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I. Introduction 

The Vehicle Routing Problem (VRP) is the most important in distribution management operations. 
VRP is faced by all organizations or companies involved in shipping and logistics. The primary 
purpose of VRP is to minimize travel costs for each vehicle route that serves customer requests with 
different location coordinates. Each delivery route will be started and ended by a depot or warehouse, 
and each customer will only be visited once [1][2]. VRP is one of the topics in optimizing complex 
combinatorial problems that researchers in computer science most often discuss. VRP solutions have 
specific objectives and limitations in real applications, making VRP have categories or variants [3]. 
The variants of VRP include VRP with Time Windows (VRPTW) [4], Multiple Depot VRP 
(MDVRP) [5], VRP with Backhauls [6], and Capacitated VRP (CVRP) [7]. 

One of the most popular VRP variants in this study will be discussed, namely the Capacitated 
Vehicle Routing Problem (CVRP). CVRP is included in the type of NP-Hard combinatorial problem 
that requires a high computational process [8]. In the case of CVRP, there is an additional constraint 
in the form of a capacity limit owned by the vehicle, so the complexity of the problem from CVRP is 
to find the optimum route pattern for minimizing travel costs which are also adjusted to customer 
demand and vehicle capacity for distribution [7]. One method of solving CVRP can be done by 
implementing a meta-heuristic algorithm that can be used to solve complex combinatorial 
optimization problems [9][10]. In recent years, the meta-heuristic algorithm has become a popular 
method researchers use because of its effectiveness, efficacy, and flexibility [11]. The meta-heuristic 
algorithm is an optimization technique that uses an iterative approach to produce the best solution by 
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Capacitated Vehicle Routing Problem (CVRP) is a type of NP-Hard combinatorial 
problem that requires a high computational process. In the case of CVRP, there is an 
additional constraint in the form of a capacity limit owned by the vehicle, so the 
complexity of the problem from CVRP is to find the optimum route pattern for 
minimizing travel costs which are also adjusted to customer demand and vehicle 
capacity for distribution. One method of solving CVRP can be done by implementing 
a meta-heuristic algorithm. In this research, two meta-heuristic algorithms have been 
hybridized: Artificial Bee Colony (ABC) with Improved Simulated Annealing (SA). 
The motivation behind this idea is to complete the excess and the lack of two 
algorithms when exploring and exploiting the optimal solution. Hybridization is done 
by running the ABC algorithm, and then the output solution at this stage will be used 
as an initial solution for the Improved SA method. Parameter testing for both methods 
has been carried out to produce an optimal solution. In this study, the test was carried 
out using the CVRP benchmark dataset generated by Augerat (Dataset 1) and the 
recent CVRP dataset from Uchoa (Dataset 2). The result shows that hybridizing the 
ABC algorithm and Improved SA could provide a better solution than the basic ABC 
without hybridization. 
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exploring the local optimum solution [12]. Meta-heuristic algorithms can be used to find the optimum 
solution with a predetermined time or number of iterations [13]. 

In previous studies, several types of meta-heuristic algorithms have been carried out to solve 
CVRP, including Simulated Annealing [7], Genetic Algorithm [8], Particle Swarm Optimization [9], 
Firefly Algorithm [14], and Artificial Bee Colony [15][16]. Based on these studies, Artificial Bee 
Colony (ABC) is one of the meta-heuristic algorithms that can produce the best average solution 
output. Besides, ABC is the most popular variant of swarm intelligence because it is used most widely 
in optimization research despite ABC being the youngest algorithm compared with other swarm 
intelligence [17]. ABC is an algorithm inspired by Swarm Intelligence (SI), especially in bees. Bees 
have intelligence that is used to select food source locations by evaluating quality through a dance 
movement called the waggle dance. The quality of food sources is assessed from the quality of nectar 
in flowers (pollen), as well as the distance and direction of the location of the food source to the nest. 
ABC is not only used to optimize CVRP, but has also succeeded in overcoming other optimization 
problems such as optimization cost efficiency for sizing and composition of Arctic offshore drilling 
support fleets [18], multi-objective optimization on scheduling for palletizing task using robotic arm 
[19],  Multi-objective Land-use allocation [20] and other optimization projects [21][22][23]. 

