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I. Introduction 

In economics, there are several definitions for the market. Primarily, market refers to a physical 
place where sellers and buyers come together to exchange goods and services [1], but a second 
definition expresses that market does not necessarily need to have a physical existence to encompass 
a specific space; in fact, the market includes all the buyers and sellers that are exchanging some 
specific goods or services. For example, the international stock exchange market is a market whose 
transaction operations occur through international communicational networks and are not limited to a 
certain place. In fact, the market is a mechanism that allows buyers and sellers to exchange their 
properties. These properties can be physical (e.g., estates) or financial (e.g., valuable stock share 
papers) [2][3][4]. 

According to Dominic Salvatore, business is a location or circumstance where buyers and sellers 
trade products, facilities, and capital. Any item, service, or resource that can be traded has a demand. 
However, Salvatore believes that the market can be a non-physical location for trading in addition to 
its physical form [5]. In terms of the type of properties, the market can be divided into the market of 
physical properties (real) and the market of financial properties. The market of physical properties is 
a market where buyers and sellers exchange properties that have physical nature (like automobiles, 
estates, and furniture). The phrase market of financial properties is used for a market. People, including 
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The increasing uncertainty of the natural world has motivated computer scientists to 
seek out the best approach to technological problems. Nature-inspired problem-
solving approaches include meta-heuristic methods that are focused on evolutionary 
computation and swarm intelligence. One of these problems significantly impacting 
information is forecasting exchange index, which is a serious concern with the growth 
and decline of stock as there are many reports on loss of financial resources or 
profitability. When the exchange includes an extensive set of diverse stock, particular 
concepts and mechanisms for physical security, network security, encryption, and 
permissions should guarantee and predict its future needs. This study aimed to show 
it is efficient to use the group method of data handling (GMDH)-type neural networks 
and their application for the classification of numerical results. Such modeling serves 
to display the precision of GMDH-type neural networks. Following the US withdrawal 
from the Joint Comprehensive Plan of Action in April 2018, the behavior of the stock 
exchange data stream and commend algorithms has not been able to predict correctly 
and fit in the network satisfactorily. This paper demonstrated that Group Method Data 
Handling is most likely to improve inductive self-organizing approaches for 
addressing realistic severe problems such as the Iranian financial market crisis. A new 
trajectory would be used to verify the consistency of the obtained equations hence the 
models' validity. 
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natural and legal people, are busy exchanging financial securities, goods, and other properties that can 
be paid for by a small commission. The market prices depend on supply and demand. On the other 
hand, financial securities include shares, bonds, and some other goods (such as expensive metals or 
agriculture produce) [6]. 

Communications and information technology have led to the growth of easy online sales that 
reduce time and cost and prevent physical presence in crowded places. Today, one can easily do 
desired shopping with a few simple clicks. This technology has brought new challenges, including 
data management systems, data recommendation, data classification, and data security risk. Some 
studies [7] and [8] have proposed that forecasting and ensuring should be considered a management 
issue. The main concern in online business organizations is the management of information security 
that deals with the issues of data breaches, identification of burglary, and other online frauds. In terms 
of global security, data breaches are a major concern. Data breaches affect 93 percent of big businesses 
and 87 percent of small businesses in the United Kingdom [9][10]. In the United Kingdom, the total 
cost of a data loss is about 4.1 million dollars, and rehabilitation lasts around nine months and three 
days [11]. Although various technical solutions have been proposed for forecasting exchange in recent 
years, and some are being upgraded, forecasting exchange is still considered a necessary approach 
[12]. Many approaches in forecasting stock exchange indices have been used by the neural networks 
approach and other algorithms. One of the newest methods is proposed in [13]. They all have 
advantages and disadvantages, including computational complexity, high runtime, ungeneralizable 
algorithms, and insufficient accuracy. 

