education and experience at different quantiles of the wage distribution. The analysis has been realized for 5th, 10th, 25th, 50th, 75th, 90th and 95<sup>th</sup> quantiles, thus provides complex view of the wages of female employees in the Slovak Republic.

Table 3 reports parameter estimations from log-wage regression equations. The results imply that wages of female employees in the Slovak Republic increase by about 5 percent with each additional year of schooling. Table 3 compares the results of the classical (OLS) and the median (MR) regression<sup>10</sup>. The differences are not substantial. However, further analysis will be based on the quantile regression, as the linear model requires several conditions which are in case of Mincer equation not fulfilled.<sup>11</sup> Firstly, non-normality of residuals is caused also by the right skewed distribution of an income. Secondly, expected multicollinearity (cor>0.9) between covariables exp and exp2 is present, as one variable is expressed as squared value of another one. Thirdly, in 2005, 2006 and 2008 the assumption of homoscedasticity (constant variance of residuals) of residuals is violated.

|            |     | Intercept   | Education<br>(educ) | Work<br>experience<br>(exp) | Work<br>experience<br>squared<br>(exp2) |
|------------|-----|-------------|---------------------|-----------------------------|-----------------------------------------|
| Voor 2005  | OLS | 10.8400 *** | 0.0523 ***          | 0.0179 ***                  | -0.00020 **                             |
| 1 ear 2005 | MR  | 10.8832 *** | 0.0521 ***          | 0.0193 ***                  | -0.00030 ***                            |
| Voor 2006  | OLS | 10.8300 *** | 0.0551 ***          | 0.0186 ***                  | -0.00023 *                              |
| 1 ear 2000 | MR  | 10.8982 *** | 0.0555 ***          | 0.0176 ***                  | -0.00023 ***                            |
| Veer 2007  | OLS | 10.8800 *** | 0.0613 ***          | 0.0170 ***                  | -0.00024 **                             |
| 1 ear 2007 | MR  | 11.0622 *** | 0.0567 ***          | 0.0128 ***                  | -0.00022 **                             |
| Voor 2008  | OLS | 11.0100 *** | 0.0566 ***          | 0.0209 ***                  | -0.00035 ***                            |
| 1 cai 2000 | MR  | 11.1724 *** | 0.0557 ***          | 0.0110 ***                  | -0.00017 *                              |
| V          | OLS | 7.7841 ***  | 0.0533 ***          | 0.0141 ***                  | -0.00019 **                             |
| 1 car 2009 | MR  | 7.8002 ***  | 0.0548 ***          | 0.0123 ***                  | -0.00013 **                             |

Table 3: Estimated Mincerian returns to education, 2005-2009

Significant at: \*\*\* <0.1%, \*\* 0.1%, \* 1%

Source: authors

50

<sup>&</sup>lt;sup>10</sup> For more detailed results of the quantile regression, see Appendix D.

<sup>&</sup>lt;sup>11</sup> The results of tested OLS model are in Appendix C.

Table 4 provides the graphical analysis of the quantile regression results for the years 2005-2009. We can observe the effects of the length of schooling period and working period on the income value of an individual woman.

The first important conclusion is the positive relationship between each covariable and the independent variable. The longer the period of education (work experience) is, the higher the wage is. In most cases, the education influences the level of the salary more significantly than the work experience does. Moreover, the differences between the effects of these two covariables rise with the increasing earnings.

Considering the education more detailed, no eminent rising tendency of the effect of the covariable is visible, except for the year 2005. The regression coefficients for the lowest quantiles (5th, 10th) reach relatively high levels and afterwards they are slightly decreasing to be returned back to bigger values for the last quantiles.

There are several explanations for this development: Higher effect of the education on the low wages can be due to the young graduated people with the tertiary education having their first job, who are often willing to work for the minimum wage for a certain time merely to gain some experience. Moreover, considerably high unemployment in the Slovak Republic forces the unemployed tertiary educated women to look for the irregular temporary jobs, often for the period of several weeks or months.

No constant increasing of the education effect on the wages can also be connected with the large number of the female students in the study programmes, such as Pedagogics, Philosophy or Administration. These are in the Slovak Republic insufficiently paid.

