
Knowledge Engineering and Data Science (KEDS) pISSN 2597-4602

Vol 3, No 2, December 2020, pp. 60–66 eISSN 2597-4637

https://doi.org/10.17977/um018v3i22020p60-66
©2020 Knowledge Engineering and Data Science | W : http://journal2.um.ac.id/index.php/keds | E : keds.journal@um.ac.id

This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

Efficient Scheduling of Plantation Company Workers

using Genetic Algorithm

Wayan Firdaus Mahmudy 1, *, Andreas Pardede 2, Agus Wahyu Widodo 3, Muh Arif Rahman 4

Faculty of Computer Science, Brawijaya University

Jl. Veteran no. 8, Malang 65145, Indonesia

1 wayanfm@ub.ac.id *; 2 andreas.pgpard@gmail.com; 3 a_wahyu_w@ub.ac.id; 4 m_arif@ub.ac.id

* corresponding author

I. Introduction

Scheduling is an activity carried out by allocating certain resources intended to perform a job or
task related to time. Scheduling is a part of the industry's decision-making process to allocate existing
data or resources to be utilized more optimally [1]. Good scheduling is required by a company that
works in the field of plantation and garden management. The company has a number of tasks such as
planning all the care of plants and green areas, providing all fertilizer and plant material needs to
ensure all plants are growing well and productive, harvesting crops, and maintaining the stock of
fertilizer. Plantation activities are carried out by plantation workers whose schedules are determined
by the company. The density of worker activities must be balanced with efficient and fair work
scheduling. A good schedule will minimize worker dissatisfaction and work stress while maintaining
physical health [2][3]. The schedule should consider a fair allocation of working time in holidays,
ensuring all tasks are assigned to a worker, and even the number of working days of each worker every
month.

Scheduling that involves complex constraints is a challenging task. Several methods have been
proposed in the literature. Meta-heuristic algorithms are often applied as is have the capability to deal
with complex constraints. Examples of the algorithms that have been applied for the complex
scheduling are ant colony optimization algorithm [4][5], simulated annealing [6][7], tabu search [8],
particle swarm optimization [9][10], variable neighborhood search [11][12][13], and genetic
algorithm [14][15][16].

The genetic algorithm is a class of evolutionary algorithm which is the most widely used for
optimization [17]. Several studies have reported the genetic algorithm's robustness to deal with a
complex problem, including scheduling [18][19][20]. This study aims to optimize the plantation
company worker's schedules using a genetic algorithm. A proper chromosome representation for the
genetic algorithm is key to efficiently explore a large search space of the problem [21]. Thus, an

ARTICLE INFO AB S TR AC T

Article history:

Received 23 August 2020

Revised 21 October 2020

Accepted 02 November 2020

Published online 31 December 2020

Workers at large plantation companies have various activities. These activities include
caring for plants, regularly applying fertilizers according to schedule, and crop
harvesting activities. The density of worker activities must be balanced with efficient
and fair work scheduling. A good schedule will minimize worker dissatisfaction while
also maintaining their physical health. This study aims to optimize workers' schedules
using a genetic algorithm. An efficient chromosome representation is designed to
produce a good schedule in a reasonable amount of time. The mutation method is used
in combination with reciprocal mutation and exchange mutation, while the type of
crossover used is one cut point, and the selection method is elitism selection. A set of
computational experiments is carried out to determine the best parameters’ value of
the genetic algorithm. The final result is a better 30 days worker schedule compare to
the previous schedule that was produced manually.

This is an open access article under the CC BY-SA license

(https://creativecommons.org/licenses/by-sa/4.0/).

Keywords:

Scheduling

Genetic Algorithm

Crossover

Mutation

Best parameter

http://u.lipi.go.id/1502081730
http://u.lipi.go.id/1502081046
https://doi.org/10.17977/um018v3i22020p60-66
http://journal2.um.ac.id/index.php/keds
mailto:keds.journal@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

 W.F. Mahmudy et al. / Knowledge Engineering and Data Science 2020, 3 (2): 60–66 61

efficient chromosome representation is designed to produce a good schedule in a reasonable amount
of time.

