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I. Introduction 

Modern society primarily depends on public road transport for their movement and goods. Thus, 
the transportation system is a critical infrastructure for the metropolitan city since it plays a vital role 
in the habitant’s daily life and environment. Moreover, the increasing population requires an 
increasing number of vehicles on the road, often exceeding the infrastructure's total capability, leading 
to more congestion and longer travel time. Because of horrible traffic congestion, three billion gallons 
of fuel are wasted each year, and travelers need to wait in their cars for almost seven billion extra 
hours- (forty-two hours per traveler) [1]. Thus, traffic jam has become a severe problem in almost 
every metropolitan area because of population growth, increasing urbanization, inadequate traffic 
infrastructure, and inefficient traffic signal control. However, in the era of modern civilization, it is 
pretty impossible to stop urbanization; as a result, more public transportation is needed to facilitate 
the increasing population. Increasing the transport capability may be a solution to this issue through 
road infrastructure construction. However, it is costly and time-consuming. Whereas enhancing the 
issue of traffic signal control could be an effective solution to this problem. Reducing 1% traffic 
congestion using an efficient traffic signal control system can save billions in a year [2]. 

Among the various traffic control systems, the adaptive traffic signal control (ATSC) system is the 
most appropriate solution to the traffic signal control problem since it utilizes real-time traffic 
information from road intersections to make the signal control decision. Unlike fixed signal timing, it 
makes dynamic traffic signaling based on the incoming data [3] more suitable for reducing traffic 
jams. ATSC catches the attention of researchers because it can intelligently regulate the traffic signal 
to minimize traffic congestion. The traffic controller is needed to be correctly trained to make the 
proper signal timing to mitigate congestion. Recently Deep Reinforcement Learning (DRL) has been 
used to train the traffic controller [4][5][6][7] in many kinds of research. In the traffic signal control 
problem, the proper decision is unknown, and to evaluate the decision, we need to wait until the effect 
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of the decision is observed. This type of problem can be solved by Deep Q-Learning Network (DQN), 
a type of DRL.  

In DRL, the traffic light controller observes the present traffic condition as a state, and it has a 
decision unit that decides which traffic phase to activate in a particular situation, i.e., which traffic 
light turns green. According to the decision of the controller, the action is employed. The traffic 
condition changes after the action and is based on the traffic condition, and a scalar reward value is 
gained from the environment shown in Figure 1. In DRL, the impact of the decision is evaluated by 
reward value. If the reward value is high, the decision is labeled as good and bad if the reward value 
is low. The traffic light controller is trained to make decisions in different traffic conditions to gain 
high reward values to change traffic phases effectively to improve the traffic flow. Thus, reward value 
plays an essential role in DRL, and it can act as an evaluator of the action. The main objective of the 
DRL agent is to maximize the reward collected from the environment over time. More specifically, 
the reward function describes the problem the agent is trying to solve. It also defines the best possible 
performance. Therefore, the reward function is vital in how the agent learns optimal behavior [8]. 
Thus, selecting the reward function is one of the essential aspects of DRL for ATSC.  

Different traffic features have been utilized to define the reward function in the existing DQN 
solutions [8]. Based on how many traffic features are utilized to design the reward function, the reward 
function can be classified as single objective and multi-objective. The reward function optimizes a 
single traffic feature is a single objective reward function. For example, the queue length [5][9], 
cumulative delay [7], waiting time [4][10], and travel time. Parameters are widely used as a single 
objective reward function. The work in [11] used vehicle pressure of the road intersection as a single 
objective reward function. Besides the single objective reward function, the multi-objective reward 
function optimizes more than one traffic parameter at a time. In this type of reward function, various 
traffic features are combined in different ways to optimize parameters.  