Observing the second variable, the length of the work experience of a woman, its effect on the wages is gradually decreasing. In certain cases, the length of the work experience has appeared as an insignificant factor with even no influence on the wages (95th quantile in 2007, 2008, 90th and 95th quantile in 2009). One possible explanation of the falling trend is lower wages in the low qualified jobs. In these cases, the work experience plays more important role than the university education. Analogically, the best paid professions are highly qualified (IT sphere, Banking, Finance, ...), thus require tertiary education. Obviously, secondary and tertiary school graduates usually gain less work experience, as they prefer to spend several years studying to working.



## Table 4: Coefficients on education an experience for woman in the period2005-2009



Source: authors

#### Conclusion

In this paper returns of the education for women estimated in Slovakia are provided for the years 2005-2009. These estimates are provided by using both the OLS and the regression methods.

There are three main conclusions. Firstly, the results indicate that education has significant and positive influence on the women's earnings. Women's return to education is close to 5 %. We find that returns to education are higher for lowest quantiles (5th, 10th) and the last quantiles (95th) than for other quantiles. Possible reasons are young graduates looking for their first job or insufficiently paid study programmes, which are popular among women.

Secondly, the results indicate that the returns estimates for women did not change dramatically during the period 2005-2009.

The third conclusion emphasises more significant effect of education on women's earnings than of work experience.

Consequently, the investment into education as the human capital is convenient investment.

#### References

- [1] Bird, E., Schwarze, J., and Wagner, G. 1994. "Wage Effects of the Move towards Free Markets in East Germany", *Industrial and Labor Relations Review*, 47 (3), 390-400.
- [2] Filer, R., Jurajda, Š., and Plánovský, J. 1999. "Education and Wages in the Czech and Slovak Republics during Transition", *Labour Economics* 6 (4), 581-593.
- [3] Flanagan, R.J. 1995. "Wage Structure in the Transition of the Czech Economy". *IMF Working Paper* 95/36.
- [4] Heckman, J. J., Lochner, L. J., and Todd, P. E. 2003. "Fifty Years of Mincer Earnings Regressions". *IZA Discussion Paper* no. 775.
- [5] Halpern, L., Körösi, G. 1997. "Labour Market Characteristics and Profitability (Econometrics Analysis of Hungarian Firms, 1986-1995)". *The William Davidson Institute Working Paper* No. 41.
- [6] Chase, R.S. 1998. "Markets for Communist Human Capital: Returns to Education and Experience in Post-Communist Czech Republic and Slovakia", *Industrial and Labor Relations Review*, 51 (3), 401-423.
- [7] Jones, D.C., and Ilayperuma, K., 1994. "Wage Determination under Plan and Early Transition: Evidence from Bulgaria". Working Paper No. 94/7, *Department of Economics, Hamilton College*.
- [8] Koenker, R. 2006. Quantile regression in R: a vignette. [online]. 20. May 2006. [cit. 2011-04-13]. Accessible from: <a href="http://www.econ.uiuc.edu/~roger/research/rg/vig.pdf">http://www.econ.uiuc.edu/~roger/research/rg/vig.pdf</a>.
- [9] Koenker, R., Bassett, G. W. 1978. "Regression Quantiles", *Econometrica*, 1978, 46 (1), 33-50.
- [10] Koenker, R., and Hallock, K. F. 2001. "Quantile Regression", Journal of Economic Perspectives, 2001, 15(4), 143-156.
- [11] Krueger, A. B., and J. S. Pischke 1995. "A Comparative Analysis of East and West German Labor Markets: Before and After Unification. In Freeman, R.B., and F. Katz, eds., Diferences and Changes in Wage Structures, Chicago: *The University of Chicago Press*.
- [12] Lubyová, M., Sabirianova, K. Z. 2001. "Returns to human capital under economic transformation: The cases of Russia and Slovakia". *Ekonomický* časopis. 49 (4), 630-662.
- [13] Mincer, J. 1958. "Investment in Human Capital and Personal Income Distribution". *Journal of Political Economy*, 66(4):281-302.
- [14] Mincer, J. 1974. "Schooling, Experience, and Earnings", New York: NBER Press
- [15] Orazem, P. F., Vodopivec, M. 1997. "Unemployment in Eastern Europe, Value of Human Capital in Transition to Market: Evidence from Slovenia". In Papers and Proceedings of the Eleventh Annual Congress of the European Economic Association, *European Economic Review*, 41, 893-903.

