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ABSTRACT 

 Much quantitative macro-comparative research (QMCR) relies on a common set 

of published data sources to answer similar research questions using a limited 

number of statistical tools. Since all researchers have access to much the same 

data, one might expect quick convergence of opinion on most topics.  In reality, 

of course, differences of opinion abound and persist. Many of these differences 

can be traced, implicitly or explicitly, to the different ways researchers choose to 

model error in their analyses. Much careful attention has been paid in the 

political science literature to the error structures characteristic of time series 

cross-sectional (TSCE) data, but much less attention has been paid to the 

modeling of error in broadly cross-national research involving large panels of 

countries observed at limited numbers of time points. Here, and especially in the 

sociology literature, multilevel modeling has become a hegemonic – but often 

poorly understood – research tool. I argue that widely-used types of multilevel 

models, commonly known as fixed effects models (FEMs) and random effects 

models (REMs), can produce wildly spurious results when applied to trended 

data due to mis-specification of error. I suggest that in most commonly-

encountered scenarios, difference models are more appropriate for use in QMC. 

INTRODUCTION 

Quantitative macro-comparative research (QMCR) involves the statistical analysis of quantitative 

data about countries. Undertaking QMCR is at the same time both much simpler and much more 

difficult than engaging in other kinds of social research. It is simple because it often involves the 

application of off-the-shelf statistical techniques to widely-available published data; a typical 

study can be completed in a few months from start to finish by a lone researcher working in 

isolation on a desktop computer. It is difficult for the same reasons: low barriers to entry mean 

that almost every combination of variables that can be studied has been studied. Moreover, we 

generally only get one additional year of new data points every year, and worse, each new year's 

data points look much like those from the year before. Progress in most branches of social 

research relies on the constant generation of new data – both new cases and new variables – to 

drive forward both research and theory, but QMCR practitioners are doomed to pick over the 

same well-studied datasets again and again. New ideas arise all the time, but all too often there 
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are no new data on which to test them. Instead of filling old bottles with new wine, we fill new 

bottles with the same old wine year after year. 

A large and recurring area of controversy in QMCR is the appropriate modeling of error.  

Error in a statistical model is the sum total of all other factors not explicitly accounted for in the 

model. It is reflected in the degree to which the observed values of dependent variables differ 

from their predicted values. Every statistical model includes implicit or explicit assumptions 

about the sources, distributions, and structures – in short, the behavior – of error. Mis-

specification of the error in a statistical model can lead to reported coefficients that are lower or 

higher than the true effects they are intended measure (biases). It can also lead to reported 

standard errors for coefficients that are lower or higher than they should be (resulting in 

overconfidence or underconfidence in results). I suspect that most researchers spend much more 

time thinking about what variables to include in their models than about how to specify the error 

structures of their models. This is a mistake. Error assumptions can have enormous impacts on 

statistical results and their interpretation. Moreover, even the choice of variables for inclusion in a 

model can be thought of as a form of error modeling. We must pay greater attention to the role 

played by (statistical) error in QMCR. 

Toward that end, this paper is meant to serve as a guide to (and critique of) the treatment 

of error in QMCR. Though the mathematics underlying the statistical models used in QMCR are 

well-understood (by the statistical software writers, if not by the statistical software users), the 

implications of applying these models in typical QMCR settings are not. Unfortunately, most 

methodological guidebooks rely heavily on mathematical, rather than verbal, explication, which 

leaves a major gap in most researchers' understandings of the implications of error modeling. 

After all, it is usually not the mathematics but the appropriate verbal expression of the 

mathematics that is at the heart of both substantive and methodological debates in QMCR. 

Accordingly, this paper focuses on methods, not mathematics. 

Throughout the paper, concepts are illustrated using data on the relationship between 

national income per capita and infant mortality rates as an applied example. The national income 

and infant mortality data used are taken from the World Bank's World Development Indicators 

2007 database. National income is operationalized as gross domestic product per capita evaluated 

at market foreign exchange rates. Both series have been logged to correct for positive skew. The 

correlation between national income and infant mortality for 167 countries for 2005 is r = -.89. 

As would be expected, there is a very close connection between the two variables: higher levels 

of national income per capita are associated with lower levels of infant mortality. It should be 

noted that even in the 2005 panel, 41 countries, or almost a fifth of the world's total, are missing 

data. For earlier years, levels of missing data are of course higher. 

The remainder of this paper is divided into seven sections. I begin by discussing the role 

played by error in statistical models and the consequent relevance of significance testing in 

QMCR. I then review typical dependence structures in that error and ways that control variables 

can be used to model those structures. This discussion of control variables leads into a wider 

discussion of causality in QMCR. Appropriate error modeling is central to the credibility of 

causal claims. Model results are rarely if ever problematic in their own right; controversies only 

arise when coefficients are interpreted causally. An important class of models that I believe have 

regularly given rise to inappropriate causal claims is that of multilevel models (MLMs), which 

include what are often called fixed effects models (FEMs) and random effects models (REMs). I 

devote a full section to these models, then a second section to comparing and contrasting them to 
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a competing class of models, difference models. I conclude with recommendations for sound 

methodology in QMCR, particularly concerning the treatment of time. 

THE RELEVANCE OF SIGNIFICANCE TESTING 

At the core of the modern practice of QMCR is the determination of the statistical significance of 

independent variables when used in modeling dependent variables of interest. Many of the hottest 

debates in QMCR hinge not on the magnitudes of the effects of independent variables, but on the 

question of whether or not such effects could have arisen by chance. Typically, QMCR operates 

within a Neyman-Pearson framework of testing null hypotheses that independent variables are 

unrelated to dependent variables; when these null hypotheses are rejected, the relationships 

between independent and dependent variables are inferred to be statistically significant. 

Many scholars argue that it is inappropriate to make statistical inferences in QMCR 

settings, though few make such arguments in print (Berk 2004:51-56 is a notable exception). 

Occasionally, even macro-comparative researchers repeat this claim (e.g., Ebbinghaus 2005). 

Their argument, in a nutshell, is that since the data used in QMCR usually constitute entire 

populations of cases, rather than random samples from larger populations, there is nothing to 

make inferences about. They argue that the parameters estimated in QMCR are not sample 

estimates of population parameters but are themselves population parameters, and thus not 

subject to error. A regression line, in this view, represents nothing more than the mean of the 

dependent variable when conditioned on the independent variable. They argue that it is 

inappropriate to say that the slope of this line is "significantly" different from zero: the slope is 

what it is, but with no further implications. To claim otherwise, they argue, is to posit that there 

exists some "imaginary superpopulation" (Berk 2004:51) of countries that exhibits a true, 

population regression line, and that the observed population of countries is merely one of many 

possible samples of this superpopulation. The argument that statistical significance testing is 

inappropriate when the underlying data constitute a population is completely without merit. 

Key to the argument that statistical inference is inappropriate when analyzing populations 

is the (mis-) conceptualization of regression coefficients as sample estimates of population 

parameters. They are not. Regression coefficients are random variables, but not sample estimates. 

Confusion arises because sample estimates of population parameters are random variables, but 

there are many other kinds of random variables. According to the Cambridge Dictionary of 

Statistics, a random variable is a "variable, the values of which occur according to some specified 

probability distribution" (Everitt 2002:313). So, for example, the sample mean of a variable 

randomly drawn from a larger population of cases for which that variable has been measured is 

known to follow a Normal distribution with mean equal to the population mean and variance 

equal to the population variance divided by the size of the sample. The sample mean of a variable 

won't always equal the population mean, but it will vary around it normally, regardless of the 

underlying distribution of the variable. It is a random variable – it is "a variable, the values of 

which occur according to some specified probability distribution" – in this case, a Normal 

distribution of known parameters. 

The dependent and independent variables in regression analyses are emphatically NOT 

random variables. In everyday language they may be labeled as such, and even some standard 

reference sources do not distinguish between the mathematical definition of a random variable 
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and its common usage (e.g. Vogt 1999:235). Clearly, however, none of the variables used in 

QMCR (or, indeed, any social science research) follow known, pre-specified probability 

distributions. This is true whether the data on which a regression is estimated constitute a 

population or a sample from a larger population. In regression analyses, the key random variables 

are the regression error term and the regression coefficients. Other regression estimates, like R-

squared, are also random variables. Regression error is a random variable by construction: 

remember that regression error is assumed to be a Normal random variable with mean zero. 

The dependent variable in a regression analysis is modeled as a linear function of the 

independent variables plus this random variable. Since the values of the independent variables are 

fixed (not random), the Normal distribution of the regression error propagates through the model 

to the coefficients, which, due to the finite number of cases, are distributed t rather than Normal.  