Since most of the problems in the real world need multiple parameters to optimize, multi-objective 
reward functions are more appropriate than single objective reward functions. Many existing studies 
[12][13] also experimentally prove this fact. However, when conflicting parameters are combined in 
the multi-objective reward function, it does not optimize multiple parameters properly because of 
correlation among them. In order to solve this problem, in [8], the authors proposed composite reward 
architecture (CRA), where each reward function is evaluated separately, and a decision is made based 
on the majority’s decisions. Before that, hybrid reward architecture [14] decomposes a single reward 
function into n different reward functions, and the summation of the n rewards calculates the final 
reward. Different types of reward functions have been proposed in the literature, and none of them 
compares among these reward functions. This research uses six single objective reward functions and 
three recently proposed multi-objective reward functions in different traffic scenarios. The 
comparative analysis can conclude that a multi-objective reward function is better than a single 
objective reward and among the multi-objective reward function, CRA [8] and [6] perform 
competitively.  

II. Methods 

Reinforcement Learning (RL) is a machine learning technique that can be learned through 
experience. RL is different from supervised learning [15], which learns from a labeled dataset with a 
supervisor. Supervised learning learns from a training set of labeled samples provided by a 
knowledgeable external supervisor. RL is also different from unsupervised learning [16], which is 
about learning clustering of unlabeled data. On the other hand, RL tries to optimize a reward signal 
by trial and error. Finding structure in an agent's experience may be helpful for RL, but unsupervised 
learning does not solve the RL issue of optimizing a reward signal. Thus, RL is the learning process 
of mapping scenarios to actions to maximize a numeric reward value. 

In RL, an agent is deployed in an environment without any experience of behaving. The agent 
perceives the environment, determines an action based on the environment condition, and gets a 
reward from the environment based on the outcome of the action. Thus, the reward value is considered 
the environment's feedback for the action taken. If the environment's condition improves, the agent 
gets a positive reward; otherwise, it receives a negative reward. This way, the agent can distinguish 
between good and bad actions and gain experience iteratively. The expected reward value for each 
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state-action pair is represented as a Q value and stored in a Q table. The agent can quickly determine 
which action is desirable for a particular state from this Q-table.  

Any RL problem can be modeled as a Markov Decision Process (MDP), a mathematical 
framework to describe the environment in the RL. The MDP can be represented as a tuple <S,A,T,R.>, 
where S is the set of states, A represents a set of actions, T indicates a transition function, and R is the 
reward function. In any given state s∈S, selecting an action, a∈A will change the environment to a 
new state s'∈S with the probability T(s,a,s')∈0,1) and the environment gives a reward r = R(s,a). 

This process iteratively rewards the agent, generating a policy that can map certain states to action 
(π:S×A →[0,1]. An MDP aims to find the best policy for an agent. The policy π defines the probability 
of selecting action at in-state st. The policy is generated to maximize the expected cumulative 
discounted reward over time. The discounted future reward, Rt at time t is defined as follows 

𝑅𝑡 = 𝐸[∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0 ]  (1) 

where 𝛾 is the discount factor which indicates the impact of future rewards. 

In ATSC, there are a considerable number of state and action pairs. As a result, it is pretty 
impossible to manage them in a Q-table from [17]. This problem can be solved by using Deep Neural 
Network (DNN) where neural networks have been used for function approximation instead of Q-table. 
This type of function approximator is widely used in many studies where the state-action pair is 
unlimited and unknown. The neural network (NN) consists of many neurons with weights that can be 
easily used for unlimited state-action pairs. The problem of ATSC formulated with DRL is shown in 
Figure 1 where the road traffic scenario represents the environment. Traffic conditions such as queue 
length, waiting time, halting number, etc., are used to represent the state. The traffic controller acts as 
an agent. The neural network (in the agent) takes the values of the state from the environment as input 
and produces Q values. Based on the Q-values, the action is generated by the agent. The condition of 
the environment changes, and the agent gets a numerical reward value as the evaluation of the action. 
In this way, the agent learns the good or bad action and adjusts the weight of the network accordingly. 