- [16] Rutkowski, J. 1996. "High Skills Pay off: The Changing Wage Structure During Economic Transition in Poland". *Economics of Transition*, 4 (1), 89-112.
- [17] Rutkowski, J. 1997. "Low Wage Employment in Transitional Economies of Central and Eastern Europe". MOST 7, 105-130.
- [18] Tansel, A. 2008. "Changing Returns to Education for Men and Women in a Developing Country: Turkey", 1994, 2002-2005. Paper presented at the ESPE 2008 conference, June 18-21, 2008, in London, UK and at the ECOMOD 2008 conference, July 2-4, 2008, in Berlin, Germany.
- [19] Vecernik, J. 2001. "Earnings disparities in the CR: Evidence from the nineties and a cross-national comparison." *Czech Journal of Economics and Finance (Finance a uver)* 51 (9), 450-471.
- [20] Yu, K., Lu, Z., Sander, J. 2003. "Quantile Regression: Applications and Current Research Areas", *The Statistician*, 2003, 52(3), 331–350.

#### APSTRAKT

Cilj ovog rada je da analizira promene u zaradama žena, stavljenim u odnos sa njihovim obrazovanjem za period između 2005. i 2009. u Slovačkoj. Mincerova jednačina uključuje kompletnu distribuciju zarada, koristeći kvantilnu regresiju i metod najmanjih kvadrata. Podaci korišćeni za analizu su pojedinačni podaci iz harmonizovane SILC ankete Evropske unije. Rezultati ukazuju na tri zaključka. Prvo, obrazovanje pozitivno utiče na zarade žena. Povećanje zarada na svaku dodatnu godinu školovanja žena je oko 5%. Drugo, povećanje zarada prema obrazovnom nivou žena nije se značajno menjalo u periodu od 2005. do 2009. Treće, uticaj obrazovanja na zarade žena je značajniji u odnosu na radno iskustvo.

KLJUČNE REČI: Mincerova jednačina, zarade, obrazovanje, Slovačka Republika

#### **Appendix A: Summary statistics**

| Variable               | Annual wage<br>(SKK) | Years of education | Years of work<br>experience |
|------------------------|----------------------|--------------------|-----------------------------|
| Number of observations | 2 742                | 2 742              | 2 742                       |
| Mean                   | 149 218.4            | 13.384019          | 19.68162                    |
| Median                 | 134 400.5            | 12.140000          | 12                          |
| Standard deviation     | 116 995.5            | 2.919788           | 10.53392                    |
| Variance               | 136 879.5e+5         | 8.525163           | 110.96354                   |
| Minimum                | 1 875                | 8.5                | 1                           |
| Maximum                | 3 568 502            | 21.64              | 24                          |

Table A1: 2005

Table A2: 2006

| Variable               | Annual wage<br>(SKK) | Years of education | Years of work<br>experience |
|------------------------|----------------------|--------------------|-----------------------------|
| Number of observations | 2 599                | 2 599              | 2 599                       |
| Mean                   | 164 004.7            | 13.454205          | 20.10812                    |
| Median                 | 147 680              | 12.140000          | 21                          |
| Standard deviation     | 476 495.8            | 2.875321           | 10.69927                    |
| Variance               | 227 048.2e+6         | 8.267470           | 114.47445                   |
| Minimum                | 1 000                | 8.500000           | 1                           |
| Maximum                | 24 000 010           | 21.640000          | 47                          |

Table A3: 2007

| Variable           | Annual wage<br>(SKK) | Years of education | Years of work<br>experience |
|--------------------|----------------------|--------------------|-----------------------------|
| Number of          | 2 700                | 2 700              | 2 700                       |
| observations       | 2 700                | 2 700              | 2 700                       |
| Mean               | 168 877.5            | 13.464393          | 20.57481                    |
| Median             | 154 291.0            | 12.14              | 22                          |
| Standard deviation | 82 743.7             | 2.904774           | 10.79359                    |
| Variance           | 684 651.9e+04        | 8.437709           | 116.50163                   |
| Minimum            | 300                  | 4                  | 1                           |
| Maximum            | 1 369 005            | 21.64              | 49                          |