(When the independent variables are not fixed, but are instead measured with error, attenuation 

adjustments have to be made to the estimated regression coefficients.) A simple t test can then be 

used to test each estimated regression coefficient against the null hypothesis that the mean of its 

sampling distribution is actually zero. If the null hypothesis is rejected, a coefficient is said to be 

"significant." What this means is that a model with coefficients equal to zero would have been 

unlikely to have produced the observed data, given the assumption that the regression errors are 

independent normally distributed random variables with zero mean and constant variance. Testing 

the significance of a coefficient does not in any way imply the existence of a larger population of 

cases to which the coefficient applies. 

Other than its coincidental presence in the statistical term "sampling distributions" of the 

regression coefficients, nowhere in this process is sampling involved. Quite the contrary: an 

implicit assumption of regression modeling is that the data being analyzed constitute a 

population, not a sample from some larger population. In some cases (for example, when 

variables have been chosen for inclusion in the model based on a stepwise selection algorithm) 

regression coefficients estimated using sample data may not even be unbiased estimates of the 

corresponding population coefficients. In all cases, the sample r-squared statistic is a biased 

estimate of the population R-squared, due to the phenomenon of "fitting to the sample." This is 

why so-called "adjusted R-squared" statistics (Lucke and Whitely 1984) are used to estimate the 

percent of variance in the population dependent variable that would be achieved by applying 

sample-based estimates of the regression coefficients to the population independent variables. 

Note that such "adjusted R-squared" statistics are generally not applicable in most QMCR 

analyses, since QMCR data structures almost always constitute complete populations, not 

samples drawn from some larger population. Though often used inappropriately, "adjusted R-

squared" is completely irrelevant in typical QMCR settings. Overfitting can be a problem in 

QMCR, but it should be evaluated using the F statistic, not by making an inappropriate 

adjustment to the reported R-squared. 

If there's no sampling involved and regression errors are not in any sense sample 

estimates of population means, why should regression errors be expected to be normally 

distributed? As Berk acknowledges (2004:54) the Central Limit Theorem of probability theory 

predicts that that they should. As discussed above, the Central Limit Theorem ensures that any 

random variable that is the sum of a large number of other random variables will follow a Normal 

distribution. The number of summed variables need not even be very large if they are reasonably 

well-behaved. Empirically, when regression variables are properly specified (with appropriate 

transformations) the regression errors are almost always credible realizations of a Normal 



MODELING ERROR  90 

distribution. For example, the distribution of realized regression errors from the regression of 

infant mortality on national income is summarized in Figure 1. This realized distribution is very 

nearly Normal. In fact, a Kolmogorov-Smirnov test emphatically fails to reject the Normal 

distribution as the origin of these realizations (p = .940). It is clear that the assumption that 

regression errors are drawn from a Normal random variable is not only theoretically well-

grounded, but empirically reasonable as well. 

 

 
Figure 1: Distribution of Realized Regression Error in a Model for Infant Mortality 

 
 

ERROR DEPENDENCE STRUCTURES 

 

It is important to understand the role played by error in statistical modeling because different 

model designs either implicitly or explicitly contain assumptions about the behavior of error. In 

the simplest statistical models, the error associated with each case is assumed to be independent 

of the errors associated with every other case.  Such independent errors exhibit no patterns across 

cases. There are many ways in which the peculiarities of QMCR data structures, however, lead to 

highly patterned forms of error. For starters, countries are not independent cases: the United 
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States and Canada, for example, are strongly linked in almost every way. Even worse, when the 

same countries are included multiple times in the same dataset, their multiple realizations (US 

2000 versus US 2005) can hardly be considered to be independent of each other. For these and 

other reasons, regression models in QMCR often exhibit dependence in their regression error 

structures. 

There are two broad classes of regression error dependence: mean dependence and 

variance dependence. Mean dependence occurs when the expected value of the regression error is 

not zero for a class of cases; for example, East Asian countries have systematically lower than 

expected levels of infant mortality, conditional on their income levels. Variance dependence 

occurs when the variability of the regression error is not constant across all classes of cases; for 

example, a dependent variable like infant mortality may be much more poorly measured in sub-

Saharan Africa than in the rest of the world, resulting in a systematically higher error variance in 

sub-Saharan African countries than in others. In general, mean dependence is easier to identify 

and address than variance dependence, and is the more serious problem, since it directly affects 

the estimation of regression coefficients (both their levels and their standard errors). Variance 

dependence, on the other hand, typically affects only the standard errors of coefficients, not their 

levels. 

The simplest form of mean dependence results from the questionable treatment of 

countries as representing statistically independent cases, as discussed above. Entire blocs of 

countries may behave in statistically similar ways, despite their nominal independence as distinct 

countries. For example, all oil-dependent economies might be expected to depart from their 

modeled rates of economic growth in the same ways at the same times: higher than modeled 

when oil prices are high and lower than modeled when oil prices are low. As a result, controls for 

OPEC membership or oil dependence are common in growth regressions. Oil dependence, 

however, is simply an extreme example of a much more general phenomenon. There are probably 

as many ways for countries to covary as there are countries, and probably more, since the number 

of possible combinations of country covariation is far larger than the number of countries. 

Ironically, the plethora of possible country dependence "clubs" is perhaps a blessing in 

disguise. Countries are members of so many potential dependence clubs that their overall 

influence might, in most cases, aggregate to a normally distributed contribution to general 

background error. Consider: the Europa World database lists 95 United Nations and "major" non-

UN intergovernmental organizations that countries may belong to. Add to these continental clubs 

and clubs based on economic characteristics (natural resource dependence, susceptibility to 

agricultural shocks, participation in global commodity chains, etc.) and the typical country may 

be found to belong to dozens of potential dependence clubs. It may be necessary to adjust only for 

the club memberships that are most directly relevant to any given analysis. Luckily, this is easy to 

do: including a dummy variable for club membership will in most cases eliminate any associated 

error dependence. Even this simple adjustment is not always necessary. So long as countries 

representing many dependence clubs are included in the data on which a model is estimated, error 

dependence structures affecting just a few will have no measurable impact on the broader results. 

This is true even when such club dummies turn out to have statistically significant coefficients. 

For example, an OLS regression of infant mortality in 2005 on national income in 2005 

(N=167) yields a metric coefficient of b = -.646 for national income, with a standard error of SEb 

= .026. Controlling for East Asian location as a dependence club results in no change at all in the 

coefficient (to three decimal places) and only a trivial reduction in its standard error (to .023). 
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This is despite the fact that the effect of East Asian status is highly significant (t = -4.798).  East 

Asian countries have systematically lower than modeled infant mortality rates, but this does not 

substantively affect the overall evaluation of the effect of national income on life expectancy. The 

reason for this is illustrated in Figure 2. Although there is a clear East Asian error dependence (16 

of 20 East Asian countries' infant mortality rates fall below their modeled values), its impact is 

spread evenly across the range of the regression. Consequently, it affects the intercept of the 

regression line, but not its slope. Sub-Saharan African countries, on the other hand. form an 

equally obvious dependence club, but one with a structure that does not fit so neatly into the 

overall pattern of the worldwide relationship between national income and infant mortality. 

Controlling for sub-Saharan African location does substantially affect the coefficient for national 

income, reducing the estimated magnitude of the slope to b = -.558 (SEb = .029). 

 

 
Figure 2: Illustration of East Asian and African Dependence Clubs, 2005 
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A similar type of mean dependence occurs when the same country appears multiple times 

as a case in the same regression analysis. This is, in a way, similar to the dependence club 

situation, only instead of several countries being expected to exhibit similar errors one country is 

expected to exhibit similar errors each time it is used as a case. This situation occurs when some 

attribute of a country, rather than the country itself, is the unit of analysis. For example, countries 

may be listed multiple times in the same data structure when each case represents an ethnic group 

within a country.  In a study of how the average educational levels of ethnic groups affect their 
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average income levels, it is important to remove overall country biases in income levels: all 

ethnic groups in rich country would be expected to have higher incomes than all ethnic groups in 

poor countries, regardless of their relative educational levels. This can be accomplished by 

including country dummy variables in the regression model. This is mathematically equivalent to 

a fixed effects model design (discussed below), though the data structure is distinct (since the 

multiple entries per country represent distinct cases, not repeated measures of the same case). 

Country dummies are emphatically not appropriate for eliminating country-related mean 

dependence in regression error in repeated measures designs. In fact, mean dependence does not 

even bias regression coefficients in repeated measures designs when the panels are balanced – 

biases are only introduced when some countries are represented more times than others, which is 

really a case of sample selection bias due to missing data in unbalanced panels. This can be 

illustrated by extending the infant mortality – national income example. Coefficients from 

regressing infant mortality on national income for each of the ten five-year intervals 1960-2005 

yields coefficients ranging from b = -.451 (1960) to b = -653 (2005). These coefficients and their 

standard errors, estimated on the constant panel of N=77 countries for which data are available 

for both variables for all years, are plotted in Figure 3. 