The state is the agent’s view of the environment in a specific timestep. In literature, the state is 
designed in several aspects. It is better to design a state with more information to represent the current 
condition of the traffic. In the literature, some approaches use one parameter as a state; others use 
multiple parameters to represent the environment. Queue lengths of the lane, number of halting 
vehicles, waiting time of the vehicles, the average speed of the vehicles are used to represent state 
[6][7][8].  

The action indicates the activity the agent performs in the environment. In the case of ATSC, the 
action is to change the traffic phase or stay in the current phase. The traffic phase could be two, four, 
or six. For two phases of traffic, vehicles going east and west across the intersection indicate one 
phase, and vehicles approaching north and south represent another phase. The traffic phase will be 
green for vehicles heading east and west, and in another action, the traffic light will be green for 
vehicles approaching north and south. As a result, the agent has two distinct actions (A = {0, 1}). 
Here, 0 instructs to stay on the current phase, and 1 indicates to change the traffic phase to the next 
phase. With these two actions, any phase of traffic can be controlled. 

In RL, the reward reflects the environmental feedback after the agent has taken action. The agent 
uses the reward value to consider the result of the action taken and update the model for future choice 
of action. Therefore, the reward is one of the most vital parts of the learning process. Usually, it is 

 

Fig. 1. The formulation of ATSC with DRL 
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defined as a function of some performance metrics of the intersection, such as vehicle delay, queue 
length, waiting time, travel time, or throughput. There are multiple ways to define reward functions. 
As a result, various reward architectures are designed in the literature, but none compare among 
different reward functions. In this paper, we have discussed the pros and cons of various existing 
reward functions and made an experimental analysis of widely used rewards on different traffic 
scenarios.  

To make a comparative analysis among rewards, we need to focus on the types of rewards. In this 
section, the classification of reward functions is discussed. Based on the number of parameters and 
how the parameters are processed, the reward functions in the existing literature are designed basically 
in two ways: 1) Single objective and 2) Multi-objective.  

The Single objective reward function is designed to optimize one parameter is known as a single 
objective reward function. In this approach, the agent's goal is to optimize the single parameter and 
get a reward based on how well it optimizes that one parameter. For example, in ATSC, queue length, 
delay, waiting time, travel time, etc., can be used separately as a traffic parameter to optimize. The 
single objective RL is depicted in Figure 2.  

The work in [5] used DRL with a DNN to learn the Q-function. A deep stacked autoencoder (SAE) 
neural network [18] is used to estimate the Q-function. The SAE is trained to minimize the loss that 
indicates the difference of target and prediction Q-values in the learning. The reward function is 
designed considering only the queue lengths of the lanes. 

𝑟𝑡 = | 𝑚𝑎𝑥𝑖=1,2{𝑞𝑡
𝑒−𝑤,𝑖 , 𝑞𝑡

𝑤−𝑒,𝑖} − 𝑚𝑎𝑥𝑖=1,2{𝑞𝑡
𝑠−𝑛,𝑖 , 𝑞𝑡

𝑛−𝑠,𝑖}|  (2) 

where i indicates the lane number, e-w is east to west direction, w-e is west to east direction, n-s is 
north to south direction, s-n is south to north direction, and qt is the queue length at time t. with the 
reward function in equation 2, the learning process maximizes queue length between we and ns. if the 
difference is high, the agent gets a high reward value. However, the difference in queue length between 
we and ns does not indicate the smoothness of traffic flow. For example, if we's queue length is 100 
units and sn is 20 units, the reward value will be 80. 

On the other hand, if the queue length in we is 40 units and sn is 40 units, the reward value will be 
zero. Although the second scenario represents a more stable traffic flow, it gets a meager reward. 
Therefore, the reward function gives wrong feedback to the agent. 

