
Knowledge Engineering and Data Science (KEDS) pISSN 2597-4602

Vol 4, No 2, December 2021, pp. 69–84 eISSN 2597-4637

https://doi.org/10.17977/um018v4i22021p69-84

©2021 Knowledge Engineering and Data Science | W : http://journal2.um.ac.id/index.php/keds | E : keds.journal@um.ac.id

This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

KEDS is Sinta 2 Journal (https://sinta.kemdikbud.go.id/journals/detail?id=6662) accredited by Indonesian Ministry of Education, Culture,

Research, and Technology

Parallel Approach of Adaptive Image

Thresholding Algorithm on GPU

Adhi Prahara a, 1, Andri Pranolo a, b, 2, *, Nuril Anwar a, 3, Yingchi Mao b, 4

a Informatics Department, Universitas Ahmad Dahlan

Jl. Prof. Dr. Soepomo, S.H., Janturan, Warungboto, Umbulharjo, Yogyakarta 55164, Indonesia

b College of Computer and Information, Hohai University

1 Xikang Road, Nanjing, Jiangsu 210098, China

1 adhi.prahara@tif.uad.ac.id *; 2 andri@hhu.edu.cn*; 3 nuril.anwar@tif.uad.ac.id; maoyingchi@gmail.com

* corresponding author

I. Introduction

Segmentation is a process that partitions image into segments [1]. Segmentation is useful for
changing image representation into something more meaningful and easier to analyze, e.g., finding
objects and boundaries. One of the methods to perform image segmentation is image thresholding.
The method partitions image into background and foreground using a given threshold. This process is
also called binarization because the segmentation result is a binary image that maps “0” pixel as
background and “1” pixel as foreground.

In order to perform image thresholding, the threshold value can be determined manually by
observation or experiment. However, in the adaptive image thresholding method, the threshold is
generated using a specific algorithm. The algorithm involves per pixel operation, histogram
calculation, and iterative procedure to search the optimum threshold. Therefore, it can be costly for a
high-resolution image.

Some well-known adaptive image thresholding algorithms are Otsu [2], Iterative Self-Organizing
Data Analysis Technique (ISODATA) [3], and minimum cross-entropy (MCET) [4]. Otsu method
iteratively searches threshold that minimizes inter-class variance. ISODATA method iteratively
updates the threshold until the average inter-class distance is less than a given threshold or reaches the
maximum number of iterations. MCET method searches optimal threshold by calculating the cross-
entropy for all possible thresholds and selecting the one with minimum cross-entropy. The methods
have been used in many image processing applications [5][6][7][8][9][10][11][12] to perform
automatic image segmentation.

ARTICLE INFO A B S T R A C T

Article history:

Submitted 25 December 2021

Revised 28 December 2021

Accepted 30 December 2021

Published online 31 December 2021

Image thresholding is used to segment an image into background and foreground using
a given threshold. The threshold can be generated using a specific algorithm instead
of a pre-defined value obtained from observation or experiment. However, the
algorithm involves per pixel operation, histogram calculation, and iterative procedure
to search the optimum threshold that is costly for high-resolution images. In this
research, parallel implementations on GPU for three adaptive image thresholding
methods, namely Otsu, ISODATA, and minimum cross-entropy, were proposed to
optimize their computational times to deal with high-resolution images. The approach
involves parallel reduction and parallel prefix sum (scan) techniques to optimize the
calculation. The proposed approach was tested on various sizes of grayscale images.
The result shows that the parallel implementation of three adaptive image thresholding
methods on GPU achieves 4-6 speeds up compared to the CPU implementation,
reducing the computational time significantly and effectively dealing with high-
resolution images.

This is an open access article under the CC BY-SA license

(https://creativecommons.org/licenses/by-sa/4.0/).

Keywords:

Adaptive image thresholding

Computational time

Graphics processing unit

Image processing

Parallel computing

http://u.lipi.go.id/1502081730
http://u.lipi.go.id/1502081046
https://doi.org/10.17977/um018v4i22021p69-84
http://journal2.um.ac.id/index.php/keds
mailto:keds.journal@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://sinta.kemdikbud.go.id/journals/detail?id=6662
https://creativecommons.org/licenses/by-sa/4.0/

70 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84

In image processing, achieving real-time performance is necessary, especially when processing
video streaming or image in high resolution. A high-resolution image is a common product of satellite,
aerial, biometric, and medical imaging, which is also often used in the verification and segmentation
process. It is crucial to analyze the algorithm's complexity to know where it should be optimized to
achieve real-time performance. High-Performance Computing (HPC) advanced technology allows the
algorithm to be parallelized on Graphics Processing Unit (GPU). Parallel computation can optimize
the iterative and serial procedure in an algorithm.

Researchers have been proposed parallel adaptive image thresholding methods for image
segmentation. Kanungo et al. [13] proposed a parallel genetic algorithm-based adaptive thresholding
for image segmentation in uneven lighting conditions. Sandeli and Batouche [14] proposed image
thresholding using multilevel thresholding based on a parallel generalized island model (GIM). Nafaji
et al. [15] use parallel local adaptive thresholding for binarization of documents. Upadhyay et al. [16]
proposed an adaptive thresholding approach for image segmentation on GPU. All of them gained
significant speedup in computational time than serial implementation.

This research proposed a parallel implementation on GPU for three adaptive image thresholding
methods: Otsu, ISODATA, and MCET. Our contribution lies in the parallel approach of the adaptive
image thresholding method on GPU to optimize their computational times to deal with a high-
resolution image. This paper is organized as follows: Section 2 presents the proposed approach of
parallel adaptive image thresholding methods, Section 3 presents the result and discussion, and
Section 4 presents the conclusion of this work.