The main advantages of the ABC algorithm are fewer control parameters than other SI algorithms, 
which can handle stochastic objective functions, and are easy to hybridize with other algorithms. 
However, the ABC algorithm also has a drawback and cannot produce an optimal solution because it 
is trapped in a local optimum solution [24]. Besides that, the performance of the ability to search for 
a better solution is also poor [25]. So in this study, improvements will be made to the performance of 
the ABC algorithm by performing a hybridization with other meta-heuristic algorithms. Hybridization 
is proven to improve the performance of an algorithm, especially for optimization problems. In 
previous studies, the ABC algorithm has been hybridized with several other meta-heuristic algorithms 
such as Tabu Search [26], Genetic Algorithm [27], Particle Swarm Optimization [28], Monarchy 
Butterfly Optimization [29], and Quantum Computing [30]. Those studies show that the hybridization 
of the ABC algorithm can show significant differences in producing the optimal solution. 

In this research, we proposed hybridizing the ABC algorithm and another popular meta-heuristic 
algorithm, Simulated Annealing (SA). The motivation behind this hybridization is to increase the 
performance of two meta-heuristic algorithms by utilizing both algorithms' strengths and weaknesses 
to provide a better solution for solving CVRP. SA is a probability-based meta-heuristic algorithm used 
to solve combinatorial optimization problems adapted from the cooling process of metals or materials 
in thermodynamics [31][32][33]. SA is an attractive method for solving optimization problems 
because of its ability to deal with arbitrary system and functions, which are easy to implement. SA 
has been used in several optimization problems in different fields such as Statistical Physic [34], 
Discrete Structures [35], Biotechnology [36], and others [37][38]. However, SA also had a 
disadvantage: the parameters are difficult to control, especially the Initial Temperature and Annealing 
rate. Handling the weaknesses of SA can be done by hybridizing, and it is proven that SA is a method 
with settings that are easy to modify and hybridize with other algorithms. In earlier research, SA also 
had been hybridizing with Particle Swarm Optimization for solving CVRP [39], Optimizing Assembly 
sequences with Genetic algorithms, and Melanoma Classification by Neural Networks [32]. In order 
to maximize the results of hybridization, we will implement a new approach from the SA method that 
is proven to produce the best solution. There are several modifications of SA to improve its 
performance, such as using a crossover operator [40], adding two new operators that are folding and 
reheating [41], and adding a Very Fast Simulated Annealing with two stages of annealing plan [42]. 
That Improvisation had success in increasing the performance of SA. This research will use one of the 
Improved SA proposed by Yuxin et al. (2018) to prove its performance in solving CVRP. 

A test will be carried out on the CVRP benchmark dataset generated by Augerat et al. (1998) to 
prove the reliability of the hybridization of the two algorithms [43] and the latest CVRP dataset from 
Uchoa et al. (2016) [44]. Our main contribution: First, we show that hybridizing two different meta-
heuristic algorithms could produce the best performance compared with a single meta-heuristic 
algorithm implementation for solving CVRP. Second, we demonstrated that our proposed algorithm 
could achieve a minimum distance of CVRP. In addition, we used a novel dataset of CVRP that had 
high complexity and was close to the original problems. This research is structured into four sections. 
Section I is about the background and the related research. Section II illustrates the research methods, 
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and Section III analyzes the implementation algorithm's result with parameter testing. Finally, the 
main findings and future research direction are outlined in Section IV.  

II. Methods 

In solving the CVRP problem, the expected solution value is the minimum distance from the entire 
vehicle trip in one dataset group. Thus, several benchmark datasets of CVRP will be used to test the 
parameters and algorithms used in this study. As for this research, hybridization was carried out by 
first finding the best parameters by testing the parameters of the two methods. The best parameters 
would be used in the hybridization process by running the Artificial Bee Colony (ABC) method first, 
and the solution's output from the process would be used as an initial solution of the Improved 
Simulated Annealing (SA) method. The methodology in this research is depicted in Figure 1. 