56

| Variable               | Annual wage<br>(SKK) | Years of education | Years of work<br>experience |
|------------------------|----------------------|--------------------|-----------------------------|
| Number of observations | 3 042                | 3 042              | 3 042                       |
| Mean                   | 182 395.0            | 13.479014          | 19.68540                    |
| Median                 | 170 000              | 12.14              | 21                          |
| Standard deviation     | 83 061.55            | 2.844124           | 10.93297                    |
| Variance               | 689 922.0e+04        | 8.089044           | 119.52974                   |
| Minimum                | 2 000                | 8.5                | 1                           |
| Maximum                | 1 012 000            | 21.64              | 49                          |

Table A4: 2008

Table A5: 2009

| Annual wage<br>(EUR) | Years of education                                                                                             | Years of work<br>experience                                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 965                | 2 965                                                                                                          | 2 965                                                                                                                                              |
| 2 705                | 2 905                                                                                                          | 2 705                                                                                                                                              |
| 6 660.221            | 13.705470                                                                                                      | 20.33929                                                                                                                                           |
| 6 306.845            | 12.14                                                                                                          | 22                                                                                                                                                 |
| 3 512.574            | 2.922420                                                                                                       | 10.96219                                                                                                                                           |
| 123 381.8e+02        | 8.540538                                                                                                       | 120.16959                                                                                                                                          |
| 6.638784             | 8.5                                                                                                            | 1                                                                                                                                                  |
| 79 200.03            | 21.64                                                                                                          | 47                                                                                                                                                 |
|                      | Annual wage<br>(EUR)<br>2 965<br>6 660.221<br>6 306.845<br>3 512.574<br>123 381.8e+02<br>6.638784<br>79 200.03 | Annual wage<br>(EUR)Years of<br>education2 9652 9656 660.22113.7054706 306.84512.143 512.5742.922420123 381.8e+028.5405386.6387848.579 200.0321.64 |

#### **Appendix B: Imputation of Years of Schooling**

| <b>ISCED 1997</b> |         | Voors of schooling |
|-------------------|---------|--------------------|
| Code              | Name    | rears of schooling |
| 0                 | ISCED 0 | 0                  |
| 1                 | ISCED 1 | 4                  |
| 2                 | ISCED 2 | 8.5                |
| 3                 | ISCED 3 | 12.5               |
| 4                 | ISCED 4 | 14                 |
| 5                 | ISCED 5 | 18                 |
| 6                 | ISCED 6 | 21                 |
|                   |         |                    |

Table B: Classification ISCED 97 and Years of Schooling

#### **Appendix C: OLS Tests**

Table C1: Results of the Jarque-Bera Normality Test for the OLS Method

|         | Year 2005 | Year 2006 | Year 2007 | Year 2008 | Year 2009 |
|---------|-----------|-----------|-----------|-----------|-----------|
| p value | < 2.2e-16 |

Table C2: Results of Durbin-Watson Autocorrelation Test

|               | Year 2005 | Year 2006 | Year 2007 | Year 2008 | Year 2009 |
|---------------|-----------|-----------|-----------|-----------|-----------|
| DW statistics | 1.9808    | 1.9423    | 1.9517    | 1.9665    | 1.8853    |

Table C3: Results of Breusch-Pagan Heteroscedasticity Test

|         | Year 2005 | Year 2006 | Year 2007 | Year 2008 | Year 2009 |
|---------|-----------|-----------|-----------|-----------|-----------|
| p value | 0.0001846 | 0.000591  | 0.08392   | 0.006211  | 0.2296    |

Table C4: Correlation between independent variables - Multicollinearity Test

| Cor. coeff. | Year 2005  | Year 2006  | Year 2007  | Year 2008  | Year 2009  |
|-------------|------------|------------|------------|------------|------------|
| educ/exp    | -0.1397742 | -0.1825382 | -0.1549748 | -0.1861927 | -0.1798790 |
| educ/exp2   | -0.1429126 | -0.1780933 | -0.1501855 | -0.1887246 | -0.1729618 |
| exp/exp2    | 0.9663851  | 0.9648797  | 0.9651804  | 0.9638727  | 0.9656287  |