This study considers a scheduling problem in a company that has a large garden and plantation
area. There is a total plantation area of ± 50 ha and plantation management of ± 200 ha. 18 workers
assign to 3 work shifts every day. Scheduling used in this study is to process guidelines in terms of
work time and vacation time of plantation workers. In the process of scheduling, the components used
are workers, days, and shifts. The worker shift schedule has the goal of providing a daily schedule
divided into thirty-day shifts for each worker. In this study, thirteen employees are assigned into 3
shifts of working time. The morning shift is started at seven o'clock in the morning until three o'clock
in the afternoon, then continued with the afternoon shift that is started at three o'clock in the afternoon
until eleven o'clock at night. The night shift is started at eleven at night o'clock and is ended at seven
o'clock in the morning.

II. Method

The current schedule is made manually. Some workers feel dissatisfied as they have more working
time in national holiday than other workers. Other problems are raised when a worker is assigned
working time in 2 nights shifts continuously as it will impact worker’s physical health.

A genetic algorithm is an algorithm that provides an alternative to the traditional search techniques
by adapting the mechanisms found in the genetic world. The genetic algorithm has been successfully
applied for complex scheduling [18][19][20]. There are several stages in implementing the genetic
algorithm, including determining chromosome structure as solution representation, crossover, and
mutation to produce new solutions and selection to pass the chosen solution for the next iterations
[22].

Determining chromosome representation is a crucial step in implementing the genetic algorithm.
The chromosome representation used is an integer representation. Chromosomes are made based on
the division of the number of plants, the number of workers, and also shift workers. Each chromosome
will contain numbers from the number of workers that will be entered into each existing shift. An
example of part of a chromosome for 2 working days is presented in Figure 1.

There are three shifts: morning, afternoon, and night. The division of workers will then be divided
based on working days and work shifts set by the company. In Figure 1, some numbers refer to worker
numbers. The number of workers in this calculation is 13. Then, the numbers from 1 to 13 will be
assigned to 9 cells (each work shift requires three workers). Then do as much as 30 days / 1 month
each worker must not work on the same day and time, and there must also be a balance in the
distribution of employee scheduling systems. Therefore, it needs good scheduling in which each
employee's composition must be on par with the others.

Penalty calculation is used to find the fitness value of each possible solution [23]. The assessment
is used to measure how good the chromosome is for worker scheduling. The number of violations or
penalties that appear on the chromosome is required to calculate the fitness value. For each violation,
the penalty value will increase 1. The list of penalties that have been determined is presented in
Table 1.

 Day 1 Day 2

 Morning Afternoon Night Morning Afternoon Night

Chromosomes’ genes 1 4 2 3 1 11 12 6 5 6 7 9 9 1 2 3 8 10

Fig. 1. Example of a chromosome

Table 1. List of penalties

Penalty Mean

P1 One worker is registered on the same day/shift

P2 Workers have more vacation days than specified

P3 Workers who have shifted the night will work again in the morning shift the next day

62 W.F. Mahmudy et al. / Knowledge Engineering and Data Science 2020, 3 (2): 60–66

How to calculate fitness on the representation of chromosomes is done by first calculating the
number of penalties on each chromosome. For example, there are 9, 12, and 4 violations, according
to P1, P2, and P3, respectively. Thus, the total penalty is calculated in equation (1):

𝑡𝑜𝑡𝑎𝑙𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = 𝑝𝑒𝑛𝑎𝑡𝑦 1 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 2 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦 3 (1)

= 9 + 12 + 4 = 25

The fitness is calculated according to the total penalty as shown in equation (2):

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =
100

100+25
= 0.8 (2)

Initial population generation is required for the initial steps in carrying out the counting process.
The population is formed from randomized data, with a predetermined number of populations. The
amount of the population will be equalized for each generation.

The crossover needed in the genetic process is to get offspring or new chromosomes by choosing
two parents. One cut point crossover is a process of crossing between 2 chromosomes or random
individuals, which cut the two chromosomes and then combine them to the other cut results.

The mutation process is used to get offspring by using 1 parent. Exchange mutation is used. The
method works by randomly selecting two positions (exchange point) and then exchanging the two
positions' values.

After doing a fitness calculation for all chromosomes resulting from the crossover and mutation
process, it is also necessary to select which chromosomes will be passed to the next generation. Elitsm
selection is implemented by gathering both parent and offspring into a pool, then the highest value of
chromosomes will be selected

III. Results and Discussions

A. Population Size Testing

Testing on this stage is carried out to measure the effect of population size (number of
chromosomes in the population) on the fitness values. The test will use the crossover rate with a value
of 0.4 and a mutation rate with a value of 0.6. The results of the test are presented in Table 2 and
Figure 2.