II. Method

Adaptive image thresholding is a method to segment images using a threshold generated from a
specific algorithm. The algorithm has the purpose of obtaining an optimal threshold for segmentation.
In this research, some well-known adaptive image thresholding algorithms, namely Otsu, ISODATA,
and MCET are parallelized to optimize high-resolution image performance.

A. Otsu Method

Otsu method is proposed by [2] to perform automatic thresholding on the grayscale image. Otsu
method iteratively searches the threshold that maximizes inter-class variance. The steps to apply Otsu
threshold is described below:

a) An image is converted into a normalized gray-level histogram using (1) and considered as the

probability distribution where the number of pixels in 𝑖𝑡ℎ gray-level is 𝑛𝑖 , the total number of

pixels is 𝑁, and the probability of 𝑖𝑡ℎ gray-level is 𝑝𝑖.

𝑝𝑖 = 𝑛𝑖/𝑁 (1)

b) Suppose the pixels are distributed into two classes (commonly as background and foreground), for
all possible thresholds 𝑖 = 1 … 𝑘, the probability of class occurrence 𝜔𝑖, the class mean level 𝜇𝑖,

and the inter-class variance 𝜎𝐵
2(𝑘) can be calculated using (2), (3), and (4), respectively. Here,

𝜔(𝑘) and 𝜇(𝑘) is the zeroth-order and first-order cumulative moments of the histogram and 𝜇𝑇 =
∑ 𝑖 ∙ 𝑝𝑖

𝐿
𝑖=1 is the total mean level of an image.

𝜔𝑖 = ∑ 𝑝𝑖
𝑘
𝑖=1 = 𝜔(𝑘) (2)

𝜇𝑖 = ∑ 𝑖 ∙ 𝑝𝑖/𝜔𝑖
𝑘
𝑖=1 = 𝜇(𝑘)/𝜔(𝑘) (3)

𝜎𝐵
2(𝑘) =

[𝜇𝑇𝜔(𝑘)−𝜇(𝑘)]2

𝜔(𝑘)[1−𝜔(𝑘)]
 (4)

c) The select threshold maximizes 𝜎𝐵
2 using (5). This threshold is the optimal threshold.'

𝜎𝐵
2(𝑘) = 𝑚𝑎𝑥

1≤𝑘<𝐿
𝜎𝐵

2(𝑘) (5)

 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84 71

If 𝐿 is the number of gray levels and 𝑁 is the number of pixels in the image, the computational
complexity of Otsu method for grayscale image segmentation is given by the following operations:

a) Histogram initialization and histogram computation have a computational complexity of 𝑂(𝐿) and
𝑂(𝑁), respectively.

b) Search the optimum threshold by maximizing the inter-class variance has a computational
complexity of 𝑂(𝐿).

c) Implementation of the Otsu threshold on the image requires computational complexity of 𝑂(𝑁).

B. ISODATA algorithm

Iterative Self-Organizing Data Analysis Technique (ISODATA) is proposed by [3] to compute the
global image threshold. The method uses an iterative procedure to update the threshold. Image
segmentation using the ISODATA algorithm is described as follows:

a) Compute gray-level histogram from the image.

b) Create initial segments by splitting the histogram into background and foreground segments using
the initial threshold value 𝑇0.

c) Calculate the mean of background pixels 𝜇𝐵 and the mean of foreground pixels 𝜇𝐹.

d) Calculate a new threshold 𝑇 by averaging the two means value using (6).

𝑇 =
𝜇𝐵+𝜇𝐹

2
 (6)

a) Repeat the procedures c and d until the threshold value 𝑇 is less than a given threshold or the

maximum iteration number is reached.

The computational complexity of ISODATA method for grayscale image segmentation, where 𝐿 is
the number of gray levels and 𝑁 is the number of pixels in the image, is given by the following
operations:

a) Histogram initialization and histogram computation have a computational complexity of 𝑂(𝐿) and
𝑂(𝑁), respectively.

b) Update the threshold until the average inter-class distance is less than a threshold or the maximum
number of iterations is reached requires computational complexity of 𝑂(𝑄), where 𝑄 is the
number of iteration required by the algorithm.

c) ISODATA threshold Implementation on the image requires computational complexity of 𝑂(𝑁).

C. Minimum Cross-Entropy method

The minimum cross-entropy (MCET) method is proposed by [4] to select an optimal threshold.
The method searches the optimal threshold by calculating the cross-entropy for all possible thresholds
and selecting the one with minimum cross-entropy. The procedure to apply the minimum cross-
entropy method for image segmentation is described below:

a) Compute normalized gray-level histogram from image using (7) where the number of pixels in 𝑖
gray-level is 𝑛𝑖, the total number of pixels is 𝑁, and the probability of 𝑖 gray-level is 𝑝𝑖.

𝑝𝑖 = 𝑛𝑖/𝑁 (7)

b) Initialize the entropy of gray-level histogram using (8), where 𝑎 and 𝑏 are the minima and
maximum gray-level intensity.

𝐻𝐶𝐸 = ∑ 𝑖 ∙ 𝑝𝑖 ∙ log(𝑖)𝑏
𝑖=𝑎 (8)

c) Suppose the pixel is distributed into two classes: background and foreground with a threshold 𝑇.
If the mean of pixel distribution below the threshold (background) is 𝜇𝐵 and the mean of pixel
distribution above the threshold (foreground) is 𝜇𝐹 , then for all possible thresholds, 𝑇 = 𝑎 … 𝑏
calculate the cross-entropy of pixel distribution below and above the threshold using (9).