Another atsc applying drl is proposed in [7]. This work proposed a dense information new state 
space with the discrete encoding of traffic features defined as discrete traffic state encoding (dtse). A 
deep convolution neural network trains the q-learning agent with experience replay [19]. The 
difference of cumulative delays (equation (3)) is considered as a reward function in this work. 

rt = dt−1 − dt  (3) 

where dt−1 is the cumulative delay at time t − 1, and dt is at t. delay is defined in equation (4).  

𝐷 = 1 −
average speed of vehicles in lanes 

maximum allowed lane speed
  (4) 

With this reward function, the agent tends to maximize the maximum possible speed and average 
speed of vehicles. The average speed of vehicles is influenced by road infrastructure, road occupancy, 
etc. the high average speed 24 of vehicles can be a metric for smooth traffic flow. However, it alone 
cannot guarantee the smoothness of traffic flow. 

Further, another drl algorithm for atsc is proposed in [4]. The work used experience replay and 
target network mechanisms to improve algorithm stability.  

 

Fig. 2. Single objective rl 
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The difference of vehicles' cumulative waiting time between before and after the action, as shown 
in equation (5), is considered a reward function in [4]. this same reward function is used in another 
drl-based approach proposed in [10].  

rt = wt−1 − wt  (5) 

where wt−1 is the waiting time of vehicles at time t−1, and wt is the waiting time at time t. with this 
reward function, the agent tries to minimize the waiting time for vehicles. Although waiting time is 
one of the most dominant parameters for indicating smooth traffic flow, only the waiting time of 
vehicles cannot provide an appropriate measure for efficient traffic flow. For example, if one vehicle 
has a low speed, the waiting time of the vehicle will be zero (waiting time is calculated only for the 
halting vehicles). Although the waiting time is zero, the vehicle is not experiencing a smooth journey. 
The above analysis can conclude that a single parameter alone cannot guarantee good performance. 
Thus, the traffic signal control problem is a multi-objective problem, where multiple parameters need 
to be optimized for better traffic flow. The single objective reward function optimizes a single 
parameter that is unsuitable for the traffic signal problem. Therefore, the multi-objective reward 
function is preferable for the atsc. 

A multi-objective reward function is called a multi-objective reward function when it is designed 
to optimize multiple parameters at a time. In the real world, most problems are multi-objective; thus, 
this reward function is more suitable than a single objective reward function. In this approach, multiple 
parameters are combined to optimize the reward function. The learning agent optimizes the set of 
multiple objectives simultaneously. The multi-objective rl is depicted in Figure 3. In traffic signal 
control, queue length, delay, waiting time, travel time, and fuel consumption. Parameters could be 
combined with different weights for multi-objective optimization. The general form of the multi-
objective reward function can be expressed in equation (6), which is the weighted sum of the traffic 
features. 

𝑟𝑡 = ∑ 𝑊𝑖 × 𝑡𝑓𝑖
𝑛
𝑖=1   (6) 

where Wi is the weight of i the traffic features and tfi is the traffic feature. 

The work in [19] investigated the learning control policies for traffic lights. It introduced a new 
reward function that considers the number of teleports j, number of action switches c, number of 
emergencies stop e, a sum of delay d, and a sum of wait time w as parameters.  

𝑟𝑡 = −0.1𝑐 − 0.1 ∑ 𝑗𝑖
𝑁
𝑖=1 − 0.2 ∑ 𝑒𝑖 

𝑁
𝑖=1 − 0.3 ∑ 𝑑𝑖 

𝑁
𝑖=1 − 0.3 ∑ 𝑤𝑖 

𝑁
𝑖=1   (7) 

The first three coefficients of the equation do not affect the DRL process [20]. For this reason, the 
feedback returned from the reward function may be misled. 

A DRL agent with a multi-objective reward function is proposed in [6]. The research used a new 
DNN to decide whether to change the current traffic phase or keep measuring the Q-value. The neural 
network has different branches for each traffic phase. One branch of the network is activated in one 
traffic phase, and the other is activated in another traffic phase. 