 

Fig. 1. Research method 

A. Datasets 

The dataset 1 used in this study is a dataset generated by Augerat [43], shown in Table 1 and the 
new benchmark dataset on CVRP, Uchoa (Dataset 2) [44] which are shown in Table 2. 
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B. Artificial Bee Colony (ABC)  

The ABC algorithm is an example of swarm intelligence that tries to adopt some intelligent 
behavior from animals, especially honey bees when looking for food sources. In a swarm of bees, 
there are three types of bees: employed bees, onlooker bees, and scout bees [2]. The three types of 
bees have the same goal when looking for food sources to find the highest quality. The flowchart of 
the ABC algorithm in this study is depicted in Figure 2. The value of the best-known solution from 
the dataset used in this study is shown in Table 3. The implementation of the ABC algorithm is 
described in this pseudocode. 

1 // Initialization 

2 B = The number of Bees 

3 I = The number of Iterations 

4 𝑆𝑡 = Set of Stages {𝑆1, 𝑆2, 𝑆3, 𝑆𝑚} 

5 // Find Any solution x of the problem R 

6 For i=1 until i=I 

7     For j=1 until j=m 

8            For b=1 until b=B 

9 // Forward Step, Allow bees to fly from the hive and choose B 

10 //Partial solutions from the set of partial solutions 𝑆𝑗 at stage 𝑆𝑡𝑗 

11 // Backward Step, Send All bees back to the hive, Allow bees to exchange 

12 // the information about the quality of the partial solutions 

13             Set j:= j+1 

14       If r>x, x=r 

15             Set j:= j+1 

16             Set I:= i+1 

 
ABC's parameter will be tested to produce the optimum solution, namely the number of 

populations. So in this study, a solution calculation will be carried out from each dataset with a 
population of 100 and 1000. The evaluation of the solution is the calculation of the total distance that 
must be traveled by all vehicles using the euclidean distance formula shown in (1).  

𝑑𝑡 = (∑ √(𝑥𝑖 − 𝑥𝑗)2 + ∑ √(𝑦𝑖 − 𝑦𝑗)2)        (1) 

where: 

𝑥𝑖,𝑗      = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑥 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖, 𝑗 
𝑦𝑖,𝑗      = 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑦 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑖, 𝑗 
𝑑𝑡        = 𝑡𝑜𝑡𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑦 𝑎𝑙𝑙 𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠 

Table 1. Dataset 1 

No. Set of Problem Number of Customer Number of Vehicle Capacity 

1. An32k5 32 5 100 

2. An69k9 69 9 100 

3. An80k10 80 10 100 

4. Bn31k5 31 5 100 

5. Bn50k7 50 7 100 

6. Bn78k10 78 10 100 

7. E-n51-k5 51 5 8000 

8. Pn101k4 101 4 400 

 

Table 2. Dataset 2 

No. Set of Problem Number of Customer Number of Vehicle Capacity 

1. Xn200k36 200 36 402 

2. Xn359k29 359 29 68 
3. Xn627k43 627 43 110 

4. Xn876k59 876 59 764 
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The fitness value is obtained by comparing the distance value obtained from the solution using the 

distance best-known solution value from each dataset formulated in (2). 

𝑓 =
1

1+(𝑑𝑡−𝑏𝑘𝑠)
            (2) 

where: 

𝑓     = 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑣𝑎𝑙𝑢𝑒 
𝑏𝑘𝑠   = best-known solution 
 

 
 

Fig. 2. Artificial Bee Colony (ABC) algorithm 
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C. Improved Simulated Annealing 

After getting a solution with the best fitness in the previous method using the ABC algorithm, the 
following solution will be searched again using the Improved Simulated Annealing (SA) algorithm. 
The Improved Simulated Annealing Algorithm that will be carried out in this study is the SA algorithm 
which has been improved using the Very Fast Simulated Annealing (VFSA) concept, which is applied 
to CVRP [7]. The annealing plan of the improved simulated annealing method in stage 1 is formulated 
in (3). 

T1(k) = 𝑇0 exp (−𝑐𝑘
1

𝑁)         (3) 

Initial temperature is (𝑇0), several iterations are k, then c is the value of the given constant, and N is 

the number of inversion parameters. If the temperature exceeds the specified T value, step 2 will be 

carried out with in (4). 

𝑇2(𝑘) = 𝑇0 𝑒𝑥𝑝 (−𝛼(𝑗 −
𝑘0

𝛽
)1/2)        (4) 

The number of iterations in step 1 is 𝑘0, the temperature rise factor is 𝛽 . T and 𝛽 have inversely 

proportional values; when it is small, the value of T will be more significant. The parameters used in 

the Improved Simulated algorithm and also those that will be tested in this study include temperature 

reduction factor value (𝛼), the random value on the opportunity (𝑟), parameter values c and N, and 

the number of iteration 𝑡𝑚𝑎𝑥. 