𝐻𝐶𝐸(𝑇) = ∑ 𝑛𝑖𝜇𝐵(𝑇) log
𝜇𝐵(𝑇)

𝑖

𝑇
𝑖=𝑎 + ∑ 𝑛𝑖𝜇𝐹(𝑇) log

𝜇𝐹(𝑇)

𝑖

𝑏
𝑖=𝑇+1 (9)

72 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84

d) Select the optimal threshold 𝜏corresponding to the minimum of the cross-entropy using (10).

𝜏𝐶𝐸 = arg min
𝑎≤𝑇≤𝑏

𝐻𝐶𝐸(𝑇) (10)

If 𝐿 is the number of gray levels and 𝑁 is the number of pixels in the image, the computational
complexity of MCET method for grayscale image segmentation is given by the following operations:

a) Histogram initialization and histogram computation have a computational complexity of 𝑂(𝐿) and
𝑂(𝑁), respectively.

b) Select the minimum cross-entropy from all possible thresholds has a computational complexity

of 𝑂(𝐿2).

c) Implementation of MCET threshold on the image requires computational complexity of 𝑂(𝑁).

D. Parallel Computing on GPU

GPU (Graphics Processing Unit) is a high-level parallel architecture used to do a fast operation in
computer graphics, and now it can be used other than graphics, which is known as GP-GPU (General
Purpose-Graphics Processing Unit) [17]. The well-known general-purpose parallel computing
platform and programming model is Compute Unified Device Architecture (CUDA) from NVidia.

GPU is highly parallel, multithreaded, has many cores processors, and has very high memory
bandwidth. The difference between how CPU and GPU process the data is shown in Figure 1(a) and
Figure 1(b). GPU devotes more transistors to data processing than caching and flow control. GPU is
built on an array of Streaming multiprocessors (SM), and it is organized into grids, blocks, and threads.

Data-parallel processing maps data elements to parallel processing threads. Figure 1(c) shows the
parallel processing threads in GPU. A multithreaded program is partitioned into blocks of threads that
execute independently from each other. Therefore, using GPU, the computation of adaptive image
thresholding algorithms will be parallel processed, reducing computational time.

Using the advantages of GPU's parallel architecture, the adaptive image thresholding methods that
involve histogram calculation, cumulative sum, search the minimum or maximum value from an array
can be optimized using parallel reduction and parallel prefix sum (scan) algorithms.

1) Parallel Reduction Algorithm

A parallel reduction algorithm can optimize the computation of an array's sum, minimum and
maximum value. Parallel reduction allows iteration from half of the total number of bin histograms
processed parallel with a computational complexity of 𝑂(log(𝑁)) in the shared memory.

(a)

(c)

(b)

Fig. 1. GPU devotes more transistors to data processing [17]; (a) CPU data process; (b) GPU data process; and (c) GPU

parallel processing

 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84 73

Every half of the total number of bin histograms is summed (sum reduction) or compared (min or
max reduction) to the other half. The process is reduced to half every iteration until all of the element
is processed. Loop unrolling can optimize the thread when the processed data is within the thread
warp. The illustration of the parallel sum reduction algorithm is shown in Figure 2.

2) Parallel Prefix Sum (Scan) Algorithm

A parallel prefix sum (scan) algorithm can be used to calculate the cumulative sum of the histogram
on shared memory. The procedure of parallel prefix sum (scan) algorithm is described as follow:

a) Up-sweep (reduction) phase, sum every bin in the histogram with the bin on its right according to
its stride. This step has a computational complexity of 𝑂(log(𝑁)). The illustration of the up-sweep
(reduction) phase is shown in Figure 3.

b) Set the last bin in the histogram to zero.

c) Down-sweep phase, sum every bin in the histogram with the bin on its right according to its stride.
This step also has a computational complexity of 𝑂(log(𝑁)). The illustration of the down-sweep
phase is shown in Figure 4.

The parallel prefix sum (scan) algorithm has a computational complexity of 𝑂(2 log(𝑁)) where the
𝑂(log(𝑁)) is in the up-sweep phase and the down-sweep phase.

Fig. 3. Illustration of up-sweep (reduction) phase [19]

Fig. 2. Illustration of parallel sum reduction algorithm [18]

74 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84

III. Result and Discussion

The computational time of adaptive image thresholding algorithms on GPU has been tested on
FVC2004 (Fingerprint Verification Competition) dataset [20]. The dataset consists of several
fingerprint images. Selected images in the dataset are resized into various sizes using the bi-cubic
interpolation method. The proposed approach is built using C++ with an additional CUDA library and
runs on Intel Core i7-7700HQ 2.8GHz processor, 16 GB of RAM, and NVidia GeForce GTX 1050.
The GPU has Pascal architecture with five streaming multiprocessors and computes capability 6.1.

A. Adaptive Image Thresholding Implementation

In this research, three adaptive image thresholding algorithms are implemented on GPU: Otsu,
ISODATA, and MCET. The parallel approach of the three methods is similar except finding the
optimum threshold to perform binarization. First, image data must be copied from host to the device
memory. Several kernels to compute histogram, probability histogram, and cumulative histogram to
find the optimal threshold and apply the threshold in the image are used. Finally, the binary image
result is copied back to the host from device memory. The implementation of Otsu, ISODATA, and
MCET methods on GPU is shown in Algorithm 1.

As shown in Algorithm 1, the parallel approach of the adaptive image thresholding method uses
several kernels to perform a specific operation, will keep short computation runs on streaming
multiprocessors and increase its availability. The number of threads per block and the block per grid
can be configured to run the kernel effectively. It is also suitable for error handling because it can be
monitored on each kernel execution.