Statistical technological metrics were used in several previous experiments to forecast exchange 
rates. Soft computing tools were used in some of the proposed approaches as a forecasting scheme. 
Hann et al. proposed a new approach for predicting exchange rates based on neural networks vs. linear 
models using monthly and weekly data in 1996 [14]. Mahnaz et al. introduced a Bayesian statistics 
algorithm for predicting exchange rates in 1997. Regardless of the economic model used by 
forecasters, the solution suggested may be used. The International Fisher Effect was used to show how 
the proposed model could be used in practice and how its results differed from the mean squared 
method [15].  

The neural networks proposed by Zhang et al. were used to predict the British Pound/US Dollar 
exchange rate. It looked at how the number of input and hidden nodes and the scale of the training 
sample affected output in-sample and out-of-sample. For this investigation, the British pound/US 
dollar exchange rate was used. Neural networks outperformed linear models, mainly when the forecast 
horizon was small, according to the findings. Furthermore, the number of input nodes has a more 
significant effect on output than the number of hidden nodes, while a more significant number of 
observations allows prediction errors to be reduced [16]. Rodrı́guez et al. proposed simultaneous 
nearest-neighbour methods [17], Leung et al. presented general regression neural networks (GRNN) 
algorithm [18], and Michael et al. introduced SETAR models for exchange rate forecasting [19]. Chen 
et al. published a Bayesian vector error correction model for exchange rate forecasting in 2003. They 
developed the Bayesian Vector Error Correction Model (BVECM), which they used to predict shifts 
in currency exchange rates for three big Asia Pacific economies one month ahead [20]. Chen et al. 
[21] developed a regression neural network and used an adaptive forecasting method that combined 
the strengths of neural networks and multivariate econometric models to provide a solution to error 
correction in foreign exchange forecasting and trading. A time series model was used to estimate the 
exchange rates, and a General Regression Neural Network was used to correct the estimate errors in 
this process. Several experiments and statistical methods were used to compare the consistency of the 
two-stage models (with neural network error correction) and the single-stage models (without neural 
network error correction). 

In 2005, Yu et al. presented a novel nonlinear ensemble forecasting model incorporating GLAR 
and ANN [22]. In 2007, Preminger et al. presented a robust regression approach [23], and in 2008 
Wright et al. introduced Bayesian Model Averaging for foreign exchange [24]. In 2009, Carriero et al. 
presented a large Bayesian VAR for foreign exchange [25], and in 2012, Ye et al. introduced MB 
Exchange Rate Forecast Approach Based on BP Neural Network. This paper chose RMB exchange 
rate data from July 2005 to September 2010 to establish a BP neural network model to forecast RMB 
exchange rate in the future by using MATLAB software [26]. Korol et al. in 2014 proposed a fuzzy 
logic model [27], and in 2015, Shen et al. presented deep belief networks and conjugate gradient 
method [28], and in 2016, Abounoori et al. introduced Markov switching GARCH approach [29] for 
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forecasting exchange rates. In 2017, Kolasa et al [30] proposed DSGE models, and in 2018, Sun et al. 
introduced a new multiscale decomposition ensemble approach. In the latter approach, foreign 
exchange rates were divided into a limited number of subcomponents by employing the variational 
mode decomposition (VMD). And in order to model and forecast each subcomponent, it used the 
support vector neural network (SVNN) technique. Another SVNN technique was utilized to integrate 
the forecasting results of each subcomponent. The quality of the performance of the proposed 
approach was tested by comparing and evaluating four key exchange rates. The experimental results 
showed that the forecasting accuracy and statistical tests of the proposed VMD-SVNN-SVNN 
multiscale decomposition ensemble approach were higher than some other benchmarks. Therefore, in 
forecasting foreign exchange rates, the proposed VMD-SVNN-SVNN multiscale decomposition 
ensemble method proved superior [31]. Variational Mode Decomposition and entropy theory was 
proposed to forecast exchange rates [32]. Dzalbs et al. proposed Cartesian Genetic Programming and 
artificial neural network (ANN), and Amat et al. presented simple machine learning methods for 
forecasting exchange rates [33]. The methods they used were sequential ridge regression and the 
exponentially weighted average strategy. Neither of them estimated an underlying model with 
discount factors but combined the fundamentals to directly output forecasts [34]. Finally, in 2019, Wei 
et al. presented Decomposition Clustering Ensemble Learning Approach [35], and Fu et al. introduced 
a support vector machine for RMB [36], and Ni et al. proposed Deep Learning [37] and Wang et al. 
nonlinear Taylor rule-based models for Forecasting Foreign Exchange Rates [38].  