#### Appendix D: Regression coefficients and p values for OLS and QR

| Quantiles           | 5th     | 10th     | 25th     | 50th     | 75th     | 90th     | 95th     |
|---------------------|---------|----------|----------|----------|----------|----------|----------|
| Intercept           | 9.95094 | 10.25555 | 10.54630 | 10.88321 | 11.11603 | 11.22325 | 11.32620 |
| p value             | 0.00000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
| Years of            |         |          |          |          |          |          |          |
| education           | 0.04395 | 0.04838  | 0.05804  | 0.05217  | 0.05550  | 0.06839  | 0.07182  |
| (educ)              |         |          |          |          |          |          |          |
| p value             | 0.00000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
| Years of            |         |          |          |          |          |          |          |
| work                | 0 04429 | 0.03557  | 0.02364  | 0.01933  | 0 00839  | 0.00597  | 0.00680  |
| experience          | 0.04427 | 0.05557  | 0.02504  | 0.01755  | 0.00057  | 0.00577  | 0.00000  |
| (exp)               |         |          |          |          |          |          |          |
| p value             | 0.00067 | 0.00017  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00018  |
| Years of            |         |          |          |          |          |          |          |
| work                | _       |          |          |          |          |          |          |
| experience          | 0 00064 | -0.00059 | -0.00043 | -0.00030 | -        | -        | -        |
| squared             | 0.00004 |          |          |          |          |          |          |
| (exp <sup>2</sup> ) |         |          |          |          |          |          |          |
| p value             | 0.00067 | 0.00343  | 0,00000  | 0.00006  | -        | -        | -        |

Table D1: OLS and Quantile Regressions (Women 2005)

Table D2: OLS and Quantile Regressions (Women 2006)

-

| Quantiles  | 5th     | 10th     | 25th     | 50th     | 75th     | 90th     | 95th     |
|------------|---------|----------|----------|----------|----------|----------|----------|
| Intercept  | 9.38776 | 10.01424 | 10.67198 | 10.89823 | 11.21520 | 11.32808 | 11.44963 |
| p value    | 0.00000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
| Years of   |         |          |          |          |          |          |          |
| education  | 0.06370 | 0.05039  | 0.05695  | 0.05554  | 0.05450  | 0.06217  | 0.06523  |
| (educ)     |         |          |          |          |          |          |          |
| p value    | 0.00000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
| Years of   |         |          |          |          |          |          |          |
| work       | 0.05074 | 0.04044  | 0.01546  | 0.017(0  | 0.00724  | 0.01110  | 0.00526  |
| experience | 0.05974 | 0.04944  | 0.01546  | 0.01760  | 0.00724  | 0.01110  | 0.00536  |
| (exp)      |         |          |          |          |          |          |          |
| p value    | 0.00035 | 0.00002  | 0.00049  | 0.00000  | 0.00000  | 0.00047  | 0.00882  |
| Years of   |         |          |          |          |          |          |          |
| work       |         |          |          |          |          |          |          |
| experience | -       | -0.00077 | -0.00024 | -0.00023 | -        | -0.00016 | -        |
| squared    | 0.00080 |          |          |          |          |          |          |
| $(exp^2)$  |         |          |          |          |          |          |          |
| p value    | 0.03050 | 0.00142  | 0.02138  | 0.00023  | -        | 0.01421  | -        |