Algorithm 1. Implementation of adaptive image thresholding method on GPU.

ENUM method ← OTSU = 1, ISODATA = 2, MCET = 3

READ image data and method

COPY image data from host (CPU) to device (GPU)

SET threshold ← 0

histogram ← compute histogram from image data
probability histogram ← compute probability histogram from a histogram
cumulative histogram ← compute cumulative sum histogram from probability histogram

SWITCH (method)
 CASE OTSU
 threshold ← find threshold that maximizes inter-class variance from cumulative sum histogram

CASE ISODATA
 threshold ← update the threshold until the average inter-class distance is less than a given

threshold or the maximum number of iteration is reached
 CASE MCET
 above-threshold and below-threshold means ← compute above-threshold and below-threshold means

from cumulative sum histogram

Fig. 4. Illustration of down-sweep phase [19]

 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84 75

 cross-entropy histogram ← compute cross-entropy histogram from above-threshold and below-
threshold means

 threshold ← compute the index of minimum cross-entropy from cross-entropy histogram
END SWITCH

binary image ← apply threshold to image data

COPY binary image from device (GPU) to host (CPU)

The highest computational complexity is 𝑂(𝑁) which lies in the histogram computation and image
thresholding step. The parallel implementation of these steps will reduce the computational
complexity because the work is computed at once and distributed to the total number of threads used
for computation. The parallel approach of histogram computation on GPU is shown in Algorithm 2.

Histogram computation uses the atomic addition function from CUDA and utilizes shared memory
to store the partial histogram, which will reduce the queue at the addition instruction level to the
number of threads block. The partial histogram in shared memory is then merged parallel to the
histogram in global memory. This operation also uses atomic addition, which will reduce the queue
at the addition instruction level to the number of blocks in a grid.

Without partial histogram computation in shared memory, the histogram computation is likely to
have long queues and be forced to perform serial computation. All operations that equal the number
of data need to access and performed in addition to one specific bin in the histogram. For the gray-
level histogram, the number of histogram bins is fixed to 256. The queue is proportional to the data
and their distribution in the image. With partial histogram computation, the queue is reduced to the
number of threads and blocks used.

Algorithm 2. The computation of histogram on GPU.

GPU CONFIGURATION
 block ← 256 // block size
 grid ← 256 // grid size

FUNCTION compute the histogram

READ image data and image size

t ← threadIdx.x
n ← the number of histogram bin

// histogram initialization with zeros
ALLOCATE shared memory (smem) to store the histogram
 IF t < n THEN
 the tth index of smem histogram ← 0
 END IF
SYNCHRONIZE the threads

p ← threadIdx.x + blockIdx.x * blockDim.x
q ← blockDim.x * gridDim.x

// compute partial histogram in shared memory
WHILE p < image size DO
 r ← the pth index of image data
 atomic addition of the rth index of smem histogram with 1
 p ← p + q
END WHILE
SYNCHRONIZE the threads

// merge the partial histogram in shared memory to histogram in global memory
IF t < n THEN
 atomic addition of the tth index of histogram with the tth index of smem histogram
END IF

END FUNCTION

76 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84

After the histogram is obtained, the probability histogram is computed by simple division. Otsu
method uses the probability of 0th order histogram, computed by dividing the value in every bin with
the total number of data and the probability of 1st order histogram computed by multiplying 0th order
histogram with the corresponding gray level. MCET method uses the probability of an entropy
histogram computed by multiplying first-order histogram with the gray level log. ISODATA method
uses the 0th order histogram and 1st order histogram. The kernel configuration is a block with 256
threads to calculate the 256-bins histogram.

The computation of the cumulative sum of histogram uses a parallel prefix sum (scan) algorithm.
The computational complexity can be reduced to 𝑂(2 log(𝑁)) from 𝑂(𝑁). To avoid bank conflict, it
utilizes half of the histogram bin's total number as thread block and some offsets. Bank conflict occurs
when two or more threads want to access the same bank memory address, forcing serial access to
memory. With proper offsets, bank conflict can be avoided. The computation of the cumulative sum
of a histogram is shown in Algorithm 3.

Algorithm 3. The computation of the cumulative sum of the histogram on GPU.

GPU CONFIGURATION
 block ← 256 / 2
 grid ← 1

FUNCTION compute the cumulative sum of histogram

READ probability histogram

t ← threadIdx.x
n ← the number of histogram bin
offset ← 1
p ← t
q ← t + n / 2
offset1 ← p >> 4
offset2 ← q >> 4

// load data to shared memory
ALLOCATE shared memory (smem) to store the cumulative sum of histogram
 the (p + offset1)th index of smem cumulative sum of histogram ← the pth index of

probability histogram
 the (q + offset2)th index of smem cumulative sum of histogram ← the qth index of

probability histogram
SYNCHRONIZE the threads

// up-sweep (reduction) phase
FOR d = n >> 1 TO d > 0 DO
 SYNCHRONIZE the threads
 IF t < d THEN
 p ← offset * (2 * t + 1) – 1
 q ← offset * (2 * t + 2) – 1
 p ← p + p >> 4
 q ← q + q >> 4
 the qth index of smem cumulative sum of histogram ← the qth index of smem cumulative

sum of histogram + the pth index of smem cumulative sum of histogram
 END IF
 offset ← offset * 2
 d ← d >> 1
END FOR

// set the last element to zero
IF t = 0 THEN
 the (n – 1)th index of cumulative sum of histogram ← the (n – 1 + (n – 1) >> 4)th index

of smem cumulative sum of histogram
 the (n – 1 + (n – 1) >> 4)th index of smem cumulative sum of histogram ← 0
END IF