Figure 2 shows that in the low population size, the fitness value is lower than the others. The greater
the population's size, the fitness value will also tend to be better, but at some point, the increase in
population size does not provide a significant increase in fitness value. In the 140th population and
200th population, fitness value achieves the best value compared to other populations. Then the optimal
solution in testing the population is a population of 200. Therefore, the next test population will be
used 200 for further testing. In the 200th population, the fitness value achieved is 0.6944.

Table 2. Result of population size testing

Population Size Fitness Average

20 0.66225

40 0.66666

60 0.68493

80 0.67567

100 0.68027

120 0.67567

140 0.69444

160 0.68027

180 0.68965

200 0.69444

220 0.68027

240 0.67114

 W.F. Mahmudy et al. / Knowledge Engineering and Data Science 2020, 3 (2): 60–66 63

B. Number of Generations Testing

Testing the number of generations aims to find the optimum generation known by looking at the
best average fitness results. In this stage, the population size used is 200, and the values of the
crossover rate and mutation rate are 0.4 and 0.6, respectively.

As with the effect of population size, the greater the number of generations, the fitness value will
also tend to be better, but at a certain point, the addition of the number of generations does not provide
a significant increase in fitness. Figure 3 shows that from generation 0 to generation 140, there has
been a significant increase in the average fitness value. In the 172nd generation, the average value of
fitness has not increased at all. In the 172nd generation, the average fitness value obtained was 0.71942.
Therefore, the 172nd generation is the best.

C. Crossover and Mutation Rate Testing

Tests of crossover rate and mutation rate are made to determine the optimal value to reach the best
fitness value. The use of crossovers and mutations is to combine and produce offspring for the next
generations from the previous explanation. In this test, the value of the rate is used, starting from 0 to
1 with an interval of 0.1. From these results, it can be seen which combination is the best result in this
optimization. The result is presented in Table 3.

The crossover and mutation rate testing is started from the value mutation rate of 1 and a crossover
rate of 0. The first test's value produces a value of 0.609, which is still relatively low compared with
the other results. The highest fitness average is found in the mutation rate of 0.4 and a crossover rate
of 0.6. Therefore, the values will be used for the next stage.

D. Scheduling Result

Testing at this stage is used to get the best schedule using the best parameters that have been
obtained in the previous tests. In the last test, the best population was the 200th population, with 172
generations using a crossover rate and mutation rate of 0.6 and 0.4, respectively. The change of fitness
values during generations is shown in Figure 4.

In the generations of 172, the genetic algorithm obtained a solution with a smaller number of
penalties. In this case, the fitness value obtained is 0.7246, and the schedule is shown in Table 4. In
the worker schedule for 30 days, there are 3 division numbers indicating each shift. The division starts
from the morning, afternoon, and night shifts. The worker's ID will fill each shift.

Fig. 2. Result of population size testing

0.66

0.665

0.67

0.675

0.68

0.685

0.69

0.695

0.7

0 50 100 150 200 250 300

fi
tn

es
s

Population Size

64 W.F. Mahmudy et al. / Knowledge Engineering and Data Science 2020, 3 (2): 60–66

Table 3. Result of crossover dan mutation rate testing

No Mutation rate Crossover rate Fitness Average

1 1 0 0.6092052235648612

2 0.9 0.1 0.6244287846532304

3 0.8 0.2 0.6415168703054328

4 0.7 0.3 0.6672733216846897

5 0.6 0.4 0.6775241304953841

6 0.5 0.5 0.6938093972311976

7 0.4 0.6 0.6951620993246688

8 0.3 0.7 0.6950206375328978

9 0.2 0.8 0.6837869424975724

10 0.1 0.9 0.6747470681063829

11 0 1 0.6027972532168469

Table 4. Worker schedule for 30 days

Day
Worker

Morning Afternoon Night

1 [3, 9, 13] [12, 5, 2] [6, 8, 7]

2 [12, 10, 1] [13, 4, 6] [9, 5, 8]

3 [2, 3, 1] [4, 6, 8] [11, 5, 10]

4 [1, 9, 12] [6, 7, 3] [13, 10, 5]

5 [8, 2, 11] [10, 12, 3] [5, 1, 9]