The reward function is calculated considering the weighted sum of the sum of delay D, queue 
length L, the sum of updated waiting time W, the total number of vehicles passed N, an indicator of 
light switches C, and total travel time T of the passing vehicles. 

 𝑟𝑡 = −0.25 ∑ 𝐿𝑖𝑖∈𝑙 − 0.25 ∑ 𝐷𝑖𝑖∈𝑙 − 0.25 ∑ 𝑊𝑖 − 5𝐶 + 𝑁 + 𝑇𝑖∈𝑙   (8) 

 

Fig. 3. Multi-objective RL 
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Here in equation (8), the indicator of light switches C has a very high negative coefficient though it 
does not affect the DRL process [20]. Furthermore, the total travel time T is added to the equation. It 
indicates that the agent will get a high reward whenever the travel time increases. However, a higher 
value of travel time indicates terrible traffic conditions. These two factors mislead the feedback with 
this reward function. 

Further, they tested both on simulation data and data from the real world. This model achieves 
state-of-the-art efficiency on most measures. Nonetheless, it should be noted that the authors point out 
that due to the large volume of data collected for the agent training, the study has substantial 
limitations on a real-world appliance. 

A new multi-objective reward function for traffic light optimization is proposed in [21]. It used 
deep Q-learning with a policy gradient approach to solve the RL problem. The following equation 
designs the reward function 

𝑟𝑡 = 𝐷𝑡−1 − 𝐷𝑡 +
𝑂𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐻𝑎𝑙𝑡𝑖𝑛𝑔 𝑣𝑒𝑐ℎ𝑖𝑙𝑒𝑠+𝑐
  (9) 

Here, the value is used to avoid zero division. Further, other multi-objective reward functions are 
proposed in [22][23][24]. Most reward functions are designed using the weighted sum of traffic 
features (equation 6). However, if the traffic features are conflicting and/or correlated with each other, 
the multi-objective reward function calculated by combining traffic features does not provide an 
optimal solution [12][13]. In order to solve this problem, the CRA [8] calculates the reward function 
for each traffic parameter separately and then combines the decisions of the multiple reward function 
by using the majority voting approach. In this multi-objective approach, each objective has a reward 
function, producing a decision. The decision chosen by the majority reward functions is selected from 
the multiple decisions. Since the reward functions are calculated separately, the dependency or 
confliction does not hamper making final decisions. However, this approach ignores the decisions of 
minority groups. The CRA approach is depicted in Figure 4. 

HRA [14] is a particular type of reward function, which is a different form of the single and multi-
objective reward function. In HRA [14], a task is divided into multiple tasks, and there is a reward 
function for each task. The final reward is calculated by adding the rewards of all sub-tasks. The HRA 
[14] is depicted in Figure 5. 

 

 Fig. 4. Composite reward architecture for RL 

 

 

 Fig. 5. Hybrid Reward Architecture for RL 
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III. Results and Discussions 

We conduct several experiments in different traffic scenarios and provide a comparative analysis 
to compare the permanence of different reward functions. A traffic micro-simulator named Simulation 
of Urban MObility (SUMO) is used with its Python API to create the simulation environment. A four-
way road intersection is used where each road has two incoming and two outgoing lanes. The highest 
speed limit of the incoming lane is 70 km/hour and 40 km/hr for the outgoing lane. The road length is 
set as 300 meters in the simulation. The vehicles are allowed to pass the intersection into four different 
routes: (1) from West to East (W-E); (2) from North to South (N-S); (3) from East to West (E-W); 
and (4) from South to North (S-N). 

The DNN is used as a function approximator in the learning process of the simulation. The network 
structure proposed in [8] is used as a function approximator for all reward functions except [6]. The 
network structure of [8] is generic enough to fit any number of states and reward functions. For 
example, if there are n numbers of states and m incoming lanes, there will be n×m nodes in the input 
layer. The number of nodes in the output layer depends on the number of reward functions (x) and 
many actions (y), which are x×y nodes. The nodes of the hidden layers need to be adjusted according 
to the number of input and output nodes. The authors have used their network structure to implement 
their reward function [6]. The parameters used in the learning process are mentioned in Table 1. 