// down-sweep phase
FOR d = 1 TO d < n DO

 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84 77

 offset ← offset >> 1
 SYNCHRONIZE the threads
 IF t < d THEN
 p ← offset * (2 * t + 1) – 1
 q ← offset * (2 * t + 2) – 1
 p ← p + p >> 4
 q ← q + q >> 4
 temp value ← the pth index of smem cumulative sum of histogram
 the pth index of smem cumulative sum of histogram ← the qth index of smem cumulative

sum of histogram
 the qth index of smem cumulative sum of histogram ← the qth index of smem cumulative

sum of histogram + temp value
 END IF
 d ← d * 2
END FOR

// copy data from shared memory to global memory
the pth index of cumulative sum of histogram ← the (p + 1 + (p + 1) >> 4)th index of smem
cumulative sum of histogram
IF q < n – 1 THEN
 the qth index of cumulative sum of histogram ← the (q + 1 + (q + 1) >> 4)th index of

smem cumulative sum of histogram
END IF

END FUNCTION

Computation to find the optimal threshold from the cumulative sum of the histogram is different
for each method. However, a block with 256 threads is used to match the number of histogram bins
because all methods are based on a histogram. Otsu method finds a threshold that maximizes inter-
class variance can be achieved using a parallel reduction algorithm to find the index of maximum
inter-class variance. Algorithm 4 shows the computation of inter-class variance on GPU.

Algorithm 4. The computation of inter-class variances on GPU

GPU CONFIGURATION
 block ← 256
 grid ← 1

FUNCTION compute the inter-class variances

READ cumulative sum of 0th order and 1st order probability histogram

t ← threadIdx.x
n ← the number of histogram bin

// load data to shared memory
ALLOCATE shared memory (smem) to store the cumulative sum of 0th and 1st order probability
histogram
 smem cumulative sum of 0th order histogram ← cumulative sum of 0th order probability

histogram
 smem cumulative sum of 1st order histogram ← cumulative sum of 1st order probability

histogram
 smem value ← 0
 smem index ← t
SYNCHRONIZE the threads

// compute inter-class variances
numerator ← power of two of (the (n – 1)th index of smem cumulative sum of 1st order

histogram * the tth index of smem cumulative sum of 0th order histogram – the tth index of
smem cumulative sum of 1st order histogram)

denominator ← the tth index of smem cumulative sum of 0th order histogram * (1 – the tth
index of smem cumulative sum of 0th order histogram) + EPSILON)

the tth index of smem value ← numerator / denominator
SYNCHRONIZE the threads

78 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84

// find the index of maximum value of inter-class variance using parallel reduction
algorithm
FOR s = blockDim.x / 2 TO s > 0 DO
 IF t < s AND the (t + s)th index of smem value > the tth index of smem value THEN
 the tth index of smem index ← the (t + s)th index of smem index
 the tth index of smem value ← the (t + s)th index of smem value
 END IF
 SYNCHRONIZE the threads
 s ← s >> 1
END FOR

// get the index of maximum value and copy to global memory
IF t = 0 THEN
 threshold ← the 0th index of smem index
END IF

END FUNCTION

At each iteration in the ISODATA method, the threads compute the average data below and above
the threshold, compute the new threshold, and compare the new threshold with the previous threshold.
If the difference of the thresholds is less than a given threshold or the iteration is reached the maximum
number of iterations, the optimum threshold is obtained. Algorithm 5 shows the ISODATA
computation on GPU.

Algorithm 5. The computation of ISODATA on GPU

GPU CONFIGURATION
 block ← 256
 grid ← 1

FUNCTION compute the ISODATA

READ cumulative sum of 0th order and 1st order histogram and maximum number of iteration

t ← threadIdx.x
n ← the number of histogram bin

// load data to shared memory
ALLOCATE shared memory (smem) to store the cumulative sum of 0th order and 1st order histogram
 smem cumulative sum of 0th order histogram ← cumulative sum of 0th order histogram
 smem cumulative sum of 1st order histogram ← cumulative sum of 1st order histogram
 smem means below threshold ← 0
 smem means above threshold ← 0
 smem value ← 0
SYNCHRONIZE the threads

// compute all possible means below-threshold and above-threshold
IF t < n – 1 THEN
 the tth index of smem means below-threshold ← floor ((the tth index of smem cumulative

sum of 1st order histogram / (the tth index of smem cumulative sum of 0th order histogram
+ EPSILON)) + 0.5)

 numerator ← the (n – 1)th index of smem cumulative sum of 1st order histogram – the (t +
1)th index of smem cumulative sum of 1st order histogram

 denominator ← the (n – 1)th index of smem cumulative sum of 0th order histogram – the (t
+ 1)th index of smem cumulative sum of 0th order histogram + EPSILON

 the tth index of smem means above-threshold ← floor ((numerator / denominator) + 0.5)
END IF
SYNCHRONIZE the threads

// compute the average inter-class means
the tth index of smem value ← floor (((the tth index of smem means below-threshold + the tth

index of smem means above-threshold) / 2) + 0.5)
SYNCHRONIZE the threads

 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84 79

// compute the difference between the current threshold and the previous threshold
IF t = 0 THEN
 iteration ← 0
 difference ← 1
 T ← floor ((the (n – 1)th index of cumulative sum of 1st order histogram / (the (n – 1)th

index of cumulative sum of 0th order histogram + EPSILON)) + 0.5)
 WHILE difference > 0 AND iteration < maximum number of iteration DO
 threshold ← the Tth index of smem value
 difference ← absolute of (the Tth index of smem value – threshold)
 T ← the Tth index of smem value
 iteration ← iteration + 1
 END WHILE
END IF
SYNCHRONIZE the threads

END FUNCTION

The cross-entropy computation uses a parallel sum reduction algorithm to compute the sum above-
threshold and below-threshold entropy from the histogram. The sum is used to compute the entropy
histogram. To compute all possible thresholds in parallel (iterates through all possible thresholds while
performing parallel sum reduction algorithm to compute the sum above-threshold and below-
threshold), the configuration is set to use a block with 256 threads and a grid with 256 blocks.
Algorithm 6 shows the cross-entropy computation on GPU.