One self-organizing approach is named the group method of data handling (GMDH) algorithm 
among the newly developed methods. This approach evaluates the models' accuracy in a group of 
multi-input single-output data pairs, eventually yielding more complex models. As a result, GMDH 
will aid in creating an analytical function in a feed-forward network by solving the problem of initial 
information about the system's mathematical model and relying on a quadratic node transfer function. 
The coefficients of the equation are calculated using the regression technique [39][40][41]. Thus, this 
research makes use of the GMDH neural network algorithm to forecast stock exchange data. Other 
sections of the article include the introduction of the method with the description of the proposed 
architecture, results and discussion, and finally, the conclusion. 

II.  Method 

The artificial neural network is an information processing system that has features in common with 
natural neural networks. Neural networks are generalized mathematical models of human recognition 
based on biology that have several assumptions, some of which are as follows [6][42]: 

• Neurons do information processing operations. 
• Signals are transferred between neurons in the network via their bonds or connections. 
• Each bond has its weight that is multiplied by its transferred signals in common neural 

networks. 

Each neuron applies an activation function on its inputs, the weighted sum of the input signals to 
produce its output signals.  

Figure 1 shows the flowchart is a suggested method for forecasting currency. As shown in Figure 1, 
the exchange dataset is first introduced into the proposed system. Then all data are preprocessed. After 
the preprocessing of the exchange dataset, the missing values are removed. Then the data prepared 
and received from the Stock Exchange are converted into an acceptable format for simulation.  

In the next step, the data are normalized, and then the sampling process is performed. Train sample 
(80%) is used to generate the model by GMDH neural network algorithm and test samples (20%) to 
evaluate the performance of the proposed method. Train data are applied to the GMDH neural network 
algorithm, and a model is developed after the training. After model generation, test data is applied to 
the model for prediction. Finally, it is examined whether all specimens are predicted. If all new 
samples are completed, evaluation and calculation of the results are performed.  

After the data are entered into the proposed system, the desired data are preprocessed, and then the 
unused and useless samples are deleted. Next, the data converted into cohesive after-pre-processing 
becomes an acceptable format for simulation tools. At this point, the data are usually converted into 
an Excel and integrated format. 
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For preprocessing the data, various methods have been proposed, which are as follows: 

• Clearing the data 
• Data collection 
• Data transfer 
• Reduced 

Given the problem in this research, the present study has made use of only the data clearing method. 
The proposed strategy analyzes the data and identifies if the row or column has empty or unused 
values. Then the empty or unused values will be examined before and after the sample, and their 
averages will be computed. Finally, the null value will be replaced with the obtained average. By 
doing so, the samples will be lost, and more consistent data will be generated. 

After the prototype has disappeared, the data have to be prepared and for this purpose. The 
preprocessed data are converted into an acceptable format for simulation tools. The default format for 
the data is in Excel, and therefore, for the analysis, we initially need case-tested data. 

In the preprocessing stage, the values of each attribute of the data used are normalized from 0 to 1. 
Then we rotate the rows of the general data matrix randomly so that the order of the data is collected 
from the initial state, Get out. In addition, all data are mapped in a matrix form and changes in matrix 
rows, and then normalization operations are performed. Normalization is due to higher precision. 
Relationship (1) is used to normalize the values of each set of data. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒(𝑥) =
(𝑥−𝑋𝑚𝑖𝑛)

(𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛)
 (1) 

Xmax and Xmin are the maximum and minimum values in the X-property range. After normalizing the 
data, the values of all the adjectives are in the range [0,1]. 
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Fig. 1. The proposed method flowchart 
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It is assumed that the Train Samples will learn the GMDH algorithm, and the resultant model will 
be used for other data. Training samples are usually 80% of the total sample. Test samples representing 
20% of the total samples are used to evaluate and validate the method. These samples are used for 
testing and measuring the efficiency and validation of the proposed method. After the training samples 
(80%) and the experimental samples (20%) were normally subdivided, we apply the training samples 
to GMDH neural network algorithms as inputs. 