Different traffic scenarios are used using synthetic data to compare different reward functions. 
These traffic scenarios are widely used in the literature [6][8][21]. A total of five configurations are 
utilized, where the first configuration represents a steady traffic flow with a low traffic rate in all 
directions. The unstable traffic flow shows in the second configuration where vehicles' arrival rate in 
the East-West direction is two times less than the North-South direction. The third configuration 
maintains a steady flow with heavy traffic. The fourth configuration combines the first three 
configurations to represent the actual live traffic condition with low, heavy, and unstable traffic at 
different times. The fifth configuration represents the traffic flow for the whole day, considering the 
traffic variation from 6 AM to 12 AM. Generally, the traffic flow starts with low pressure and increases 
as the day progresses. It goes to the peak at 9-10 AM and then gradually decreases during the noon. 
Another peak is created in the evening, which remains longer than the morning peak and gradually 
decreases during midnight. These five configurations are listed in Table 2.  

To get a smooth traffic flow, we want a minimum number of vehicles halting on the road, to wait 
less time on the road, and to reach the destination in a minimum time. The queue length on the road 
is also expected to be minimum. As a result, halting number, waiting time, queue length, and travel 
time are used as parameters to evaluate different rewards. The pseudocode for reward functions 
comparison can be found as follow. 

Pseudocode for reward functions comparison 

Set n = no. of states, m = no. of lanes, x = no. of reward functions and y = no. of 
actions  

Implement DNN with be n×m nodes in the input layer and x×y node in the output layer  
Implement the reward halting number RHn,t=Hnt-1 - Hnt 
Implement the reward waiting time RW,t=Wt-1 - Wt 
Implement the reward travel time RT,t=Tt-1 - Tt 
Implement the reward Delay RD,t=Dt-1 - Dt 
Implement HRA using [14] 
Implement Intellilight𝑅𝑡 = −0.25 ∑ 𝐿𝑖𝑖∈𝑙 − 0.25 ∑ 𝐷𝑖𝑖∈𝑙 − 0.25 ∑ 𝑊𝑖 − 5𝐶 + 𝑁 + 𝑇𝑖∈𝑙  
Implement CRA using [8] 

Implement avg. queue length reward 𝑟𝑡 = | 𝑚𝑎𝑥𝑖=1,2{𝑞𝑡
𝑒−𝑤,𝑖 , 𝑞𝑡

𝑤−𝑒,𝑖} − 𝑚𝑎𝑥𝑖=1,2{𝑞𝑡
𝑠−𝑛,𝑖 , 𝑞𝑡

𝑛−𝑠,𝑖}| 
Implement Metalight [25] 

Calculate halting number, waiting time, queue length and travel for all the 
implemented reward functions and compare among them 

 
We have compared a total of nine reward functions where six of them are single objective, and the 

rest of the three are multi-objective. Total five traffic scenarios are used to compare the reward 
functions. The results of the comparisons are depicted from Fig. 6 to Fig. 9. The lower, the better 
values in the following figures for every performance matrix. The halting number for all 
configurations is depicted in Figure 6. The result shows that CRA [8] and Intellilight [6] perform 
competitively to optimize halting numbers. Among the five traffic configurations, CRA performs best 



92 A.R.M. Jamil and N. Nower / Knowledge Engineering and Data Science 2021, 4 (2): 85–96 

in configurations 1, 2, and 3, and Intellilight [6] performs best in configurations 4 and 5. Halting 
number, HRA [14], Presslight [11], CRA [8], and waiting time get the second position for the 
configuration 1, 2, 3, 4, and 5, respectively. 