Algorithm 6. The computation of cross-entropy on GPU.

GPU CONFIGURATION
 block ← 256
 grid ← 256

FUNCTION compute the cross-entropy

READ 0th order probability histogram, cumulative sum of 0th order and 1st order probability
histogram

b ← blockIdx.x
t ← threadIdx.x
n ← the number of histogram bin

// load data to shared memory
ALLOCATE shared memory (smem) to store the sum and entropy below-threshold and above-
threshold
 data below-threshold ← the bth index of cumulative sum of 1st order probability histogram

/ (the bth index of cumulative sum of 0th order probability histogram + EPSILON)
 data above-threshold ← (the (n-1)th index of cumulative sum of 1st order probability

histogram – the bth index of cumulative sum of 1st order probability histogram) / (the
(n-1)th index of cumulative sum of 0th order probability histogram – the bth index of
cumulative sum of 0th order probability histogram + EPSILON)

 the tth index of smem below-threshold entropy ← 0
 the tth index of smem above-threshold entropy ← 0
SYNCHRONIZE the threads

// compute entropy above-threshold and below-threshold
IF t > b AND data above-threshold > 0 THEN
 the tth index of smem above-threshold entropy ← (t + 1) * the tth index of 0th order

probability histogram * log of (data above-threshold)
END IF

IF t <= b AND data below-threshold > 0 THEN
 the tth index of smem below-threshold entropy ← (t + 1) * the tth index of 0th order

probability histogram * log of (data below-threshold)
END IF
SYNCHRONIZE the threads

80 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84

// perform parallel sum reduction
FOR s = b / 2 TO s > 0 DO
 IF t < s THEN
 the tth index of smem above-threshold entropy ← the tth index of smem above-threshold

entropy + the (t + s)th index of smem above-threshold entropy
 the tth index of smem below-threshold entropy ← the tth index of smem below-threshold

entropy + the (t + s)th index of smem below-threshold entropy
 END IF
 SYNCHRONIZE the threads
END FOR

// compute cross-entropy
IF t = 0 THEN
 the bth index of cross-entropy histogram ← global entropy – the 0th index of smem above-

threshold entropy – the 0th index of smem below-threshold entropy
END IF

END FUNCTION

Finding the index of minimum cross-entropy can be done using a parallel reduction algorithm that
compares half of the histogram bins with the other half of the histogram bins. The number of histogram
bins is reduced for every iteration. Algorithm 7 shows the computation to find the index of minimum
cross-entropy on GPU.

Algorithm 7. The computation to find the index of minimum cross entropy on GPU.

GPU CONFIGURATION
 block ← 256
 grid ← 1

FUNCTION find the index of minimum cross-entropy

READ cross-entropy histogram

t ← threadIdx.x

// load data to shared memory
ALLOCATE shared memory (smem) to store the cross-entropy histogram
 smem cross-entropy histogram ← cross-entropy histogram
 smem index ← t
SYNCHRONIZE the threads

// find index of minimum value using reduction
FOR s = blockDim.x / 2 TO s > 0 DO
 IF t < s AND the (t + s)th index of smem cross-entropy histogram < the tth index of smem

cross-entropy histogram THEN
 the tth index of smem cross-entropy histogram ← the (t + s)th index of smem cross-

entropy histogram
 the tth index of smem index ← the (t + s)th index of smem index
 END IF
 SYNCHRONIZE the threads
 s ← s >> 1
END FOR

// copy the result to global memory
IF t = 0 THEN
 threshold ← the 0th index of smem index
END IF

END FUNCTION

The implementation of image thresholding is parallelized using thread-level parallelism on GPU.
The approach is practical because the operation is independent for each pixel. The result of image

 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84 81

thresholding is a binary image “1” for pixels above the threshold and “0” for pixels below the
threshold. Algorithm 8 shows the implementation of image thresholding on GPU.

Algorithm 8. The implementation of image thresholding on GPU.

GPU CONFIGURATION
 block ← 256
 grid ← 256

FUNCTION apply the threshold on image

READ image data, image size and threshold

t ← threadIdx.x + blockIdx.x * blockDim.x
s ← blockDim.x * gridDim.x

// create binary image using image thresholding
WHILE t < image size DO
 IF the tth index of image data < threshold THEN
 the tth index of binary image ← 0
 ELSE
 the tth index of binary image ← 1
 END IF
 t ← t + s
END WHILE

END FUNCTION

B. Adaptive Image Thresholding Result

The parallel adaptive image thresholding method is tested on selected images from the FVC2004
(Fingerprint Verification Competition) dataset [20]. The result of adaptive image thresholding
implementation is the binary image as shown in Figure 5 where (a) is the fingerprint image, (b) is the
binary image generated by the Otsu method with threshold = 154, (c) is the binary image generated
by ISODATA method with threshold = 156 and (d) is the binary image generated by MCET method
with threshold = 123. As shown in Figure 5, the methods produce a different optimal threshold because
the algorithm to search the optimum threshold is also different.