A.  Group Method of Data Handling (GMDH) 

Group method of data handling (GMDH) is a family of inductive algorithms for computer-based 
mathematical modeling of multi-parametric datasets that features fully automatic structural and 
parametric optimization of models. GMDH is used in data mining, knowledge discovery, prediction, 
complex systems modeling, optimization, and pattern recognition. In 2017, Li et al. showed that 
GMDH neural network outperformed the classical forecasting algorithms such as Single Exponential 
Smooth, Double Exponential Smooth, ARIMA, and back-propagation neural network.  

GMDH algorithms (Figure 2) are characterized by an inductive procedure that gradually sorts out 
complicated polynomial models and selects the best solution through the so-called external criterion 
[9][42]. A set of neurons can represent the standard GMDH algorithm. They contain different pairs of 
neurons in each layer, and they are joined utilizing a quadratic polynomial. The result of this 
connection is new neurons in the next layer.  

This representation can be utilized to model the mapping inputs to outputs. The identification 

problem is formally defined as a way of finding a function 𝑓 so that it can be approximately used in 
place of the actual one, 𝑓 for the prediction of the output �̂�  for a given input vector 𝑋 =
(𝑥1. 𝑥2. 𝑥3. … . 𝑥𝑛) possibly close to its actual output 𝑦. Thus, given M, samples of multi-input single-
output data pairs define the equations (2): 

𝑦𝑖 = 𝑓(𝑥𝑖1. 𝑥𝑖2. 𝑥𝑖3. … . . 𝑥𝑖𝑛).    𝑖 = 1.2.… .𝑀 (2) 

A GMD-type neural network may now be trained for the prediction of the output values 𝑋 =
(𝑥𝑖1. 𝑥𝑖2. 𝑥𝑖3. … . 𝑥𝑖𝑛). It means,  

�̂�𝑖 = 𝑓(𝑥𝑖1. 𝑥𝑖2. 𝑥𝑖3. … . . 𝑥𝑖𝑛).    𝑖 = 1.2.… .𝑀 (3) 

There is now the problem of determining a GMDH-type neural network to minimize the square of the 
difference between the predicted output and the actual one: 

∑ [(𝑓(𝑥𝑖1. 𝑥𝑖2. 𝑥𝑖3. … . 𝑥𝑖𝑛) − 𝑦𝑖)
2] → 𝑀𝑖𝑛.𝑀

𝑘=1  (4) 

A complicated polynomial of the form can display the general connection between inputs and output 
variables, known as the Ivakhnenko polynomial [43]. 

�̂� = 𝑎0 + ∑ 𝑎𝑖𝑥𝑖 + ∑ ∑ 𝑎𝑖𝑗𝑥𝑖𝑥𝑗 + ∑ ∑ ∑ 𝑎𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘 + ⋯𝑚
𝑘=1

𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑗=1

𝑚
𝑖=1

𝑚
𝑖=1  (5) 

Most applications, however, use the quadratic form of two variables in the following form to predict 
the output y. 

�̂� = 𝐺(𝑥𝑖 . 𝑥𝑗) = 𝑎0 + 𝑎1𝑥𝑖 + 𝑎3𝑥𝑖
2 + 𝑎4𝑥𝑗

2 + 𝑎5𝑥𝑖𝑥𝑗 (6)  

 
Fig. 2. Structure of GMDH Network 
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Using regression techniques, the coefficients a_i in equation (5) are calculated [43] in order to 
minimize the difference between actual output, y, and the calculated one, �̂�, for each pair of 𝑥𝑖 . 𝑥𝑗) as 

input variables. In fact, it shows that through the quadratic form given in equation (5), whose 
coefficients are obtained in a least-squares sense, a tree of polynomials is constructed. Therefore, the 
coefficients of each quadratic function 𝐺𝑖 are derived to fit the output in the whole set input-output 
pair optimally: 