6 [7, 11, 13] [2, 6, 3] [4, 8, 5]

7 [12, 1, 3] [9, 4, 7] [8, 10, 6]

8 [3, 5, 12] [7, 9, 8] [4, 2, 6]

9 [11, 13, 5] [1, 4, 2] [6, 10, 7]

10 [11, 1, 12] [4, 2, 6] [5, 8, 9]

11 [6, 10, 3] [13, 8, 2] [9, 7, 4]

12 [8, 12, 3] [1, 4, 11] [13, 10, 7]

13 [1, 12, 3] [8, 9, 5] [13, 4, 6]

14 [8, 11, 9] [2, 4, 5] [13, 7, 3]

15 [10, 6, 9] [1, 12, 3] [2, 13, 11]

16 [7, 9, 6] [13, 5, 4] [2, 8, 12]

17 [1, 10, 7] [9, 11, 3] [13, 5, 12]

18 [9, 1, 4] [8, 12, 7] [11, 3, 2]

19 [7, 4, 5] [2, 1, 3] [13, 10, 9]

20 [11, 7, 1] [12, 2, 6] [10, 9, 3]

21 [6, 12, 7] [5, 2, 4] [1, 13, 3]

22 [8, 12, 5] [7, 3, 6] [9, 11, 10]

23 [8, 12, 6] [10, 4, 9] [3, 7, 1]

24 [11, 6, 5] [1, 8, 13] [12, 4, 10]

25 [13, 11, 5] [10, 6, 1] [3, 2, 4]

26 [13, 1, 9] [11, 2, 8] [4, 12, 6]

27 [2, 13, 11] [5, 8, 7] [12, 4, 10]

28 [2, 13, 11] [5, 8, 7] [12, 4, 10]

29 [1, 9, 6] [5, 11, 8] [2, 3, 12]

30 [4, 11, 1] [2, 8, 12] [7, 10, 5]

 W.F. Mahmudy et al. / Knowledge Engineering and Data Science 2020, 3 (2): 60–66 65

IV. Conclusion

Genetic algorithms for optimizing worker scheduling can be implemented with integer
chromosome representation. The chromosome representation consists of the worker's ID, date of
work, and daily shift. An initial stage is required to obtain the best parameter values for the genetic
algorithm. The best parameter values are required to ensure that the genetic algorithm produces a good
worker’s schedule in a reasonable amount of time. Using the best parameter values, the genetic
algorithm obtained a solution with a smaller number of penalties in the generations of 172. The next
study will consider adding local searches into the genetic algorithm’s cycle to produce a better
solution.

Declarations

Author contribution

All authors contributed equally as the main contributor of this paper. All authors read and approved the final paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare no conflict of interest.

Fig. 3. Result of number of generations testing

Fig. 4. Result of genetic algorithm running using the best parameter values

66 W.F. Mahmudy et al. / Knowledge Engineering and Data Science 2020, 3 (2): 60–66

Additional information

No additional information is available for this paper.

References

[1] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, Real coded genetic algorithms for Solving Flexible Job-Shop
Scheduling Problem- Part I: Modelling, vol. 701. 2013.

[2] H. Kikuchi et al., “Association of overtime work hours with various stress responses in 59,021 Japanese workers:
Retrospective cross-sectional study,” PLoS One, vol. 15, no. 3, p. e0229506, Mar. 2020.

[3] K. Bhui, S. Dinos, M. Galant-Miecznikowska, B. de Jongh, and S. Stansfeld, “Perceptions of work stress causes and
effective interventions in employees working in public, private and non-governmental organisations: a qualitative study,”
BJPsych Bull., vol. 40, no. 6, pp. 318–325, Dec. 2016.

[4] Z. Jia, J. Yan, J. Y. T. Leung, K. Li, and H. Chen, “Ant colony optimization algorithm for scheduling jobs with fuzzy
processing time on parallel batch machines with different capacities,” Appl. Soft Comput., vol. 75, pp. 548–561, 2019.

[5] L. Wang, J. Cai, M. Li, and Z. Liu, “Flexible Job Shop Scheduling Problem Using an Improved Ant Colony
Optimization,” Sci. Program., vol. 2017, p. 9016303, 2017.

[6] C. Gallo and V. Capozzi, “A Simulated Annealing Algorithm for Scheduling Problems,” J. Appl. Math. Phys., vol. 7,
Oct. 2019.