C. Computational Time Evaluation

The test was conducted on selected images from FVC2004 (Fingerprint Verification Competition)
dataset [20]. The images are resized to generate various image sizes, namely 256×256, 512×512,
1024×1024, 2048×2048, and 4096×4096. The purpose of this experiment is to measure the
computational time of the proposed parallel approach of adaptive image thresholding methods when
dealing with a large number of data (pixels).

The computational time evaluation on CPU and GPU is shown in Figure 6 where (a) Otsu method,
(b) ISODATA method, and (c) MCET method. The proposed parallel approach gains speedup 4-6
times than CPU implementation from implementing adaptive image thresholding methods on GPU.

(a) (b) (c) (d)

Fig. 5. The result of adaptive image thresholding implementation; (a) fingerprint image; (b) Otsu method with threshold =

154; (c) ISODATA method with threshold = 156; and (d) MCET method with threshold = 123

82 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84

The performance significantly increases when dealing with larger data. The result shows that the
parallel approach of the adaptive image thresholding method on GPU allows image segmentation to
be processed in real-time, even when dealing with a large resolution of the image.

(a)

(b)

(c)

Fig. 6. Performance evaluation of adaptive image thresholding implementation; (a) performance comparison of Otsu

method implementation on CPU and GPU; (b) performance comparison of ISODATA method implementation on CPU

and GPU; and (c) performance comparison of MCET method implementation on CPU and GPU

0

2

4

6

8

10

12

14

256x256 512x512 1024x1024 2048x2048 4096x4096

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

ec
o

n
d

s)

CPU GPU

0

2

4

6

8

10

12

14

256x256 512x512 1024x1024 2048x2048 4096x4096

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

ec
o

n
d

s)

CPU GPU

0

2

4

6

8

10

12

14

256x256 512x512 1024x1024 2048x2048 4096x4096

C
o

m
p

u
ta

ti
o

n
al

 T
im

e
(s

ec
o

n
d

s)

CPU GPU

 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84 83

IV. Conclusion

Image processing applications, for example, perform segmentation, usually requiring high-
resolution images such as satellite, aerial, biometric, or medical images as the input. The segmentation
method, which involves per pixel operation and iterative procedure, can be costly in handling many
data/pixels in the high-resolution image. Therefore, this research proposed a parallel approach of
adaptive image thresholding algorithms, namely Otsu, ISODATA, and minimum cross-entropy on
GPU to deal with high-resolution images. The experiment was conducted on selected fingerprint
images taken from FVC2004 (Fingerprint Verification Competition) dataset. From the experiment
with the various scale of image resolutions, GPU implementation's computational time shows 4-6
times more speed up than CPU implementation. The performance is significantly increased when
dealing with larger image resolution. This result shows that the parallel approach allows image
segmentation to be processed in real-time, even when dealing with large image resolution. The
contributions are shown in the analysis result of the adaptive image thresholding algorithms that can
be optimized using the parallel approach to produce a significant speedup in a computational time
when dealing with a high-resolution image. In future work, the proposed parallel approaches will be
further optimized using multi-GPUs and implemented in more complex cases such as the
segmentation of aerial or medical images.

Acknowledgment

This research is supported by LPPM Universitas Ahmad Dahlan research grant no. PF-
062/SP3/LPPM-UAD/VI/2018.

Declarations

Author contribution

All authors contributed equally as the main contributor of this paper. All authors read and approved the final paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare no known conflict of financial interest or personal relationships that could have appeared to influence
the work reported in this paper.

Additional information

Reprints and permission information are available at http://journal2.um.ac.id/index.php/keds.

Publisher’s Note: Department of Electrical Engineering - Universitas Negeri Malang remains neutral with regard to
jurisdictional claims and institutional affiliations.

References

[1] R. C. Gonzalez and R. E. Woods, Digital image processing. Prentice Hall, 2008.

[2] N. Otsu, "A Threshold Selection Method from Gray-Level Histograms," IEEE Trans. Syst. Man. Cybern., vol. 9, no.
1, pp. 62–66, Jan. 1979.

[3] G. H. Ball, D. J. Hall, and S. R. Institute, Isodata: A Method of Data Analysis and Pattern Classification. Stanford
Research Institute, 1965.

[4] C. H. Li and C. K. Lee, "Minimum cross entropy thresholding," Pattern Recognit., vol. 26, no. 4, pp. 617–625, Apr.
1993.

[5] A. M. A. Talab, Z. Huang, F. Xi, and L. HaiMing, "Detection crack in image using Otsu method and multiple filtering
in image processing techniques," Optik (Stuttg)., vol. 127, no. 3, pp. 1030–1033, Feb. 2016.

[6] Z. He and L. Sun, "Surface defect detection method for glass substrate using improved Otsu segmentation," Appl.
Opt., vol. 54, no. 33, p. 9823, Nov. 2015.

[7] Y. Feng, H. Zhao, X. Li, X. Zhang, and H. Li, "A multi-scale 3D Otsu thresholding algorithm for medical image
segmentation," Digit. Signal Process., vol. 60, pp. 186–199, Jan. 2017.

[8] P. Zhang et al., "Multi-component segmentation of X-ray computed tomography (CT) image using multi-Otsu
thresholding algorithm and scanning electron microscopy," Energy Explor. Exploit., vol. 35, no. 3, pp. 281–294, May
2017.