Figure 3: Coefficients from Cross-Sectional Regressions of Infant Mortality on GDP per capita, 

1960-2005 (constant panel N=77) 
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A pooled regression of infant mortality on national income, including data from all years 

in a balanced panel of N=770, yields a coefficient for national income of b = .587, well within the 

range of the ten cross-sectional coefficients. In fact, it is very near their simple arithmetic mean of 

-.554. Adding country dummies to the model, however, dramatically changes the estimated 

coefficient for national income; it nearly doubles to b = -1.034. Obviously, an adjustment meant 

to reduce country dependence in regression error should not have such a dramatic effect on a 

coefficient. Country-related mean dependence should not pull the slope of the national income – 

infant mortality relationship in the pooled data so far outside the range of slopes observed in the 

constituent cross-sections. What happens when country dummies are included in the pooled 

model is not a correction for potential country-related mean dependence but a complete change in 

the character (and meaning) of the model. The actual mechanics behind this are explored below in 

the discussion of multilevel models. 

Returning to the regression of infant mortality on national income (without country 

dummies), the main difference between the pooled analysis and the ten cross-sectional analyses is 

not the magnitude of the coefficient but the size of its standard error. Standard errors for the 

national income coefficient in the ten cross-sectional models range narrowly from SEb = .023 to 

SEb = .029. The standard error for the national income coefficient in the pooled cross-sectional 

model, by contrast, is only SEb = .011. This is because the sample size has been increased by a 

factor of ten without a corresponding increase in the total variability of the data (since the 

variability of the data is constrained by the fact that they are drawn from the same 77 cases, even 

measured if at different points in time). Were data for infant mortality available annually, instead 

of every five years, the number of cases could be further multiplied by a factor of five, again 

without any corresponding increase in the scope of coverage. Of course, there is no philosophical 

reason for stopping at annual increments. The reductio ad absurdum would be to include every 

country as a case every fraction of a second, to yield millions of "cases" for analysis each 

identical or nearly identical to the one before. This would drive standard errors for regression 

coefficients down toward zero as the number of "cases" rises toward infinity. 

Repeated measures designs incorporate a serious country-related mean dependence in 

their regression error structures, but it is not as simple as a broad, country-wise mean bias. 

Repeated measures from the same country are not just correlated with each other; their 

dependence is highly structured. Each realization of country data is directly conditioned on the 

one immediately preceding it, but not directly conditioned on further prior realizations. The 

dependence structure is not universally mutual, but instead is structured into a directed chain 

running from earliest to latest realization. This kind of dependence structure is called 

"Markovian" dependence. Assuming the dependence between adjacent realizations is linear and 

of the same magnitude for all time points, it is not only Markovian but specifically autoregressive 

with order 1. Such AR(1) error structures are very common in QMCR but cannot be estimated 

using OLS regression. They can, however, be estimated using iterative MLE; procedures for 

doing so have existed for over fifty years. Since MLE techniques are approximations (as opposed 

to OLS estimates, which are exact), different statistical software can give slightly different 

solutions to regression models estimated using MLE. 

Using SPSS PROC MIXED to estimate the MLE solution for the national income 

coefficient in a model for infant mortality with AR(1) errors within countries is b = -.609, with 

SEb = .026 (balanced panel of N=770 cases). These figures are in line with the cross-sectional 

results of b = -.451 to b = -653 and SEb = .023 to SEb = .029. It turns out that including ten panels 
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of very similar data for multiple years improves very little on simply analyzing a single cross-

section, once appropriate specification has been made to the error term. 

Other forms of sequentially organized dependence structures are possible, but are much 

less commonly encountered in QMCR. When annual data are used, however, more complex error 

modeling is required. The ordinary business cycle of 3-8 years introduces error dependence 

structures into many QMCR variables (national income, investment, international trade, etc.) that 

are not Markovian at the annual level. Periodic sinusoidal regression error structures correspond 

to order 2 autoregressive processes; asymmetrical cycles like the business cycle are best modeled 

using autoregressive - moving average (ARMA) models. Quarterly and monthly data that 

incorporate seasonality take "integrated" ARIMA models. Such complex econometric models are 

rarely encountered in QMCR, but models based on data structures that include annual 

observations must take them into account.  Since fine-grained annual variability is rarely the 

focus of QMCR, a reasonable fudge is simply to work with more widely-spaced data. As Chase-

Dunn (1989) points out, the substantively relevant "width of a time point" (321) in QMCR may 

not necessarily be one year. 

Compounding these difficulties of mean dependence in QMCR regression error structures 

is the much more subtle problem of variance dependence. In a repeated measures panel consisting 

of multiple countries measured at multiple time points, it is possible that different countries will 

exhibit systematically greater or lesser regression error variance than others. In such cases, panel-

weighted least squares (PWLS) estimation can be used to adjust for variance dependence. Beck 

and Katz (1996), however, show that PWLS is only effective when the number of repeated 

observations for each country is large (20 or more time points).  Such time-series cross-sectional 

(TSCS) data structures based on annual observations of countries are not, however, typical of 

QMCR of the kind being examined here. Beck and Katz (1996) go on to show that OLS estimates 

with panel-corrected standard error (PCSE) adjustments, developed and discussed at length in 

Beck and Katz (1995), produces much better estimates than PWLS when the number of time 

points is "small," or, in their examples, as few as five. 

Of course, in much QMCR having as many as five repeated measures per country is a 

rare luxury. Nonetheless, the PCSE approach is a major methodological advance, and should be 

applied whenever repeated measures of the same cases are included in QMCR. As Beck and Katz 

(1996) show, PCSE adjustments systematically reduce the underestimation of the standard errors 

of regression coefficients due to country-related variance dependence. They also have the 

gratuitous effect of reducing or eliminating biases due to mean dependence structures in which 

countries' regression errors are correlated to each other in a fixed pattern that is the same for all 

time points (Beck and Katz 1995). This may sound esoteric, but it is in fact a very common 

condition. As discussed above, spatial correlation (including neighbor correlation) among 

countries is almost certainly a feature of all QMCR data structures. In cross-sectional analyses, 

such correlation structures cannot be detected or adjusted for, but in panels with multiple repeated 

measures, the PCSE approach provides an effective correction. 

The PCSE approach, though developed for use with OLS regression models, can also be 

applied to GLM designs. An effective strategy is to estimate a GLM regression with an AR(1) 

error structure, then correct the results for spatial correlation and variance dependence in the 

remaining regression error using a PCSE adjustment. This two-step approach corrects for most of 

the common complications that apply when using repeated measures of countries as cases in 

QMCR. An alternative strategy is to use OLS regression including lagged dependent variables 
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(Beck et al. 1993), but this strategy introduces downward biases when the autocorrelation of the 

dependent variable is high (Keele and Kelly 2005). Another alternative is to use OLS regression 

based on change scores (Beck and Katz 1995) to eliminate the autoregressive error structure 

within countries, but this strategy can also lead to large downward biases in the estimation of 

coefficients (Wawro 2002). See Wilson and Butler (2007) for a comparison of competing 

methods for dealing with TSCS data. 

 

 

COMPLEMENTARY, COMPETING, AND ORTHOGONAL CONTROLS 

 

In substantive terms, it is reasonable to think of the regression error as the effect on the dependent 

variable of "all other factors" not included in the model. The vast majority of possible QMCR 

variables, of course, are orthogonal (not linearly related) to the dependent variable of interest in 

any particular analysis, and thus can safely be ignored. They do not contribute to regression error 

as "other factors." Many variables, however, are related to the dependent variable, but are also 

colinear with the independent variables of interest, competing with them for explanatory power in 

the regression model. To the extent that they compete with  or "partial" variables that are already 

in the model, they are not "other factors" that contribute to regression error but more like 

alternative operationalizations of the independent variables. A third class of variables that are 

independently related to the dependent variable can, however, be often identified. When not 

explicitly included in the regression model, these complementary variables are clear examples of 

the "other factors" that are subsumed into the regression residual. Including them directly reduces 

the variance of the regression residual, illustrating the reasonableness of its interpretation as a 

sum of "all other factors" not included in the model. 

These three classes of potential control variables – complementary, competing, and 

orthogonal – affect the results of statistical models in distinctive ways and are subject to different 

rationales for inclusion as controls. All social scientists struggle with the question of what 

variables to include in (and, implicitly, what variables to exclude from) their statistical models. 