III. Results and Discussion  

In this study, hybridization was carried out by first running the ABC algorithm and followed by 

Improved SA, but before that, it was necessary to do parameter testing first. The testing parameters 

on the ABC algorithm will be carried out by testing the number of populations, which are 100 shown 

in Table 4 and 1000 populations shown in Table 5. The test was carried out several 5 trials and 

concluded with the minimum, maximum, and average values of the entire experiment. 

Table 3. The value of the best-known solution from the datasets 

No. Datasets Bks 

1. an32k5 784 

2. an69k9 1763 

3. an80k10 1174 

4. bn31k5 672 

5. bn50k7 1032 

6. bn78k10 1221 

7. en51k5 521 
8. pn101k4 681 

9. xn200k36 58578 

10. xn359k29 51509 

11. xn627k43 62366 
12. xn876k59 99715 

 

Table 4. Result of 100 population 

Datasets Min Max Avg 

An32k5 2128 2300 2231 

An69k9 4264 4554 4387 

An80k10 5522 5778 5653 

Bn31k5 1292 1420 1365 

Bn50k7 2878 3016 2370 

Bn78k10 4734 5076 4900 

En51k5 1770 2022 1908 

Pn101k4 3832 4022 3946 

Xn200k36 134866 141286 138000 

Xn359k29 244534 250950 248529 

Xn627k43 405618 412564 409079 

Xn876k59 553752 567470 562342 
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Based on Table 4 and Table 5, when the minimum result is visualized, it will be seen in Figure 3 

for dataset 1 and Figure 4 for dataset 2. 

 
Fig. 3. Result of num of population testing on dataset 1 

As visualized in Figure 3, there are different results regarding the number of populations, and it 

shows that using 100 populations could produce the best distance than 1000 populations. The same 

thing happened in dataset 2, shown in Figure 4, although there are just slightly different. So, the num 

of the population used in this research is 100. 

 
Fig. 4. Result of num of population testing on dataset 2 

After getting the best parameter for the ABC algorithm, the next step is looking for the best 

parameter for Improved SA. The temperature reduction factor value is used to reduce the temperature 

value of the Improved SA method, and this parameter determines the temperature value of the 

Improved SA method, which will affect the number of iterations. Therefore, the test results of the 

temperature reduction factor (∝) value on the an69k9 dataset are presented in Table 6. 

 

 

 

Table 5. Result of 1000 population 

Datasets Min Max Avg 

An32k5 1984 2168 2098 

An69k9 4132 4282 4179 

An80k10 5296 5466 5396 

Bn31k5 1210 1554 1322 

Bn50k7 1166 1298 1227 

Bn78k10 3834 4884 4604 

En51k5 1702 1842 1810 

Pn101k4 3792 3950 3874 

Xn200k36 131506 137816 135147 

Xn359k29 242058 246610 245205 

Xn627k43 399734 403684 402032 
Xn876k59 549460 559772 556476 
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Table 6 shows the results of testing the value of the temperature reduction factor on the an69k9 

dataset by conducting ten trials. The increase in the value of the reduction factor also affects the 

increasing computation time. So this study will use the value of the temperature reduction factor as 

0.9. 

Then, parameters c and N in the annealing plan are other parameters to be tested. In addition, a 

random value parameter will also be tested ten times, determining whether or not a bad solution is 

accepted in the SA method, which was previously only generated randomly. The trial results of 

random values in determining the acceptance of the worse solution are presented against the objective 

value, and the minimum total distance in the an69k9 Augerat’s dataset shows in Table 7. 

Table 7 shows that the random value on the probability of receiving a solution that produces the 

most optimal minimum distance is 0.9. Tests for parameters 𝑐 and 𝑁 were carried out to determine 

the optimal values for parameters c and N. In this parameter trial, the experiment will be performed 

ten times according to the optimal number of trials to get the average value of the total stable 

minimum distance value. The results of testing parameters 𝑐 and 𝑁 are presented in Table 8. 