[7] F. Chahyadi, A. Azhari, and H. Kurniawan, “Hospital Nurse Scheduling Optimization Using Simulated Annealing and
Probabilistic Cooling Scheme,” Indones. J. Comput. Cybern. Syst., vol. 12, no. 1, pp. 21–32, 2018.

[8] A. Dabah, A. Bendjoudi, and A. AitZai, “An efficient Tabu Search neighborhood based on reconstruction strategy to
solve the blocking job shop scheduling problem,” J. Ind. Manag. Optim., vol. 13, no. 4, pp. 2015–2031, 2017.

[9] A. I. Awad, N. A. El-Hefnawy, and H. M. Abdel_kader, “Enhanced Particle Swarm Optimization for Task Scheduling
in Cloud Computing Environments,” Procedia Comput. Sci., vol. 65, pp. 920–929, 2015.

[10] H. Jiang, J. Liu, H.-W. Cheng, and Y. Zhang, “Particle swarm optimization based space debris surveillance network
scheduling,” Res. Astron. Astrophys., vol. 17, no. 3, p. 30, 2017.

[11] S. Thevenin and N. Zufferey, “Learning Variable Neighborhood Search for a scheduling problem with time windows
and rejections,” Discret. Appl. Math., vol. 261, pp. 344–353, 2019.

[12] W. Jomaa, M. Eddaly, and B. Jarboui, “Variable neighborhood search algorithms for the permutation flowshop
scheduling problem with the preventive maintenance,” Oper. Res., 2019.

[13] M. Samà, A. D׳Ariano, F. Corman, and D. Pacciarelli, “A variable neighbourhood search for fast train scheduling and
routing during disturbed railway traffic situations,” Comput. Oper. Res., vol. 78, pp. 480–499, 2017.

[14] R. Rody, W. F. Mahmudy, and I. P. Tama, “Using Guided Initial Chromosome of Genetic Algorithm for Scheduling
Production-Distribution System,” J. Inf. Technol. Comput. Sci., vol. 4, no. 1, pp. 26–32, 2019.

[15] M. L. Seisarrina, I. Cholissodin, and H. Nurwarsito, “Invigilator Examination Scheduling using Partial Random
Injection and Adaptive Time Variant Genetic Algorithm,” J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 113–119, 2018.

[16] H. Algethami, R. L. Pinheiro, and D. Landa-Silva, “A genetic algorithm for a workforce scheduling and routing
problem,” in 2016 IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 927–934.

[17] V. Meilia, B. D. Setiawan, and N. Santoso, “Extreme Learning Machine Weights Optimization Using Genetic
Algorithm In Electrical Load Forecasting,” J. Inf. Technol. Comput. Sci., vol. 3, no. 1, pp. 77–87, 2018.

[18] A. Rahmi, W. F. Mahmudy, and M. Z. Sarwani, “Genetic Algorithms for Optimization of Multi-Level Product
Distribution,” Int. J. Artif. Intell., vol. 18, no. 1, pp. 135–147, 2020.

[19] V. N. Wijayaningrum and W. F. Mahmudy, “Optimization of ship’s route scheduling using genetic algorithm,” Indones.
J. Electr. Eng. Comput. Sci., vol. 2, no. 1, 2016.

[20] L. R. Abreu, J. O. Cunha, B. A. Prata, and J. M. Framinan, “A genetic algorithm for scheduling open shops with
sequence-dependent setup times,” Comput. Oper. Res., vol. 113, p. 104793, 2020.

[21] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, “Hybrid genetic algorithms for multi-period part type selection
and machine loading problems in flexible manufacturing system,” 2013 IEEE Int. Conf. Comp. Intl. Cyb.
(CYBERNETICSCOM), Dec. 2013.

[22] M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization. New York: John Wiley & Sons, Inc., 2000.