This question is made particularly difficult in QMCR by the fact that the number of variables 

available in published data compilations far exceeds the number of countries available for 

analysis as cases. Parsimony is thus at a premium. In research based on sample surveys with 

thousands of respondents, the effects of dozens of independent variables can be estimated 

simultaneously, and though this may present serious problems of interpretation, it is typically not 

a problem from the standpoint of estimation. In QMCR, with relatively few countries available as 

cases, sufficient degrees of freedom usually exist for estimating the effects of no more than a 

dozen or so variables, and often far fewer. As a result, practitioners of QMCR typically must 

show far greater care than other social scientists in their choices of variables to include in their 

statistical models. 

Complementary controls, though hard to identify, are almost always desirable in a model, 

since they serve mainly to "soak up" error that would otherwise tend to obscure the relationships 

between the independent variables of interest and the dependent variable. An illustration of the 

effective use of a complementary control is given in Table 1, Models 1 and 2. One might 

reasonably surmise that countries with greater female labor force participation (LFP) would tend 

to have lower levels of infant mortality. Infant mortality is regressed on female LFP in Model 1. 

The coefficient, as expected, is negative, but it is not statistically significant.  When urbanization 



97  JOURNAL OF WORLD-SYSTEMS RESEARCH 

is introduced as a control, however, the coefficient for female LFP becomes highly significant 

(Model 2). From the standpoint of female LFP, urbanization is a complementary control. Its 

inclusion in the model dramatically reduces the model's residual error variance, thus clarifying 

the (relatively weak) effect of female LFP on infant mortality. The inclusion of urbanization 

increases the signal-to-noise ratio in the relationship between female LFP and infant mortality not 

by increasing the strength of the signal but by reducing the volume of the noise. Complementary 

controls can be thought of as very useful error filters. 

Table 1: Illustration of Complementary, Competing, and Orthogonal Controls – Models for Infant 

Mortality (log), 2005 

Model 1 Model 2 Model 3 Model 4 

[Constant] 1.556  (0.213) 2.575  (0.182) 3.797  (0.132) 3.816  (0.211) 

Female LFP  (%) -0.005  (0.005) -0.010  (0.004) -0.007  (0.002) -0.007  (0.002)

Urban population  (%) -0.014  (0.001) 0.000  (0.001) 0.000  (0.001)

GDP/capita - F/X  (log) -0.662  (0.040) -0.662  (0.040)

Population (log) -0.003  (0.024)

R-squared .005 .450 .801 .801 

N 162 162 162 162 

Note: Entries in table are metric coefficients  (standard errors in parentheses) 

Competing controls are not always so obviously desirable. What if we were interested in 

the relationship between urbanization and infant mortality? Model 3 reveals an incredibly 

significant negative relationship between the two variables. This makes sense, since we would 

expect highly urbanized countries to have lower infant mortality rates than predominantly rural 

countries. So far so good. But controlling for national income (as nearly all GMCR studies do) 

brings the estimated effect of urbanization on infant mortality down to zero. National income is 

clearly a competing control vis-à-vis urbanization (though not vis-à-vis women's LFP). 

Urbanization is completely unrelated to infant mortality at any given level of national income, but 

it seems highly unlikely that urbanization does not reduce infant mortality. This is a difficult 

conundrum. The use and interpretation of competing controls are tied up with assumptions about 

concepts, causality, and causal order. 

If urbanization is hypothesized to be a proximate cause of infant mortality, and if national 

income is thought to be a concept completely distinct from urbanization, then it makes sense to 

control for national income and to conclude that urbanization has no detectable effect. On the 

other hand, it could be that urbanization affects infant mortality through a range of intermediating 

variables (such as the availability of medical staff, electricity, and clean water) and that national 

income acts as a proxy for these very variables, in which case it might be inappropriate to control 

for national income (despite the fact that it has such a strong effect on the dependent variable). In 

this case it is probably appropriate to control for national income, but in many cases involving 

potential competing controls it might not be appropriate to include them. 
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The third class of potential control variables, orthogonal controls, have little effect on the 

coefficients of the rest of the variables in a model. An example of an orthogonal control is given 

in Model 4. Here, population size has virtually no effect on infant mortality and virtually no effect 

on the coefficients of the other variables in the model. The only reason to include an orthogonal 

control is to demonstrate that it is, in fact, orthogonal. Once this has been demonstrated, Occam's 

razor suggests they be eliminated from the model. The judicious use of competing controls 

combined with the elimination of orthogonal controls would lead to much simpler, more easily 

grasped models in QMCR. 

CAUSALITY AND MODEL DESIGN 

The most basic model design and still the one most widely used in QMCR is the cross-sectional 

multiple linear regression model: a single dependent variable is regressed on one or (usually) 

more independent variables. Models 1-4 are all examples of cross-sectional models. Cross-

sectional models are easy to interpret largely because their error structures are so straightforward: 

errors are typically assumed to be independent across cases and normally distributed with 

constant variance. Because of this simplicity, the cross-sectional model is probably the model 

design best suited to answering the simple question "does the dependent variable covary across 

countries with the independent variable?" Most early QMCR (Bornschier, Chase-Dunn and 

Rubinson 1978) and many QMCR studies today use a simple cross-sectional design. As new data 

come available for such QMCR topics as state structure (Evans and Rauch 1999), the 

environment (Marquart-Pyatt 2004), and political corruption (Sandholtz and Taagepera 2005), 

cross-sectional models are usually the first kind of model analyzed because initially only cross-

sectional data are available. 

As fields mature and over-time data begins to accumulate, more complex model designs 

typically follow. Cross-sectional designs are effective for establishing the existence of a 

relationship between two variables, but they are almost useless for establishing its causality. In 

fact, cross-sectional designs are highly vulnerable to reverse causality and endogeneity biases.   

It has been broadly accepted for at least three decades that three conditions must be met 

to establish the causality of a relationship between two variables: correlation, temporal 

precedence, and non-spuriousness (Kenny 1979). Establishing correlation is usually not a 

problem in cross-sectional models. Temporal precedence and non-spuriousness, however, can be 

much more difficult to establish. 

The temporal order governing the relationship between two variables is sometimes 

obvious (as with national income and infant mortality). At other times it can be established 

empirically through investigation of the lag structure connecting them. As an illustration, Figure 4 

plots the lag structure of the correlation between national income and infant mortality. The 

maximum correlation between the two variables occurs when national income is compared with 

infant mortality rates 20 years later. This is strong circumstantial evidence that national income 

causally precedes infant mortality, though it does not eliminate the possibility that reverse 

causality occurs as well. 

Note that simply lagging the dependent variable by a year (or more) is not sufficient to 

establish the temporal precedence of the independent variable, since most QMCR variables are 

highly autocorrelated within countries. Thus, for example, the regression of national income in 
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2000 on infant mortality in 1995 would not ensure the temporal precedence of infant mortality in 

the analysis, since infant mortality in 1995 is also a very good proxy for infant mortality in, say, 

2005. This is obvious from Figure 4. In fact, infant mortality is strongly correlated (r > .80) with 

national income over 40 years later! A regression of national income in 2000 on infant mortality 

in 1960 would produce highly significant results without in any way establishing the causal 

precedence of infant mortality. Nonetheless, short- and long-term lags (sometimes as short at one 

year) have long been (incorrectly) claimed to establish temporal precedence in QMCR. 

Figure 4: Lag Structure of the Relationship between National Income and Infant Mortality, 

Demonstrating the Temporal Precedence of National Income 
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An alternative use of lags to establish temporal precedence is implemented in the 

confusingly-monikered "panel" or lagged dependent variable (LDV) design. In LDV models, the 

dependent variable is measured at a long time lag (often decades) after the independent variables, 

which include among them an early realization of the dependent variable itself. The dependent 

variable is thus regressed on both itself and a set of independent variables all measured at an 

earlier time period. Note that this is a very different usage from short-term LDV designs used in 

the political science literature to control for error autocorrelation. The LDV design "provides an 

estimate of the effect of the independent variable which is 'independent' of variance in the 

dependent variable" (Chase-Dunn 1975:726-727). Though the LDV design has been strongly 

criticized for not eliminating the possibility of spurious causation (Firebaugh and Beck 1994), it 
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is effective at establishing precedence, since any (contemporaneous) reverse causality of the 

independent variable on the dependent variables is partialled out. The main pitfall of LDV models 

is that they are often misinterpreted. 