𝑟2 =
∑ (𝑦𝑖−𝐺𝑖)

𝑀
𝑖=1

∑ 𝑦𝑖
2𝑀

𝑖=1

→ 𝑀 𝑖𝑛 (7) 

The construct of the regression polynomial in equation (6) can very well fit the dependent samples 

(𝑦𝑖 . 𝑖 = 1.2.… .𝑀) in a least-squares sense. As a result, (
𝑛
2
) =

𝑛(𝑛−1)

2
 neurons will be constructed in 

the second layer of the feed-forward network from the samples {(𝑦𝑖 . 𝑥𝑖𝑝. 𝑥𝑖𝑝). (𝑖 = 1.2.… .𝑀)} for 

different 𝑝. 𝑞𝜖{1.2.… .𝑀} (Farlow 1984). It means that there is a possibility for the construction of M 

data triples {(𝑦𝑖 . 𝑥𝑖𝑝. 𝑥𝑖𝑞). (𝑖 = 1.2.… .𝑀)} from samples using such 𝑝. 𝑞𝜖{1.2. … .𝑀} 

[

𝑥1𝑝 𝑥1𝑝

𝑥2𝑝 𝑥2𝑞
⋯

𝑥𝑀𝑝

⋯
𝑥𝑀𝑝

   

⋮ 𝑦1

𝑦2
⋯
⋮

⋯
𝑦𝑀

] (8) 

The following matrix equation can be readily obtained if the quadratic sub-expression is used in 
the form of equation (6) for each row of M data triples:  

𝐴𝑎 = 𝑌  (9) 

where a is the vector of unknown coefficients of the quadratic polynomial in equation (10):  

𝑎 = {𝑎0. 𝑎1. 𝑎2. 𝑎3. 𝑎4. 𝑎5} (10) 

𝑌 = {𝑦1. 𝑦2. 𝑦3. … . 𝑦𝑀}𝑇 (11) 

is the vector of output values from samples? It shows 

𝐴 =

[
 
 
 
 1
1
⋮
1

𝑥1𝑝

𝑥2𝑝

⋮
𝑥𝑀𝑝

𝑥1𝑞

𝑥2𝑞

⋮
𝑥𝑀𝑝

𝑥1𝑝𝑥1𝑞

𝑥2𝑝𝑥2𝑞

⋮
𝑥𝑀𝑝𝑥𝑀𝑞

𝑥1𝑝
2

𝑥2𝑝
2

⋮
𝑥𝑀𝑝

2

𝑥1𝑞
2

𝑥2𝑞
2

⋮
𝑥𝑀𝑞

2
]
 
 
 
 

 (12) 

The least-squares technique from multiple-regression analysis results in the solution of the normal 
equations as follows:  

𝑎 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌 (13) 

The vector of the best coefficients of the quadratic (5) for the whole set of M data triples, but this 
solution directly derived from normal equations is almost capable of rounding off errors and, more 
importantly, of the singularity of these equations. 

B. Structural Identification of GMDH Type Neural Networks 

For the structural identification of GMDH-type networks, there are different approaches [39][41]:  

1. Increasing Selection Pressure Approach (ISP). In the approach of selection pressure, there is 
only one parameter that is sequentially increased in different layers so that the number of 
neurons in each layer and the number of layers in the network can be determined. 

2. Pre-specified Structural Design Approach (PSD). This approach prescribes the number of 
layers in the network and the number of neurons in each layer. 

3. Error Driven Structural approach (EDS). In this approach, following a threshold error for 
equation (6). It is possible to determine the number of layers and al. Moreover, the third 
approach also differs in that it is possible to include in subsequent layers some of the input 
variables or generated neurons in different layers. Therefore, the structure of such a network 
may be more complex than those generated in other approaches. 
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III. Results and Discussions 

This Section describes the dataset, evaluation metrics and then discusses the results of the proposed 
method. Firstly, the dataset used to forecast the stock exchange data is described in Section III.A. 
Secondly, the evaluation metrics of the proposed method are presented in Section III.B. Finally, in 
Section III.C, the analysis of the results is discussed. 