[23] B. F. Rosa, M. J. F. Souza, S. R. de Souza, M. F. de França Filho, Z. Ales, and P. Y. P. Michelon, “Algorithms for job
scheduling problems with distinct time windows and general earliness/tardiness penalties,” Comput. Oper. Res., vol. 81,
pp. 203–215, 2017.

https://doi.org/10.4028/www.scientific.net/amr.701.359
https://doi.org/10.4028/www.scientific.net/amr.701.359
https://doi.org/10.1371/journal.pone.0229506
https://doi.org/10.1371/journal.pone.0229506
https://doi.org/10.1192/pb.bp.115.050823
https://doi.org/10.1192/pb.bp.115.050823
https://doi.org/10.1192/pb.bp.115.050823
https://doi.org/10.1016/j.asoc.2018.11.027
https://doi.org/10.1016/j.asoc.2018.11.027
https://doi.org/10.1155/2017/9016303
https://doi.org/10.1155/2017/9016303
https://doi.org/10.4236/jamp.2019.711176
https://doi.org/10.4236/jamp.2019.711176
https://doi.org/10.22146/ijccs.23056
https://doi.org/10.22146/ijccs.23056
https://doi.org/10.3934/jimo.2017029
https://doi.org/10.3934/jimo.2017029
https://doi.org/10.1016/j.procs.2015.09.064
https://doi.org/10.1016/j.procs.2015.09.064
https://doi.org/10.1088/1674-4527/17/3/30
https://doi.org/10.1088/1674-4527/17/3/30
https://doi.org/10.1016/j.dam.2018.03.019
https://doi.org/10.1016/j.dam.2018.03.019
https://doi.org/10.1007/s12351-019-00507-y
https://doi.org/10.1007/s12351-019-00507-y
https://doi.org/10.1016/j.cor.2016.02.008
https://doi.org/10.1016/j.cor.2016.02.008
https://doi.org/10.25126/jitecs.20194195
https://doi.org/10.25126/jitecs.20194195
https://doi.org/10.25126/jitecs.20183250
https://doi.org/10.25126/jitecs.20183250
https://doi.org/10.1109/cec.2016.7743889
https://doi.org/10.1109/cec.2016.7743889
https://doi.org/10.25126/jitecs.20183154
https://doi.org/10.25126/jitecs.20183154
http://www.ceser.in/ceserp/index.php/ijai/article/view/6382
http://www.ceser.in/ceserp/index.php/ijai/article/view/6382
https://doi.org/10.11591/ijeecs.v2.i1.pp180-186
https://doi.org/10.11591/ijeecs.v2.i1.pp180-186
https://doi.org/10.1016/j.cor.2019.104793
https://doi.org/10.1016/j.cor.2019.104793
https://doi.org/10.1109/cyberneticscom.2013.6865795
https://doi.org/10.1109/cyberneticscom.2013.6865795
https://doi.org/10.1109/cyberneticscom.2013.6865795
https://doi.org/10.1002/9780470172261
https://doi.org/10.1016/j.cor.2016.12.024
https://doi.org/10.1016/j.cor.2016.12.024
https://doi.org/10.1016/j.cor.2016.12.024

	I. Introduction
	II. Method
	III. Results and Discussions
	A. Population Size Testing
	B. Number of Generations Testing
	C. Crossover and Mutation Rate Testing
	D. Scheduling Result