Table 6. Result of temperature reduction factor 

∝ Min Max Avg 

0.1 3064 3546 3302 

0.2 3038 3392 3182 

0.3 2890 3112 3007 

0.4 2830 3046 2947 

0.5 2376 2966 2726 

0.6 2480 2802 2678 

0.7 2312 2556 2442 

0.8 2230 2738 2416 

0.9 2064 2434 2169 

 

Table 7. Testing the value of r 

𝒓 Min Max Avg 

0.1 2516 200768 2711 

0.2 2610 204512 2757 

0.3 2562 203384 2793 

0.4 2554 204380 2757 

0.5 2562 1999018 2791 

0.6 2344 202698 2728 

0.7 2632 204198 2747 

0.8 2540 202536 2744 

0.9 2478 205346 2650 

 

Table 8. Test results parameters 𝑐 and 𝑁 

𝒄 
𝑵 

0.1 0.2 0.3 0.4 0.5 0.5 0.6 0.7 0.8 0.9 

0.1 2781 2822,6 2891,4 2840,2 2829,4 2829,4 2824,4 2804,2 2819,2 2862,8 

0.2 2900,8 2857,8 2799,6 2833,4 2845 2845 2835,8 2765 2767,8 2809,8 

0.3 2814,2 2727,6 2736,2 2847,6 2753,4 2753,4 2827,7 2738,4 2913 2841,2 

0.4 2784,4 2808 2781 2835,4 2782,4 2782,4 2846,6 2716,4 2800,8 2809 

0.5 2848 2765,8 2867,6 2758,2 2791,2 2791,2 2855,2 2774,4 2848,4 2821,2 

0.6 2863,4 2897,4 2793,2 2813,2 2779,4 2779,4 2791,8 2771,4 2864 2857,6 

0.7 2776,4 2858,4 2828 2900,4 2768,4 2768,4 2793,4 2798,2 2850,8 2864,8 

0.8 2778,8 2811,2 2719,4 2736,6 2884,2 2884,2 2755,2 2805,6 2884,8 2775,8 

0.9 2860,4 2813,6 2789,4 2796,6 2814,6 2814,6 2823,4 2808 2777 2821 
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It can be seen in Table 8 parameters 𝑐 and 𝑁 that produce the optimal solution; namely, the 

minimum total distance value of the minimum is 0.4 for parameter 𝑐 and 0.7 for parameter 𝑁. In the 

trial of the number of iterations (𝑡𝑚𝑎𝑥), the experiment will be carried out on the an69k9 datasets 

with the number of iterations being 100, 1000, 10000, 100000, up to 1000000. In Table 9, the results 

of the solution calculation based on the number of iterations are presented.  

In Table 9, the increasing number of iterations carried out in the implementation of SA on the 

CVRP problem will result in an average total distance that is increasingly minimal which indicates 

that the solution is getting better. However, the average computing time is also increasing. When the 

number of iterations is carried out as much as 1.000.000, it can be observed that the decrease in the 

average value of the minimum distance is not too significant compared to the average value of the 

minimum distance obtained from the number of iterations of 100.000, but there is a vast difference 

in computation time as shown in Table 9 which is 106.392 seconds and 1103.243 seconds. So, it 

could be concluded that this research would be using 100.000 nums of iterations. After doing some 

testing of the required parameters, the hybridization of the ABC algorithm and Improved SA will be 

carried out ten times using the best parameter settings. The results of the hybridization dataset 1 and 

dataset 2 are shown in Table 10.  

The results of this study, shown in Table 10, will be compared with the results of implementing 

the ABC algorithm without hybridization to determine whether hybridization can produce a more 

optimal solution. The result of these comparison visualized in Figure 5 for dataset 1and Figure 6 for 

dataset 2. 

Based on the result in Figure 5, the comparison on dataset 1 shows that ABCSA could minimize 

the total distance significantly compared with a single ABC. This result means that SA could 

reconsider a solution based on the probability with the opportunity-based concept. Because not all 

the lousy solution found in early iteration always provides poor results. Augerat’s datasets used in 

this research come from a different type of set. So, the proposed method could prove the performance 

regarding data variation. 