For example, when national income is the dependent variable, the LDV model is often 

mis-read as a model for growth, when it is in reality it is only a model for national income. Since 

income, not growth, is the dependent variable, the model only establishes the temporal 

precedence of the independent variables vis-à-vis national income, not vis-à-vis growth. This may 

seem a pedantic distinction, but it is important to keep in mind. Imagine the existence of a panel 

of countries starting with identical national income and foreign capital penetration levels at Time 

0. Some subsequently grow at a fast rate, while others grow at a slow rate, with growth rates

highly stable over time. Assume that fast growth leads causally to reductions in foreign capital

penetration. At each subsequent time point (1, 2, ...) national income would come to be ever more

(negatively) correlated with foreign capital penetration. Regressing national income at Time 2 on

foreign capital penetration at Time 1 would give a negative coefficient for penetration, even

controlling for national income at Time 1. Though loading negatively on income, however,

foreign capital penetration in such a scenario would have no causal effect on growth. Temporally

preceding income is not the same as temporally preceding growth.

Another approach to establishing temporal precedence is the use of instrumental 

variables. Instrumental variables are clearly exogenous variables that are correlated with the 

dependent variable at least in part through their relationship with the independent variable, with 

no possibility of reverse causation. Thus, the correlation between the instrumental variables and 

the dependent variable can be used as evidence of the directionality of the relationship between 

the independent variable and the dependent variable. Instrumental variables can be used either in 

a structural equation modeling setting (for example, Kentor 2001) or a two-stage least-squares 

setting (for example, You and Khagram 2005). Instrumental variables usually pertain to time 

periods well before the study period (to ensure their exogeneity). In a famously creative (perhaps 

even notorious) example, Acemoglu, Johnson and Robinson (2001) use nineteenth century 

colonial settler mortality as an instrument for the strength of civil society today. The main 

shortcoming with the instrumental approach is the difficulty of finding good instruments. 

Ensuring non-spuriousness, however, presents far greater difficulties. It is often claimed 

that instrumental variables can be used to establish non-spuriousness, but this is only true under 

the assumption that instrumental variables can only affect the dependent variable through the 

independent variable, not via any other causal path through any potential (and potentially 

unmeasured) common-cause variable (Angrist and Krueger 2001). This assumption is so heroic 

as to be meaningless. The root problem is that any observed correlation between two variables A 

and B could actually be the result of their common correlation with an omitted variable C. Such a 

situation results in "omitted variable bias": the observed correlation between A and B becomes 

larger than the true effect of A on B. Of course, it is more likely that instead of one there are 

many omitted common-cause variables that are responsible for the relationships observed in the 

data. It can even be argued that nearly all observed relationships are spurious at their root, and 

only approximately causal. For example, national income as such almost certainly doesn't "cause" 

infant mortality.  Instead, the individual and societal wealth and productivity that lead to national 

income also lead to infant mortality. It is the near-identification of national income with "wealth," 

"productivity," "development," and the like that makes the statement "national income causes 

infant mortality" reasonable, though only as an approximation. 
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There are two general methods of establishing non-spuriousness in cross-sectional 

models. One is to control for all potential common-cause variables. This is difficult to accomplish 

in practice, for several reasons. First, actual data for the necessary variables may not exist. For 

example, human capital may be a common cause of national income and infant mortality, but the 

closest we come to measuring human capital is education data, which really don't adequately 

capture the concept. Second, there may be too many potential common-cause variables to test 

them all with the limited number of cases (and thus degrees of freedom) available. Third, 

potential common cause variables may simply go unnoticed. These difficulties make it impossible 

to guarantee non-spuriousness through the use of appropriate statistical controls, though a 

credible case for non-spuriousness might still be made. For example, if controlling for the most 

highly suspect common-cause variables has little effect on the proposed causal relationship, it can 

be argued that other, unconsidered potential common-cause variables would be unlikely to 

account for the observed relationship, even though they are not tested. 

The other is to use fully longitudinal data (for both the dependent and independent 

variables) to eliminate at least some pathways through which a spurious relationship may arise 

between the variables of interest. Two classes of longitudinal models used in QMCR are 

multilevel models and difference models. Both are designed to account specifically for 

spuriousness due to the presence of time-invariant omitted variables. This is a very large, though 

not exhaustive class of potential common-cause variables, including any factor relating to a case 

that is constant across the study period. For example, countries' political geographies, 

topographies, climates, cultures, economic systems, and forms of government are all typical time-

invariant (or nearly time-invariant) variables. Multilevel models and difference models both 

control for time-invariant omitted variables by focusing their statistical power on changes over 

time in the variables of interest within countries. This eliminates the effects of all time-invariant 

factors, since within countries they, by definition, do not change over time. 

The cost in statistical power of doing this is, however, very steep, since multilevel models 

and difference models sacrifice the power to make inferences based on cross-national variation in 

the overall levels of the variables of interest. Still, the elimination of time-invariant common-

cause alternatives makes for a dramatic advance in the causal credibility of purported 

relationships, which is often worth the accompanying sacrifice in statistical power. Moreover, 

when relationships can still be shown to be significant even in such low-power models as 

multilevel models and difference models, they are much more likely to be accepted as robust and 

important phenomena. Unfortunately, even so they must always remain subject to some degree of 

skepticism, since there are no off-the-shelf statistical models for ruling out spuriousness arising 

from omitted common-cause variables that do vary over time. 

MULTILEVEL MODELS 

In 1994, Firebaugh and Beck bemoaned the fact that "cross-national research in sociology 

currently is dominated" by lagged dependent variable models, which "are so common in cross-

national research in sociology that practitioners refer to them as 'panel analyses'"  (637-638), by 

which they meant that LDV designs had become synonymous with the analysis of panel data. 

Today, the same might be said for multilevel models (MLMs), sometimes also called hierarchical 

or (now) panel models, which have become so ubiquitous in QMCR over the past ten years that it 
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could be argued that there exists an a priori assumption that they should be used in all cases 

where it is possible to do so. Critics and reviewers often demand MLM evidence even where 

sufficient longitudinal data do not exist with which to estimate a multilevel model. Perhaps 

partially as a result, MLMs are very often applied in ways that are entirely inappropriate to the 

data and research questions at hand.  Statistical handbooks often serve to compound this problem, 

since they are generally written from the standpoint of users with very different analytical 

objectives than those found in QMCR. 

The MLM design was initially developed for use in experimental settings, and is 

essentially an ANOVA (analysis of variance) model with covariates. In a standard ANOVA 

model, subjects are divided into groups, with each group receiving a different treatment. The 

ANOVA F test indicates whether or not outcomes for the subjects as a whole differ significantly 

across the treatment groups. Even in cases where there are no significant differences in response 

between specific pairs of groups, the overall ANOVA F test may detect significant differences 

among all groups analyzed collectively. The garden-variety ANOVA model is a multilevel design 

because error is introduced to the model at two distinct levels. There is a Level 1 sub-model, in 

which the subject's outcome is influenced both by participation in an experimental group and by 

random error idiosyncratic to the subject, and a Level 2 sub-model for the effect of participation 

in a group (which in this trivial case is an array of constants). This simple ANOVA model is an 

example of a fixed effects model (FEM), since the treatment effects are fixed (modeled without 

error). In a random effects model (REM), both the treatment effects and the individual subject 

outcomes are subject to random error. 

The fundamental difference between FEMs and REMs is in how the error is apportioned, 

to the subject or to the treatment. In the simple one-way ANOVA setting these two sources of 

error cannot be distinguished, so the FEM and REM specifications yield identical estimates of the 

treatment effects. In less trivial models, however, the question of fixed versus random effects 

becomes important. For example, if the Level 1 sub-model includes covariates in addition to the 

treatment effects, the apportionment of error between Level 1 and Level 2 of the model helps 

determine the standard errors of the coefficients of these variables. From the standpoint of the 

significance of the Level 1 covariates, FEMs are generally more conservative than REMs. 

Conversely, from the standpoint of the significance of the Level 2 treatment effects, REMs are 

generally more conservative. In fact, REMs were developed for precisely this reason: in many 

situations, FEMs produce upwardly biased estimates of the effectiveness of Level 2 treatments. 

Where group treatment effects are the primary interest of modeling (as in drug trials), the REM 

design is preferred because it is both better-specified and more conservative than the FEM. In 

drug trials the primary interest is in the sizes of the group effects, not in the covariates, which are 

included simply as controls. 

An early social science application for the REM was school effectiveness research 

(Rumberger and Palardy 2004). In a typical school effectiveness research setting, students 

(subjects) are arranged into schools (treatments) to study the effect of these treatments on the 

students' standardized test scores (outcomes). A simple one-way ANOVA of school means 

overstates the effect of schools as treatments, since their student populations may be 

heterogeneous on the dimensions that affect student performance (for example, student ability, 

family resources, family structure, etc.). Estimates of school effects are reduced by including 

student and family variables as covariates in a Level 1 equation for individual student 

performance and estimating an FEM instead of a simple ANOVA model.  In the FEM design, 
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schools take credit for all of the cross-school differences in student performance remaining after 

controlling for individual student attributes. This is a problem, though, because some of the 

school differences are themselves due to individual student attributes: after all, students (or their 

families) can, to some extent, choose what schools they attend (for example, though choosing to 

live in expensive neighborhoods). In any situation in which the subjects choose their own 

treatments, the effectiveness of those treatments may be overstated. The REM corrects for this 

bias by making the choice of treatment – in this case, which school is attended by the student – 

endogenous to the model. 