The result for the waiting time comparison for all configurations is shown in Figure 7. The figure 
shows that CRA [8] performs best in waiting time for all configurations except configuration 5. 

Presslight [11] wins the first position for configuration 5. There is no single second-best winner for 
all configurations. For example, HRA [14] performs after CRA [8] in configuration 1, travel time 
performs second-best result in configuration 2, Intellilight [6], Metalight [25], and CRA [8] is the 
second position winner for configuration 3, 4, and 5 respectively.  

The queue length comparison for all configurations is shown in Figure 8. Like the previous result, 
there is no single winner for all configurations. Intellilight [6] wins for configurations 4 and 5, CRA 
[8] shows the best result in configurations 3, and travel time wins for configuration 3. The comparative 
analysis for travel time is shown in Figure 9. The figure shows that the average travel time for the fifth 
configuration is higher than the others. The reason is that configuration 5 has a longer time (18 hours) 
than others. For configuration 1, the HRA [14] performs the best result, although others provide a very 
competitive result. CRA [8] wins in configurations 2, 3, 4, and 5.  

Table 1. Agent’s parameters 

Parameters Values 

Minimum time of the actions 5 

Learning rate 0.045 

Memory size 1200 

Sample size 400 

Training epochs  550 

Discount factors 𝛾 0.9 

∈ for exploration 0.05 

 

Table 2. Traffic configurations 

Configuration Routes Arrival rate (Vehicle/second) Start time (Second) End time (Second) 

1 W-E 

N-S 

0.2 

0.2 

0 

0 

7200 

7200 

2 W-E 

N-S 

0.2 

0.4 

0 

0 

7200 

7200 

3 W-E 

N-S 

0.4 

0.4 

0 

0 

7200 

7200 

4 Configuration 1 

Configuration 2 

Configuration 3 

0 

7201 

14401 

7200 

14401 

21600 

 

5 W-E 

N-S 

W-E 

N-S 

W-E 

N-S 

W-E 

N-S 

W-E 

N-S 

W-E 

N-S 

W-E 

N-S 

W-E 

N-S 

0.225 

0.225 

0.225 

0.388 

0.416 

0.416 

0.388 

0.225 

0.225 

0.225 

0.225 

0.388 

0.416 

0.416 

0.225 

0.225 

06:00 AM 

 

08:00 AM 

 

10:00 AM 

 

12:00 PM 

 

02:00 PM 

 

04:00 PM 

 

06:00 PM 

 

10:00 PM 

08:00 AM 

 

10:00 AM 

 

12:00 PM 

 

02:00 PM 

 

04:00 PM 

 

06:00 PM 

 

10:00 PM 

 

12:00 PM 
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Thus, the result concluded that no reward function shows the best result for all parameters. In most 
cases, either CRA [8] or Intellilight [6] provides the best performance where both of them are multi-
objective. In some specific cases, a single objective reward function such as Presslight [11], travel 
time provides the best result. Thus, from the comparative study, we can conclude that a multi-objective 
reward function is preferable to a single objective reward function. In addition, among the multi-
objective reward functions, CRA [8] or Intellilight [6] perform better among all the configurations.  

 

Fig. 6. Comparison of results in terms of average Halting number 

 

 

Fig. 7. Comparison of results in terms of average waiting time (s) 
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IV. Conclusion 

The success of DRL highly depends on the reward function since it is used to evaluate the agent's 
action. If the reward function gives wrong feedback to the agent, the agent will not learn properly. 
Thus, we need to analyze which reward function performs well in ATSC before using or designing a 
reward function. In this paper, we have analyzed widely used reward functions and experimentally 
shown that multi-objective reward function is more suitable for ATSC, and among different multi-
objective reward function, CRA and INTELLILIGHT performs well compared with others. In the 
future, we have a plan to investigate how the network structure impacts designing reward functions. 

 

Fig. 8. Comparison of results in terms of average Queue Length 

 

 

Fig. 9. Comparison of results in terms of average Travel time 
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