The software and hardware configuration of the experimental environment is shown in Table 1. 
As can be seen from Table 1, the operating system (OS) Windows 10, the OS type is also 64-bit, 4GB 
of RAM used that 3.06 gigabytes of usable, CPU is intel (Core™ i7 CPU) - Q720 @ 1.60GHz 1.60 
GHz. 

A. Dataset  

The Iranian stock exchange Database has been the primary data source for the daily exchange rates 
in this research project. The data collection was from 4 January 2015 to 28 February 2018, as shown 
in Figure 3. They included the general forms of the dataset for the mechanism of access: the average 
price of gold and dollar, volume, value, and the number of transactions. 

As Table 2 illustrates, the dataset was in two parts: in-sample subset and out-of-sample subset, but 
the table does not cover the detailed data. They can either be secured directly from the authors or 
accessed at the Iranian stock exchange database. 

Table 3 presents the descriptive statistics for the foreign stock exchange data. They describe the 
basic statistical characteristics of the data exchange rate and include minimum, maximum, mean, 
standard deviation, skewness, and kurtosis. As a measure of the symmetry of the dataset, skewness is 
employed. Zero skewness represents a perfectly symmetric distribution, while negative and positive 

 

Fig. 3. Daily exchange rates data range from January 4, 2015 to February 28, 2018 

Table 1. Experimental environment configuration 

Configuration items Configuration parameter 

OS Windows 10 

OS Type 64 bits 

CPU Intel (Core™)i7 CPU) – Q 720 @ 1.60GHz 1.60 GHz 

RAM 8 GB 

H.D.D 1 TB 

 

Table 2. In-sample and out-of-sample dataset of these exchange rate series 

Time Series Sample type From To Sample size 

USD/Dollar In-sample 4 January 2015 28 February 2018 819 

Out-of-sample 240 
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skewness show that distribution is skewed to the left and right, respectively. However, if the value of 
absolute skewness is great, the asymmetry is more specific. However, kurtosis represents a 
measurement of the extremities (i.e., tails) of the distribution of data, indicating the existence of 
outliers. The standard measure of kurtosis is on the basis of a scaled version of the fourth moment of 
the data. This figure shows the tails of the distribution. In this regard, a higher kurtosis results from 
infrequent extreme deviations (or outliers) than the frequent modestly sized deviations. The kurtosis 
of any univariate normal distribution (standard Gaussian distribution) is 3, and if it is greater than 3, 
the observation is more concentrated with a shorter tail than the normal distribution. However, if the 
kurtosis is less than 3, the observation is not so concentrated, and it has a longer tail than the normal 
one, as is common in the uniform distribution of the rectangle. The results are normalized with 
equation (1) in Table 3. 

B. Evaluation Metric  

In order to assess the level forecasting accuracy of the proposed FED-GMDH, three main 
evaluation metrics are used to compare the out-of-sample forecasting performance. For level 
forecasting accuracy evaluation, the mean absolute error (MAE), the root mean square error (RMSE), 
and the mean absolute percentage error (MAPE) is selected, respectively, as follow: 

𝑀𝐴𝐸 =
1

𝑇
∑ |𝑦𝑡 − 𝑌′

𝑡|.
𝑇
𝑡=1  (14) 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ |𝑦𝑡 − 𝑌′

𝑡|.
𝑇
𝑡=1  (15) 

𝑀𝐴𝑃𝐸 =
1

𝑇
∑ |

𝑦𝑡−𝑌′
𝑡

𝑦𝑡
| × 100.𝑇

𝑡=1  (16) 

where T is the number of observations in the out-of-sample subset, yt and y't are respectively the actual 
value and the forecast value at time t. 