Both FEM and REM variants of MLM designs are used in QMCR models. Although the 

mathematics for these models are identical to the mathematics used in experimental and quasi-

experimental research, the focus in QMCR is entirely different. In QMCR, the notional 

"treatment" groups are countries and the "subjects" are country-years of observation. For 

example, in the illustrative data used below on infant mortality and national income, there are a 

total of 1320 distinct observations arising from 208 countries observed over ten time points (5-

year intervals 1960-2005; not all countries report data for all time periods). There are thus 208 

possible "treatments" (countries), each of which is experienced by up to ten "subjects" (country-

years) per country. In experimental designs and quasi-experimental settings like school 

effectiveness research, the researchers' primary interest is in the group treatment effects. In 

QMCR, however, the treatment (country) effects are unimportant; only the covariates 

(independent variables) matter.   

The appeal of MLM designs for QMCR is that in studying the effects of the covariates 

(independent variables), the effects of the treatments (countries) are controlled for. In controlling 

for country, the MLM implicitly controls for any factor that does not differ by country: i.e., all 

variables that are time-invariant within countries over the course of the study period. Thus, all 

time-invariant common-cause variables that might give rise to a spurious correlation between the 

dependent variable and the independent variables of interest are implicitly accounted for. This 

doesn't entirely establish the non-spuriousness of the relationship of interest, but it does go a long 

way toward eliminating plausible alternatives. 

The FEM design absolutely eliminates any time-invariant alternative explanations of the 

dependent variable, period. The REM design, however, does not. In the REM design, only a 

portion of the treatment (country) effect is assigned to the country itself, since the REM design 

assumes that selection into treatments (countries) is endogenous, not assigned exogenously.  Just 

how much of the country-level variability remains is a bit of a mystery, since REMs were not 

designed for this purpose. Empirically, it seems that very little is left over: REMs usually give 

very similar results to the equivalent FEMs. Why, then, does anyone use them? 

The REM design is used because REMs allow the estimation of the effects of covariates 

even if those covariates do not change over time. To my knowledge, this is not done in drugs or 

schools research using REM designs, where the focus of the research is on the group treatment 

effect, not on the covariates. In QMCR, however, we are primarily interested in the covariates, 

not the group effects, and often the covariates do not vary for particular treatment groups.  For 

example, countries' latitudes are constant over time.  Estimates of the effect of latitude on QMCR 

outcomes cannot be estimated in an FEM design because the fixed effect of "country" subsumes 

everything unchanging about a country. In a REM, however, not all of the country effects are 

assigned to the countries themselves, leaving some variance left over that can be assigned to time-

invariant variables like latitude. Exactly how much of the between-group variance in REMs is 
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assigned to country effects and how much to time-invariant covariates is, to my knowledge, 

unknown. It is not, in principle, unknowable, but REMs simply weren't designed for the 

eventuality that users might try to estimate the effects of time-invariant covariates in models 

treating countries as if they were endogenously chosen as treatments by country-years. Much 

further research involving Monte Carlo simulation would be necessary before we could 

understand the meaning and significance of the coefficients in REMs used in QMCR. 

From this standpoint, the use of REMs is a case of having one's cake and eating it too 

(Halaby 2004). If the objective is to eliminate the possibility of spurious causality due to 

unmeasured time-invariant variables, the FEM design can used. If the objective is to estimate the 

effects of measured time-invariant variables, a simple cross-sectional model is the most effective 

design. The REM design notionally allows both to be done in the same model, but only partially 

and to unknown degrees. The REM corrects to some extent for unobserved time-invariant 

variables and allows the estimation to some extent of the effects of measured variables that are 

time-invariant, with the extent of each determined by the hypothetical degree of endogeneity of 

the treatment (country) choices exercised by the subjects (country-years), were such choices 

theoretically possible, which they aren't. Were it not for the convenience that REMs produce 

some kind of estimate of the effects of time-invariant covariates, it seems doubtful that they 

would ever be used. 

Both kinds of MLM, however, present a much greater challenge where data exhibit 

trends over time.  Analyses using MLMs are highly sensitive to trended data. The MLM design is 

fantastic for eliminating time-invariant variables, but time itself is, of course, not time-invariant. 

This fact seems to be poorly understood in the QMCR literature. 

The basic logic of MLM designs is that they draw their statistical power from correlating 

(within countries) the deviations of both the dependent and the independent variables in each 

period from their overall country means. If the dependent variable tends to be (relatively) high 

when the independent variable is (relatively), and low with the independent variable is low, this is 

evidence of a relationship between the two. This is in itself a problem: it assumes that there is no 

lag between changes in an independent variable and consequent effects on the dependent variable. 

It is highly likely in most QMCR settings that lags are substantial. As a case-in-point, consider 

the roughly 20-year lag in the effects of national income on infant mortality suggested by Figure 

4. Such lags could be incorporated in MLM designs but rarely are. I myself have never seen a

published example of QMCR using MLMs that systematically investigated the appropriate lag to

be used between the timing of the independent and dependent variables, though some have used

pro forma 1 or 5 year lags.

A much bigger problem, however, is that many QMCR data series are strongly time-

trended. National income, for example, can be correlated up to r = .98 with time (Babones 2007). 

Infant mortality, on the other hand, has generally fallen over time. In an MLM design without 

time adjustments, national income and infant mortality appear to be closely related because in 

years when national income is higher than average (the later years in a four-decade study), infant 

mortality will tend to be low, and vice versa. The two variables may in fact be related (and in this 

case almost certainly are), but the point is that any two time-trended variables will appear to be 

related in MLMs, even when they're not. Even worse, QMCR variables are time-trended at 

different rates in different countries. National income rises strongly over time in South Korea 

(which has been growing rapidly since 1960), moderately in the United States (which has been 

growing less rapidly), and slowly in Ghana (which has hardly grown at all).  Moreover these time 



105  JOURNAL OF WORLD-SYSTEMS RESEARCH 

trends are not even constant over long periods within countries: China's national income growth 

was low in the period 1960-1980, moderately high in the period 1980-1995, and very high in the 

period 1995-2005. Similarly, most developed country national income series inflect in the mid-

1970s, and formerly Communist country series around 1990. On top of all this, there are short-

term business cycles. Time effects are everywhere. 

Such time trends wreck havoc on the estimation of MLM coefficients, and are very 

difficult to account for through the explicit modeling of error structures. Period effects, time 

covariates, and autoregressive error structure corrections are all inadequate to account for the 

kinds of time trends inherent in QMCR data structures. The fact that QMCR variables are trended 

at different rates in different countries (and at different times) means that time trends must be 

dealt with on a country-specific basis, and sometimes in complex ways even within countries. 

One-size-fits-all controls of the kind typically found in QMCR completely fail to adequately 

adjust for the effects of trended data. As a result, the coefficients on independent variables 

estimated based on QMCR data are, in almost all cases, heavily biased. It is quite possible that 

most QMCR studies based on cointegrated or highly trended variables that have used MLM 

designs have done nothing more than model time. This possibility can be illustrated with an 

applied example. 

Infant mortality is well-known to be closely related to national income per capita (Ross 

2006; Babones 2008). They are certainly highly correlated (r = -.84). There is every reason to 

believe that this relationship is causal: higher national incomes allow countries to purchase 

improved maternal and newborn health. The cross-sectional estimate derived above in Models 3 

and 4 for the relationship between national income on infant mortality was b = -.662, with SEb = 

.040. The statistical significance of this relationship is astronomical. National income and infant 

mortality are about as closely related as any QMCR variables can be. 

Nonetheless, a typical MLM of the relationship between national income and infant 

mortality should yield a non-significant or marginally-significant result. Why? Because we know 

logically (and, based on Figure 4, empirically) that any causal relationship between national 

income and infant mortality is not primarily contemporaneous. It is highly unlikely that changes 

in national income could instantaneously reduce infant mortality. Therefore, wherever national 

income exhibits a strongly significant contemporaneous effect, we can be reasonably sure that it 

is due to the strong correlation of both national income and infant mortality with time (or some 

other common-cause variable), not due to any contemporaneous causal relationship between the 

variables themselves. In short, the contemporaneous correlation between national income and 

infant mortality is spurious. 