[9] S. Sarkar, S. Das, and S. S. Chaudhuri, "A multilevel color image thresholding scheme based on minimum cross
entropy and differential evolution," Pattern Recognit. Lett., vol. 54, pp. 27–35, Mar. 2015.

http://journal2.um.ac.id/index.php/keds
https://www.pearson.com/us/higher-education/program/Gonzalez-Digital-Image-Processing-4th-Edition/PGM241219.html
https://doi.org/10.1109/tsmc.1979.4310076
https://doi.org/10.1109/tsmc.1979.4310076
https://books.google.co.id/books/about/Isodata_a_Novel_Method_of_Data_Analysis.html?id=Ti3BGwAACAAJ&redir_esc=y
https://books.google.co.id/books/about/Isodata_a_Novel_Method_of_Data_Analysis.html?id=Ti3BGwAACAAJ&redir_esc=y
https://doi.org/10.1016/0031-3203(93)90115-d
https://doi.org/10.1016/0031-3203(93)90115-d
https://doi.org/10.1016/j.ijleo.2015.09.147
https://doi.org/10.1016/j.ijleo.2015.09.147
https://doi.org/10.1364/ao.54.009823
https://doi.org/10.1364/ao.54.009823
https://doi.org/10.1016/j.dsp.2016.08.003
https://doi.org/10.1016/j.dsp.2016.08.003
https://doi.org/10.1177/0144598717690090
https://doi.org/10.1177/0144598717690090
https://doi.org/10.1177/0144598717690090
https://doi.org/10.1016/j.patrec.2014.11.009
https://doi.org/10.1016/j.patrec.2014.11.009

84 A. Prahara et al. / Knowledge Engineering and Data Science 2021, 4 (2): 69–84

[10] D. Oliva, S. Hinojosa, V. Osuna-Enciso, E. Cuevas, M. Pérez-Cisneros, and G. Sanchez-Ante, “Image segmentation
by minimum cross entropy using evolutionary methods,” Soft Comput., pp. 1–20, Aug. 2017.

[11] T. Kaur, B. S. Saini, and S. Gupta, "Optimized Multi Threshold Brain Tumor Image Segmentation Using Two
Dimensional Minimum Cross Entropy Based on Co-occurrence Matrix," Springer, Cham, 2016, pp. 461–486.

[12] S. Hemalatha and S. M. Anouncia, "Unsupervised segmentation of remote sensing images using FD based texture
analysis model and ISODATA," Int. J. Ambient Comput. Intell., vol. 8, no. 3, pp. 58–75, 2017.

[13] P. Kanungo, P. K. Nanda, and A. Ghosh, "Parallel genetic algorithm based adaptive thresholding for image
segmentation under uneven lighting conditions," in 2010 IEEE International Conference on Systems, Man and
Cybernetics, 2010, pp. 1904–1911.

[14] M. Sandeli and M. Batouche, "Multilevel thresholding for image segmentation based on parallel distributed
optimization," in 2014 6th International Conference of Soft Computing and Pattern Recognition (SoCPaR), 2014, pp.
134–139.

[15] M. H. Najafi, A. Murali, D. J. Lilja, and J. Sartori, "GPU-Accelerated Nick Local Image Thresholding Algorithm," in
2015 IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), 2015, pp. 576–584.

[16] P. K. Upadhyay, S. Chandra, and A. Sharma, "A novel approach of adaptive thresholding for image segmentation on
GPU," in 2016 Fourth International Conference on Parallel, Distributed and Grid Computing (PDGC), 2016, pp.
652–655.

[17] J. Fung and S. Mann, "Using graphics devices in reverse: GPU-based Image Processing and Computer Vision," in
2008 IEEE International Conference on Multimedia and Expo, 2008, pp. 9–12.

[18] M. Harris, "Optimizing cuda," SC07 High Perform. Comput. With CUDA, p. 18, 2007.

[19] Harris, S. Sengupta, and J. D. Owens, "Parallel prefix sum (scan) with CUDA," GPU gems, vol. 3, no. 39, pp. 851–
876, 2007.

[20] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of fingerprint recognition. Springer Science & Business
Media, 2009.

https://doi.org/10.1007/s00500-017-2794-1
https://doi.org/10.1007/s00500-017-2794-1
https://doi.org/10.1007/978-3-319-33793-7_20
https://doi.org/10.1007/978-3-319-33793-7_20
https://doi.org/10.4018/978-1-5225-7033-2.ch028
https://doi.org/10.4018/978-1-5225-7033-2.ch028
https://doi.org/10.1109/icsmc.2010.5642269
https://doi.org/10.1109/icsmc.2010.5642269
https://doi.org/10.1109/icsmc.2010.5642269
https://doi.org/10.1109/socpar.2014.7007994
https://doi.org/10.1109/socpar.2014.7007994
https://doi.org/10.1109/socpar.2014.7007994
https://doi.org/10.1109/icpads.2015.78
https://doi.org/10.1109/icpads.2015.78
https://doi.org/10.1109/pdgc.2016.7913203
https://doi.org/10.1109/pdgc.2016.7913203
https://doi.org/10.1109/pdgc.2016.7913203
https://doi.org/10.1109/icme.2008.4607358
https://doi.org/10.1109/icme.2008.4607358
http://www.enseignement.polytechnique.fr/profs/informatique/Eric.Goubault/Cours09/CUDA/SC07_CUDA_5_Optimization_Harris.pdf
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda
https://doi.org/10.1007/978-1-84882-254-2
https://doi.org/10.1007/978-1-84882-254-2

	I. Introduction
	II. Method
	A. Otsu Method
	B. ISODATA algorithm
	C. Minimum Cross-Entropy method
	D. Parallel Computing on GPU
	1) Parallel Reduction Algorithm
	2) Parallel Prefix Sum (Scan) Algorithm

	III. Result and Discussion
	A. Adaptive Image Thresholding Implementation
	B. Adaptive Image Thresholding Result
	C. Computational Time Evaluation

	IV. Conclusion
	Acknowledgment
	Declarations
	Author contribution
	Funding statement
	Conflict of interest
	Additional information

	References