C. Analyzing Results  

This Section analyzes the simulation results of the proposed method for forecasting stock exchange 
data and discusses the evaluation metric. The primary purpose is to design an intelligent system that 
can predict the unstructured pattern of dollar prices based on other financial market attributes.  

Figure 4 and Figure 5 show the fitting of train and test data sets. Several training runs have been 
performed using different numbers of the group. Figure 4 shows the error distributions from the neural 
network, with the sample containing all 400 simulated patterns. The plots are quite encouraging in 
that there are no very badly reconstructed patterns, and the error distribution is reasonably uniform 
throughout the space. There is some evidence of a slight systematic misfitting of wide spectra. 

In Figure 4(a), 750 train samples are shown. In this Section, the dollar prices and the predicted 
value in the training process are shown by the GMDH algorithm. As can be seen, the GMDH algorithm 
performs the training process with high accuracy and low error. In Figure 4(b), the MAE and RMSE 
are calculated at the training stage, where MAE = 5268.8127, RMSE = 72.5866. In Figure 4(c), the 
Error StD and Mape are calculated at the training stage: Mape = 10.5582, Error StD = 7314.6658.  

Figure 5 shows an example test with the GMDH neural network that fits superimposed. In Figure 
5(a), 85 test samples are shown. In this Section, the dollar prices and the predicted value in the testing 
process are shown by the GMDH algorithm. As can be seen, the GMDH algorithm performs the 
testing process with high accuracy and low error. In Figure 5(b), the MAE and RMSE are calculated 
at the testing stage, where MAE = 5837.4721, RMSE = 76.4034. In Figure 5(c), the Error StD and 
Mape are calculated at the training stage: Mape = 11.4883, Error StD = 9242.0662. 

Table 3. The descriptive statistics of these exchange rate series 

Time Series Minimum Maximum Mean Std* Skewness Kurtosis 

USD/US Dollar 0.075 1 0.244 0.125 1.83 5.11 
 

Note: Std∗ refers to the standard deviation 
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In Figure 6(a), 825 all samples are shown. In this Section, the dollar prices and the predicted value 
in the predicting process are shown by the GMDH algorithm. As can be seen, the GMDH algorithm 
performs the predicting process with high accuracy and low error. In Figure 6(b), the MAE and RMSE 
are calculated at the predicting stage, where MAE = 5325.7481, RMSE = 72.9777. In Figure 6(c), the 
Error StD and Mape are calculated at the predicting stage: Mape = 10.6513, Error StD = 7525.16.  

As shown in Figure 7, the linear regression offers information on two extremes. It provides a global 
appreciation of the accuracy (through the regression value R and through the slope and offset. It 
compares the position of each generated data point with its target counterpart.  

 

Fig. 4. Fitting of training set 

 

Fig. 5. Fitting of testing set 
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IV. Conclusion  

The correct prediction of the price of the currency in the stock market and the banking system of 
any country is significant. With timely and accurate forecasting of the currency, significant 
improvements can be made in each country's economy and foreign exchange industry. In this paper, 

 

Fig. 6. Fitting of all dataset 

 

Fig. 7. Plot regression 
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we have used the GMDH Neural Network algorithm to predict the price of a currency on the Iranian 
stock exchange. The GMDH algorithm is a deep neural network that can predict high-order time series 
examples such as currency. The proposed method in this paper has several stages: data preprocessing, 
data preparation and data normalization, separation of training and testing samples, entering training 
samples into the GMDH neural network algorithm, and generating a network model. Applying test 
samples to the generated model, forecasting the price of the currency and finally, evaluating the 
desired criteria. By simulating the proposed method, the GMDH neural network algorithm predicted 
the minimum amount of error in training, testing, and evaluation of the price of the currency. 
Therefore, this algorithm can be trusted and used to predict the currency's price on the Iranian stock 
exchange. 

As a suggestion for developing the results of this research, we can use the combination of machine 
learning algorithms such as decision tree C5, SVM-Lib, and MLP in the form of a reinforcement 
learning system to improve the results of the GMDH algorithm. We also can improve the results by 
combining optimization methods, CATs, Dragon Fly, GA, and ACO. 
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