The results of a series of MLM estimates of the contemporaneous relationship between 

national income and infant mortality are reported in Table 2. A series of commonly used MLM 

time-trend corrections have been implemented. In particular, five distinct model configurations 

are considered: 

Model 5: GDP is a covariate; 

Model 6: GDP covariate plus fixed effect period dummies (early/late); 

Model 7: GDP covariate plus fixed effects for each of the 10 time points; 

Model 8: GDP covariate plus a continuous time covariate; 

Model 9: GDP covariate, both GDP and IM detrended for each country. 

Each of these model configurations is estimated in four variants: 

(A) a model with fixed country effects with unstructured errors;
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(B) a model with fixed country effects with an AR(1) error structure;

(C) a model with random country effects with unstructured errors;

(D) a model with random country effects with an AR(1) error structure.

Only the coefficient of interest (that for national income) and its standard error are reported for 

each model.  All models are estimated on the same unbalanced panel of 1320 cases (country-

years spanning the period 1960-2005 at five-year intervals). 

Table 2: Comparison of MLMs for Infant Mortality (log), 1960-2005 

Fixed effects for country Random effects for country 

Unstructured 

AR(1) 

structure Unstructured 

AR(1) 

structure 

Model Configuration (A) (B) (C) (D) 

(5) GDP

-0.917

(0.027)

-0.452

(0.024)

-0.723

(0.021)

-0.454

(0.020)

(6) 

GDP, Period dummy

(early/late FE)

-0.586

(0.022)

-0.465

(0.022)

-0.571

(0.017)

-0.456

(0.018)

(7) GDP, Time (FE)

-0.392

(0.020)

-0.189

(0.018)

-0.465

(0.016)

-0.238

(0.016)

(8) GDP, Time (covariate)

-0.367

(0.020)

-0.162

(0.017)

-0.449

(0.016)

-0.206

(0.016)

(9) 

GDP (both GDP and IM

detrended) 

-0.026

(0.019)

-0.034

(0.016)

-0.026

(0.018)

-0.035

(0.016)

Notes: Entries in table are metric coefficients  (standard errors in parentheses); N=1320 

As would be expected, the coefficients for national income are in all cases more 

significant in the REM variant than in the corresponding FEM, though they are broadly similar in 

magnitude. This is because the REM design assigns less of the total variability in infant mortality 

to the country (treatment group) effects and thus more to the variable of interest. This is an 

example of how the use of REMs can lead to biases in the estimated effects of covariates. The 

discussion of trend effects to follow focuses on the FEM variants, but the same patterns apply in 

the REM variants. 

The initial model, Model 5(A), shows a fantastically strong relationship between national 

income and infant mortality (t = -33.599); this is not surprising, since Model 5(A) includes no 

trend adjustment whatsoever. Allowing for just an AR(1) error autocorrelation in Model 5(B) cuts 

the estimated effect of national income in half, but still leaves it extraordinarily highly significant 

(t = -18.875). A popular method of adjusting for trends in QMCR data is to use a period dummy; 

Models 6(A) and 6(B) show that splitting the observations here into two groups (1960-1975, 

1980-2005) has virtually no effect on the estimated coefficient for national income. Even using 
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ten period dummies (one for each time period) has only a minor effect, marginally reducing the 

coefficients for national income in Models 7(A) and 7(B) but leaving them nonetheless highly 

significant. 

Model 8(A) introduces a linear time covariate; combined with an AR(1) error structure as 

in Model 8(B) this is a more aggressive trend adjustment than any typically found in the QMCR 

literature. Even though coefficient for national income reaches its minimum significance yet in 

Model 8(B), it is still very highly significant. The t-statistic for this model (t = -9.277) 

corresponds to a significance level of p < 0.0000000000000000001. All of these models would 

lead one to conclude that there is a strong contemporaneous relationship between national income 

and infant mortality. Were they published in the literature, it is unlikely that anyone would 

question the results, since it seems on the face of it that the two variables should be related. In 

fact, however, as I have argued above they are not -- at least, not contemporaneously. 

Model 9(A) demonstrates this. In Model 9(A) the linear time trends in national income 

and infant mortality have been removed on a country-by-country basis before analysis. Thus, in 

Model 9(A) we're truly asking whether infant mortality has been higher than average in years that 

national income has been higher than average, leaving aside the secular trends in each. In Model 

9(A) the FEM estimate of the contemporaneous effect of national income on infant mortality is 

negative, but weak and non-significant (t = -1.403). Model 9(B) shows the corresponding 

estimate when allowing for an AR(1) error structure. It is slightly larger, and weakly significant (t 

= -2.085). The staggeringly significant cross-sectional correlation between national income and 

infant mortality all but disappears in a MLM framework when time trends are eliminated. 

The coefficients in Model 9 aren't weak because of some legerdemain in the detrending 

process; they are weak because the real contemporaneous effect of national income on infant 

mortality is so weak as to be almost undetectable. Even the small effects that do remain in Model 

9 are probably due to imperfect detrending resulting from the fact that the actual time trends in 

national income and infant mortality may not be linear. The fact that the AR(1) error model 

improves the significance of the relationship is evidence for this interpretation, since the AR(1) 

model would allow for any residual trend to decay over time. That is to say: if both series trended 

until 1990 then flattened out, the linear detrending of the data would actually create a small trend 

for the period after 1990. An AR(1) error model would better capture this change in trend than 

would an unstructured error model. 

If such a strong effect as that of national income on infant mortality (t = -33.599) 

disappears when time is removed from the analysis, what of the robustness of other, far more 

tenuous QMCR relationships? Nearly all QMCR variables trend over time, at least within 

countries. National income, income inequality, carbon emissions, population health, birth rates, 

educational levels, industrial output, agricultural employment, unionization, labor productivity, 

portfolio investment, investment dependence, political freedoms, military spending, tax 

efficiency, memberships in international organizations, frequencies of protest events, and the like 

all exhibit secular time trends within countries. As with national income and infant mortality, it is 

likely that their observed relationships in MLMs are partially or largely the result of inadequate 

controls for time. 

The simple fact is that MLM designs are generally inappropriate for answering the 

questions that most QMCR practitioners want to ask. They are much better suited to studying the 

kinds of time-series data structures for which they are commonly used in the economics literature. 

The basic question asked by MLMs applied to repeated-measures panel data – do X and Y rise 
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and fall together at the same time? – is not a question typically asked by scholars working in the 

QMCR tradition. Most QMCR is concerned with long-term changes in structural relationships, 

not short-term fluctuations in annual data. Accordingly, models for QMCR should focus on broad 

changes over long time periods, not on period-to-period variability, as in MLM designs. It is 

difficult to imagine a scenario in which QMCR practitioners using MLMs are actually interested 

in the annual variability in their data. I have never seen such an example published in the QMCR 

literature. 

DIFFERENCE MODELS 

Rather than MLMs, Firebaugh and Beck (1994) promoted the use of difference models as an 

alternative to "panel" models for eliminating spurious causality. In a difference model change in 

the dependent variable over time is regressed on change in the independent variables. The 

reasoning is that if variables systematically rise together and fall together, they are related in 

some way. Any time-invariant covariates of the dependent and independent variables can be 

safely omitted, since their own difference scores over time will be zero (by construction). Time 

itself can also be omitted as a confounding influence, since the time difference between the two 

periods being studied is a constant for all countries in the analysis. The difference model thus at a 

stroke solves both the time-invariant omitted variable problem inherent in panel designs and the 

time trend problem inherent in MLM designs. 

Since variables in the difference model are differenced at the country level, it doesn't 

(much) matter whether or not variables trend at different rates in different countries. When 

variables trend at different rates in different countries in the same way across variables (e.g, both 

slow in Country A but both fast in Country B), trends have no effect on the results. When 

variables trend in different ways across variables (e.g., the first variable fast and the second 

variable slow in Country A, but the first variable slow and the second variable fast in Country B), 

the pattern of trends will reduce the observed relationship between the variables. Thus, difference 

models are generally conservative from the perspective of time trends. 

The price of these advantages is low power and poor data availability. The difference 

model approach is only effective when the differences can be computed over relatively long time 

periods (i.e., long enough for meaningful changes to occur in the variables being studied), 

meaning that often relatively small numbers of cases are available for analysis. The long time 

periods studied, however, ensure that even lagged relationships can be captured in difference 

models, since a study period of several decades will encompass the lag periods of most 

relationships. It is, however, possible to study differences of shorter time periods if desired. It is 

even possible to construct MLMs out of many short difference periods, though such designs 

would require extreme care, given their complexity. 