	IV. Conclusion
	Declarations
	Author contribution
	Funding statement
	Conflict of interest
	Additional information

	References
	[1] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, Real coded genetic algorithms for Solving Flexible Job-Shop Scheduling Problem- Part I: Modelling, vol. 701. 2013.
	[2] H. Kikuchi et al., “Association of overtime work hours with various stress responses in 59,021 Japanese workers: Retrospective cross-sectional study,” PLoS One, vol. 15, no. 3, p. e0229506, Mar. 2020.
	[3] K. Bhui, S. Dinos, M. Galant-Miecznikowska, B. de Jongh, and S. Stansfeld, “Perceptions of work stress causes and effective interventions in employees working in public, private and non-governmental organisations: a qualitative study,” BJPsych Bul...
	[4] Z. Jia, J. Yan, J. Y. T. Leung, K. Li, and H. Chen, “Ant colony optimization algorithm for scheduling jobs with fuzzy processing time on parallel batch machines with different capacities,” Appl. Soft Comput., vol. 75, pp. 548–561, 2019.
	[5] L. Wang, J. Cai, M. Li, and Z. Liu, “Flexible Job Shop Scheduling Problem Using an Improved Ant Colony Optimization,” Sci. Program., vol. 2017, p. 9016303, 2017.
	[6] C. Gallo and V. Capozzi, “A Simulated Annealing Algorithm for Scheduling Problems,” J. Appl. Math. Phys., vol. 7, Oct. 2019.
	[7] F. Chahyadi, A. Azhari, and H. Kurniawan, “Hospital Nurse Scheduling Optimization Using Simulated Annealing and Probabilistic Cooling Scheme,” Indones. J. Comput. Cybern. Syst., vol. 12, no. 1, pp. 21–32, 2018.
	[8] A. Dabah, A. Bendjoudi, and A. AitZai, “An efficient Tabu Search neighborhood based on reconstruction strategy to solve the blocking job shop scheduling problem,” J. Ind. Manag. Optim., vol. 13, no. 4, pp. 2015–2031, 2017.
	[9] A. I. Awad, N. A. El-Hefnawy, and H. M. Abdel_kader, “Enhanced Particle Swarm Optimization for Task Scheduling in Cloud Computing Environments,” Procedia Comput. Sci., vol. 65, pp. 920–929, 2015.
	[10] H. Jiang, J. Liu, H.-W. Cheng, and Y. Zhang, “Particle swarm optimization based space debris surveillance network scheduling,” Res. Astron. Astrophys., vol. 17, no. 3, p. 30, 2017.
	[11] S. Thevenin and N. Zufferey, “Learning Variable Neighborhood Search for a scheduling problem with time windows and rejections,” Discret. Appl. Math., vol. 261, pp. 344–353, 2019.
	[12] W. Jomaa, M. Eddaly, and B. Jarboui, “Variable neighborhood search algorithms for the permutation flowshop scheduling problem with the preventive maintenance,” Oper. Res., 2019.
	[13] M. Samà, A. D׳Ariano, F. Corman, and D. Pacciarelli, “A variable neighbourhood search for fast train scheduling and routing during disturbed railway traffic situations,” Comput. Oper. Res., vol. 78, pp. 480–499, 2017.
	[14] R. Rody, W. F. Mahmudy, and I. P. Tama, “Using Guided Initial Chromosome of Genetic Algorithm for Scheduling Production-Distribution System,” J. Inf. Technol. Comput. Sci., vol. 4, no. 1, pp. 26–32, 2019.
	[15] M. L. Seisarrina, I. Cholissodin, and H. Nurwarsito, “Invigilator Examination Scheduling using Partial Random Injection and Adaptive Time Variant Genetic Algorithm,” J. Inf. Technol. Comput. Sci., vol. 3, no. 2, pp. 113–119, 2018.
	[16] H. Algethami, R. L. Pinheiro, and D. Landa-Silva, “A genetic algorithm for a workforce scheduling and routing problem,” in 2016 IEEE Congress on Evolutionary Computation (CEC), 2016, pp. 927–934.
	[17] V. Meilia, B. D. Setiawan, and N. Santoso, “Extreme Learning Machine Weights Optimization Using Genetic Algorithm In Electrical Load Forecasting,” J. Inf. Technol. Comput. Sci., vol. 3, no. 1, pp. 77–87, 2018.
	[18] A. Rahmi, W. F. Mahmudy, and M. Z. Sarwani, “Genetic Algorithms for Optimization of Multi-Level Product Distribution,” Int. J. Artif. Intell., vol. 18, no. 1, pp. 135–147, 2020.
	[19] V. N. Wijayaningrum and W. F. Mahmudy, “Optimization of ship’s route scheduling using genetic algorithm,” Indones. J. Electr. Eng. Comput. Sci., vol. 2, no. 1, 2016.
	[20] L. R. Abreu, J. O. Cunha, B. A. Prata, and J. M. Framinan, “A genetic algorithm for scheduling open shops with sequence-dependent setup times,” Comput. Oper. Res., vol. 113, p. 104793, 2020.
	[21] W. F. Mahmudy, R. M. Marian, and L. H. S. Luong, “Hybrid genetic algorithms for multi-period part type selection and machine loading problems in flexible manufacturing system,” 2013 IEEE Int. Conf. Comp. Intl. Cyb. (CYBERNETICSCOM), Dec. 2013.
	[22] M. Gen and R. Cheng, Genetic Algorithms and Engineering Optimization. New York: John Wiley & Sons, Inc., 2000.
	[23] B. F. Rosa, M. J. F. Souza, S. R. de Souza, M. F. de França Filho, Z. Ales, and P. Y. P. Michelon, “Algorithms for job scheduling problems with distinct time windows and general earliness/tardiness penalties,” Comput. Oper. Res., vol. 81, pp. 203...