| Quantiles  | 5th     | 10th     | 25th     | 50th     | 75th     | 90th     | 95th     |
|------------|---------|----------|----------|----------|----------|----------|----------|
| Intercept  | 9.38892 | 10.13396 | 10.65692 | 11.06222 | 11.26624 | 11.42448 | 11.70814 |
| p value    | 0.00000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
| Years of   |         |          |          |          |          |          |          |
| education  | 0.07982 | 0.06561  | 0.06428  | 0.05675  | 0.05852  | 0.06674  | 0.06263  |
| (educ)     |         |          |          |          |          |          |          |
| p value    | 0.00000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
| Years of   |         |          |          |          |          |          |          |
| work       | 0.05710 | 0.03766  | 0.01506  | 0.01287  | 0.00627  | 0.00313  |          |
| experience | 0.03719 | 0.03700  | 0.01500  | 0.01287  | 0.00027  | 0.00515  | -        |
| (exp)      |         |          |          |          |          |          |          |
| p value    | 0.00000 | 0.00001  | 0.00003  | 0.00004  | 0.00000  | 0.00248  | -        |
| Years of   |         |          |          |          |          |          |          |
| work       |         |          |          |          |          |          |          |
| experience | 0.00081 | -0.00061 | -0.00020 | -0.00022 | -        | -        | -        |
| squared    | 0.00081 |          |          |          |          |          |          |
| $(exp^2)$  |         |          |          |          |          |          |          |
| p value    | 0.00072 | 0.00013  | 0.02402  | 0.00222  | -        | -        | -        |

Table D3: OLS and Quantile Regressions (Women 2007)

Table D4: OLS and Quantile Regressions (Women 2008)

| Quantiles  | 5th     | 10th     | 25th     | 50th     | 75th     | 90th     | 95th     |
|------------|---------|----------|----------|----------|----------|----------|----------|
| Intercept  | 9.68350 | 10.13497 | 10.70025 | 11.17242 | 11.42279 | 11.61445 | 11.76372 |
| p value    | 0.00000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
| Years of   |         |          |          |          |          |          |          |
| education  | 0.06589 | 0.06802  | 0.06290  | 0.05577  | 0.05097  | 0.05761  | 0.06297  |
| (educ)     |         |          |          |          |          |          |          |
| p value    | 0.00000 | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  | 0.00000  |
| Years of   |         |          |          |          |          |          |          |
| work       | 0.05820 | 0.04213  | 0.02570  | 0.01101  | 0.01304  | 0.00356  |          |
| experience | 0.03829 | 0.04213  | 0.02379  | 0.01101  | 0.01304  | 0.00330  | -        |
| (exp)      |         |          |          |          |          |          |          |
| p value    | 0.00011 | 0.00000  | 0.00000  | 0.00000  | 0.00002  | 0.00203  | -        |
| Years of   |         |          |          |          |          |          |          |
| work       |         |          |          |          |          |          |          |
| experience | 0.00084 | -0.00073 | -0.00044 | -0.00017 | -0.00020 | -        | -        |
| squared    | 0.00084 |          |          |          |          |          |          |
| $(exp^2)$  |         |          |          |          |          |          |          |
| p value    | 0.00562 | 0.00019  | 0,00000  | 0.01370  | 0.00422  | -        | -        |

| Quantiles  | 5th     | 10th    | 25th    | 50th    | 75th    | 90th    | 95th    |
|------------|---------|---------|---------|---------|---------|---------|---------|
| Intercept  | 6.80588 | 7.22748 | 7.53422 | 7.80024 | 8.21925 | 8.53262 | 8.55386 |
| p value    | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
| Years of   |         |         |         |         |         |         |         |
| education  | 0.05272 | 0.04988 | 0.05351 | 0.05483 | 0.04691 | 0.04680 | 0.05373 |
| (educ)     |         |         |         |         |         |         |         |
| p value    | 0.00007 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 |
| Years of   |         |         |         |         |         |         |         |
| work       | 0.04612 | 0 02766 | 0.02415 | 0.01222 | 0.00358 |         |         |
| experience | 0.04012 | 0.02700 | 0.02415 | 0.01233 | 0.00558 | -       | -       |
| (exp)      |         |         |         |         |         |         |         |
| p value    | 0.00024 | 0.00020 | 0.00000 | 0.00000 | 0.00000 | -       | -       |
| Years of   |         |         |         |         |         |         |         |
| work       |         |         |         |         |         |         |         |
| experience | 0 00080 | 0.00043 | 0.00044 | 0.00013 | -       | -       | -       |
| squared    | 0.00080 | 0.00045 | 0.00044 | 0.00015 |         |         |         |
| $(exp^2)$  |         |         |         |         |         |         |         |
| p value    | 0.00270 | 0.01712 | 0.00000 | 0.00600 | -       | -       | -       |

Table D5: OLS and Quantile Regressions (Women 2009)

Article history: Received: 15 May 2011

Accepted: 5 September 2011