Table 9. Test Results Parameters Num of Iteration 

𝒕𝒎𝒂𝒙 Min Max Avg Avg Computation Time (s) 

100 4032 4596 4222 0,481 

1000 3006 3356 3144 1,460 

10000 2076 2388 2205 10,737 

100000 1656 1910 1754 106,392 

1000000 1630 1690 1619 1103,243 

 

Table 10. Result of hybridization 

Datasets 
Distance 

Avg Fitness Avg Comp. Time (s) 
Min Max Avg 

An32k5 1082 1352 1246 0,002 24,6 

An69k9 1860 2164 2023 0,004 48,7 

An80k10 2788 2888 2833 0,0006 56 

Bn31k5 804 874 844 0,005 22,9 

Bn50k7 1138 1378 1244 0,005 35,8 

Bn78k10 1816 2156 1986 0,001 54,6 

En51k5 898 978 944 0,002 34,9 

Pn101k4 1156 1446 1274 0,001 62,5 

Xn200k36 96358 108048 102063 2,3E05 145,1 

Xn359k29 196890 209652 203881 6,5E-06 236 

Xn627k43 349086 365972 358497 3,3E-06 407,3 

Xn876k59 503928 522220 516263 2,4E-06 566,9 
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Fig. 5. Result of comparison of dataset 1 on the average distance 

Figure 6 the average total distance results from testing the dataset 2 using single ABC and ABCSA 

hybridization. These results also show that the more complex the dataset used, the less the difference 

in the average distance results. This happens because, naturally the more complex a problem is, the 

more difficult it will be for an algorithm to converge [45]. 

 

Fig. 6. Result of average distance on dataset 2 

Performance evaluation is not only carried out on the difference in distance generated by each 

algorithm. Performance measurement is also carried out by comparing computation time to show the 

impact of the hybridization. The result of the computation time is shown in Figure 7 for  dataset 1 

and Figure 8 for dataset 2. 

 
Fig. 7. Result of average distance on dataset 1 

 

Based on the results of a comparison of single ABC and ABCSA hybridization to the average 

computation time in seconds on dataset 1, there are variations in the difference in the An32k5, 

An69K9, Bn31k5, En51k5, and Pn101k4 datasets ABCSA hybridization actually results in less 

computation time than single ABC, and the increase in computation time only occurs in the An80k10 

dataset. This is because SA helps ABC to perform local searches so converge faster. Apart from that, 
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another exciting thing in the Ank69k9 dataset in Figure 7 is that there is a difference of 13.5 seconds 

to the computation time, even can minimize the resulting distance by 2404. This shows that 

hybridization minimizes almost 50 % of the total distance of a single ABC. 

 
Fig. 8. Result of comparison on dataset 2 

 
As we can see in Figure 8, the difference in computational time between the implementation of the 

single ABC and ABCSA hybridization on Uchoa's dataset is quite different compared to dataset 1. It 
can even be seen in the Xn359k9 dataset that the ABCSA hybridization significantly increases the 
computation time. This is because dataset 2 is highly complex, so ABCSA hybridization also requires 
a high time. However, comparing it with the distance minimization results obtained on dataset 2, the 
ABCSA hybridization is superior and minimizes the average distance. For example, in the Xn359k29 
dataset, it takes 47 seconds longer, but ABCSA hybridization can minimize the distance to 47644, 
which means 20% of the result of a single ABC distance. 

IV. Conclusion 

In this research, two meta-heuristic algorithms have been hybridized, namely, artificial bee colony 
(ABC) and Improved Simulated Annealing (SA), to solve the Capacitated Vehicle Routing Problem 
(CVRP) using the default dataset 1 and the latest CVRP dataset 2. The hybridization results show 
good performance compared to implementing the ABC algorithm without hybridization. Parameter 
testing of the two algorithms has also been carried out to produce an optimal solution. Based on the 
results of the study, the hybridization of the two meta-heuristic algorithms can provide more optimal 
performance in the CVRP optimization problem seen by how the total average distance can be 
minimized. In addition, the impact is that the computation time is not very significant, and even in 
some light datasets, it is proven to produce less time. In future research, improvements can be made 
to the artificial bee colony used with a modification so that hybridization can produce even better 
performance, besides the hybridization experiment of the meta-heuristic algorithm can be carried out 
to solve the CVRP case so that it can find out which combination of meta-heuristic algorithms can 
provide the most optimal solution. 
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