A widely quoted myth about the difference model is that it is equivalent to a FEM design 

with two time periods. As correctly noted by Halaby (2004:515), this is only true when the 

independent variable in the difference model is a binary (0/1) variable. In nearly all QMCR 

settings of interest, both independent and dependent variables are continuous. In such cases, the 

difference model and the FEM can give widely varying results, especially when both the 

independent and dependent variables are trended over time. 
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Applying a 45-year difference model (1960-2005) to the regression of infant mortality on 

national income yields a highly significant effect of b = -0.589 (SEb = 0.074) based on N=88 

cases. This means that long-term increases in national income are strongly related to long-term 

decreases in infant mortality. This coefficient is not far off that reported in Model 6(A), but the 

similarity is purely coincidental. The coefficient in Model 6(A) has been shown to have been 

generated by the time trends in the data; the coefficient for the difference model is unaffected by 

such trends.  In fact, a difference model based on the detrended data differs only in the constant 

term; the slopes is mathematically identical. The difference model thus clearly and robustly 

indicates a non-artefactual relationship between national income and infant mortality, 

independent of potential time-invariant common-cause factors and independent of time trends in 

the variables. The rate of improvement in national income is strongly related to the rate of 

improvement in infant mortality across countries, independent of constant country characteristics 

and independent of the fact that both have generally improved over time. 

 
 

Figure 5: Attenuation and Variability of Difference Model Results using Short Time Intervals 

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1960-1965 1965-1970 1970-1975 1975-1980 1980-1985 1985-1990 1990-1995 1995-2000 2000-2005

Five-year difference period

C
o
rr
e
la
ti
o
n
 (
s
ig
n
 r
e
v
e
rs
e
d
 -
- 
a
c
tu
a
l 
c
o
rr
e
la
ti
o
n
s
 a
re
 n
e
g
a
ti
v
e
)

45-year difference (r = -.65)

Cross-sectional relationship (r = -.84)

5-year differences (r = -.09 to r = -.37)

 
 

Difference models are not common in sociology, though Firebaugh and Beck (1994) 

make a strong case for their use. As Firebaugh and Beck argue, the difference model is the direct 

longitudinal analog of the straightforward cross-sectional model.  In a properly-specified cross-

sectional model, a dependent variable is regressed on dependent variables that are thought to 

influence the dependent variable. This model implies that changes in the independent variables 
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should be reflected in changes in the dependent variable. The difference model captures this 

expected relationship. The key is that the difference model must be estimated over a sufficiently 

long time period for changes in the independent variables to have an opportunity to manifest their 

effects on the dependent variable. If the time period over which the variables are differenced is 

long enough, causal relationships can be detected even when the causal lags are long, as with the 

relationship between national income and infant mortality. 

Differences over short time periods do not adequately capture the over-time relationship 

between changes in national income and changes in infant mortality, despite the very strong 

cross-sectional relationship between the variables. For example, the correlation between changes 

in national income and changes in infant mortality over the 45-year interval examined above is r 

= -.65. This does not quite reach the r = .84 recorded in the pooled cross-sectional design, but it is 

still reasonably strong and highly significant statistically. When national income and infant 

mortality are differenced over 5-year intervals, however, their correlation drops substantially.  

Their correlations over the nine five-year intervals 1960-2005 are plotted in Figure 5. They range 

from a high of r = -.37 for the 1990-1995 difference model to a low of r = -.09 in the period 

immediately following. Out of the nine time intervals studied, the correlations in four are not 

statistically significant at the p < .05 level.  Three are not significant even at the more relaxed p < 

.10 level. 

 

 
Figure 6: Difference Model (1960-2005) Regressing Changes in Infant Mortality (log) on Changes in 

National Income (log) 
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Even for such a powerful relationship as that between national income and infant 

mortality, reasonably long time intervals are called for. Note that simply pooling all available 5-

year intervals does not have the same effect as using a 40-year interval: the correlation of all 

available 5-year differences of national income with all available 5-year differences of infant 

mortality is just r = -.16 (N=974). This is a relatively small correlation, though highly significant 

due to the large number of intervals aggregated. 

Some analysts argue that difference models are wasteful in that they ignore large amounts 

of data that could be analyzed. The data thrown out in difference models, though, are for the most 

part data that are analytically irrelevant to the problem at hand. Viewed in this way, difference 

models are not wasteful but parsimonious. The one major practical shortcoming of difference 

models is that the differencing process often generates outliers and leverage points. The 45-year 

difference in logged infant mortality is plotted against the 45-year difference in logged national 

income per capita in Figure 6. There is one obvious leverage point in the data, Botswana, in 

which national income grew rapidly over the study period but infant mortality declined only 

slowly. Deleting Botswana from the model yields an even stronger estimate of the effect of 

national income of b = -0.695 (SEb = 0.067). Dealing with leverage points in difference models is 

no more nor less difficult than dealing with leverage points generally. 

RECOMMENDATIONS AND CONCLUSIONS 

I conclude with a plea for simplicity. Quantitative macro-comparative research should focus on 

the effects of as few variables as possible in any one study. Control variables should be used 

judiciously, with explicit attention given to their actual roles in the models being estimated. It 

may be possible to estimate the coefficients of twelve variables using data on just twenty 

countries observed at five time points each, but this doesn't mean that it's advisable. This paper 

has paid less attention to the virtues parsimony than I might have liked, but hopefully it will be 

clear from the challenges examined here of correctly understanding the relationship between just 

two variables that the challenges of correctly understanding the relationships among dozens of 

variables might be near-insurmountable. 

The data used in quantitative macro-comparative research are highly structured in 

idiosyncratic ways that create many pitfalls for those who analyze them. Obvious and hidden 

temporal effects are embedded everywhere in QMCR data structures. From this perspective, the 

difference model is an extremely effective design for QMCR because it eliminates the problem of 

(linear) time trends in variables and returns analysis full-circle back to a simple cross-sectional 

model (albeit a cross-sectional model of changes over time). Consequently, it is hard to mess up a 

difference model. Simple cross-sectional models, including appropriate control variables, should 

be estimated first, then difference models run as back-ups to help substantiate any claims of 

causality. 

Multilevel models, on the other hand, should be approached with extreme caution. It is 

my considered opinion that it is quite possible that all reported multilevel model results reported 

to date in the quantitative macro-comparative research literature are nothing more than spuriously 

attributed effects of time. I have not explicitly replicated existing MLMs from the published 

literature, and so I cannot comment on them directly. Published results represent only the tip of 

the iceberg of the generally careful and comprehensive analyses that underlie any published work. 
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Researchers who have used these models in the past may in fact have privately tested detrended 

versions of their analyses, found that the results simply confirmed what they had found in other 

models, and as a result not considered them publication-worthy. In light of the evidence presented 

in this paper, however, anyone using such models in the future should certainly examine the 

possibility that their results are driven by nothing more than trends in their data. 

The MLM design, especially in its REM variant, is extremely seductive because it offers 

boxes with labels for almost everything anyone might want to do in QMCR: control for omitted 

variables, estimate the effects of time-invariant variables, estimate interaction effects, account for 

the effects of time, etc. The problem is that the labels on the boxes often bear no intuitive 

relationship to what the boxes actually do. Researchers should be extraordinarily careful when 

using MLM designs to assure both themselves and their readers that the coefficients attached to 

the variables of interest actually mean what they purport to mean. An productive avenue for 

future research might be the application of Monte Carlo techniques to simulate the behavior of 

the coefficients of covariates and their standard errors in QMCR using REM designs. 

The methodological challenge of undertaking quantitative macro-comparative research is 

a large part of what makes it exciting and intellectually stimulating. The ultimate reward for most 

QMCR practitioners, though, is the possibility of changing the world through better 

understanding how it works. Fortunately or unfortunately, we only have one world to work with, 

so the burden of better understanding that world largely falls back on methodology. Exculpatory 

data are rarely forthcoming, so we are generally constrained to argue, rather than experiment or 

survey, our way out of our problems. Nonetheless, it is important to remember that 

methodological virtuosity should be exhibited only in the service of improved substantive 

understanding, and not for its own sake. There is no need for an extensive toolbox when a 

hammer will do just fine. 

Critics and reviewers especially should keep this in mind. A paper that effectively makes 

its substantive case with a minimum of complexity should be preferred over one that makes the 

same case with superfluous virtuosity. Very few practitioners of quantitative macro-comparative 

research fully grasp the mathematical properties of the error models they implicitly assume in 

their research. It's even less likely that without hands-on access to the data reviewers are equipped 

to pass judgment on the suitability of highly complicated models. As the examples presented in 

this paper illustrate, it's probably just as true of quantitative macro-comparative research as it is of 

the transwarp drive that "the more they overthink the plumbing, the easier it is to stop up the 

drain." 
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