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I. Introduction  

The Recommendation System (RS) has become a mandatory feature in e-commerce [1][2][3]. 

This system principally filters large-scale transaction data to produce a list of items that e-commerce 

application users might like or even buy. An RS generates personalized recommendations for 

individual users, and this is effective if the user is logged in because the data regarding items that 

have been purchased or rated by the user personally has been recorded so that the resulting 

recommendations can be relevant to user preferences. 

For personalized recommendations, an RS can be built with a collaborative approach by 

measuring the similarity of item features that users U like with those of other users [4][5]; items that 

have never been rated by U, but rated by other users will be offered to U. The preferences of U are 

represented by the items vector, IU which contains the rating value given by U to each item. The 

similarity of IU with IP, the items vector belonging to another user P, is calculated according to the 

distance formula d(IU, IP). If there is no rating data, then the system utilizes the features of items that 

U once liked or bought. For example, descriptions of films or books [6][7], or categories or 

ingredients in food menus [8][9]. When U is looking for item X with a description of DX, the system 

will look for other items, for example, Y, with a description of DY that is similar to DX. The similarity 

is measured by a distance formula d(DY, DX). Here DX and DY are presented in feature vectors of the 

items X and Y, respectively. Popular distance calculation formulas include Cosine, Euclidean, 

Manhattan, and Jaccard coefficients. These collaborative and content filtering approaches are 

practical if the user has logged into the system, where SR then scans the database of transactions the 

user has made with items in the store. 
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In case the application user is not logged in, then the Association Rule (AR)-based RS can be 

applied where recommendations are generated from rules X→Y, mined out from transactional data 

T [6][10]. X is called the antecedent, and Y is the consequent of the rule and in practice, X and Y are 

presented as a bag of item IDs (itemID) or itemID vectors. In this article, itemID refers to an item 

with a unique identity code. Item X and Y are associated not because of the similarity of their 

descriptions or user-given ratings but on fulfilling two main interestingness metrics: Support and 

Confidence. Consequently, AR-based RS provides a variety of item recommendations. 

Support of X, written as Sup(X) as in (1), represents the number of transactions. 𝑡𝑖 in T that contain 

itemset X; and length X can be one or more items.  𝑋 𝑡 ∈ 𝑇 indicates that the itemset X is a subset 

of t, the records in T that in principle, are also an itemset.  

𝑆𝑢𝑝(𝑋) =
|𝑡𝑖∈𝑇|

|𝑇|
; 𝑋 𝑡  (1) 

Confidence X→Y, written as Conf(XY) as in (2), represents the probability that if X appears in 

some transactions, then Y also appears. 

𝐶𝑜𝑛𝑓(𝑋𝑌) =
𝑆𝑢𝑝(𝑋𝑌)

𝑆𝑢𝑝(𝑋)
; 𝑋, 𝑋𝑌 𝑡 ∈ 𝑇  (2) 

Rules are mined from T if the minimum support (minsup) and minimum confidence (minconf) 

thresholds set by the data miner are met. An itemset that satisfies minsup is called a frequent itemset, 

and from the explanation above, the itemsets X and Y that make up the rules must be frequent 

itemsets. 

The problem of AR-based RS is that it does not personalize recommendations to users, thus 

recommendations are general, monotonous, thus look unrelated to the item being browsed by U. To 

improve this limitation, session-based RS is proposed, where the session is a virtual time-space 

created when a user browses a web portal URL [11]–[16]. Within this time space, the items that the 

user is or had been looking for, thus assumed as his/her preferences, can be temporarily recorded 

locally [14]–[16]. Some methods use Markov chains [17]–[19], artificial neural networks [11], [20]–

[22], and association rule learning approaches [23]–[28] to develop session-based RS.  

Implementing a session approach to AR-based RS produces several approaches, as explained in. 

In the first approach, the rules database is generated from T. Items users have seen/purchased at 

recent sessions, for example. 𝑞𝑈 = {𝑥1, 𝑥2, 𝑥3} are used as a query to the rules database to find rules 

X→Y, where 𝑋 = {𝑥1, 𝑥2, 𝑥3}. The items Y obtained are recommended items if XY satisfied minsup 

and minconf thresholds [23], [29].  

In the second approach, the method used sequence itemsets that are mined not from T, but from 

Q i.e., a set of sessions 𝑞𝑖 created by the user while browsing the items over some periods, thus  𝑄 =

{𝑞1, 𝑞2, . . . , 𝑞|𝑄|} [27], [28]. From the mining, a set of sequence itemsets is obtained and stored in SI = 

{𝑝1, 𝑝2, ..., 𝑝|𝑆𝐼||}. Assumed, U is currently browsing the items 𝑥𝑖 thus creates a session 𝑞𝑈 =

 {𝑥1, 𝑥2, . . . , 𝑥𝑅}, and 𝑥𝑅 is the item U saw most recently. If 𝑥𝑅 ∈ 𝑞𝑈 and 𝑥𝑅 ∈ 𝑝 in SI, thus 𝑝 =

 {… , 𝑥𝑅, 𝑥𝑆, 𝑥𝑆+1, … } then p contains the order of items relevant to U's preference. All items that appear 

after 𝑥𝑅, namely 𝑥𝑆, 𝑥𝑆+1 and so on are candidate items to be recommended.  

However, the traditional query-based session approach for AR-based RS still suffers from some 

problems. A large number of long frequent itemsets are required since some subsets of these itemsets 

are expected to match 𝑞𝑈. Consequently, large enough memory is required to store long itemsets 

because the amount is quite significant if the minsup threshold is minimal [30]. On the other side, if 

the minsup is large, the resulting itemsets tend to be short and can result in no following items to be 

recommended. Another problem, especially in the second approach, itemsets sequences are mined 

only from Q which does not cover all items contained in T; consequently, many items in T are not 

explored by U. In business, this situation is detrimental to e-commerce owners.  

To sum up – traditional methods are not adaptive to a series of items the user visits, so 

recommendations look monotonous. Traditional methods also cannot generate recommendations 
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from a series of input items that are not frequent because they refer to the rule database, while rules 

are composed of frequent itemsets only. 

This study was conducted with the objectives of building a generative model based on Recurrent 

Neural Network (RNN) and association rules which can predict the next item generatively from a 

series of items that the user has visited in a browsing session even though this series of items is not 

a frequent itemset. 

Applying RNN to session and AR-based RS, this method is called the Recurrent-session approach 

to AR-based RS, or RS-ARRS. The model is built using Long-Short-Term Memory (LSTM), a type 

of layer in RNN, and dropout layers. The novelty of this model is that the dataset that is trained is 

not a series of items that customers have purchased but a series of rules that are arranged according 

to the Support and Confidence of the rules. The series of items visited by the user in a browsing 

session is considered an input prompt for the model, and the model responds by generatively 

predicting the items that will appear next.  

The rest of the paper is structured as follows. In the Methods section, the proposed approach is 

explained, followed by a discussion of generating a training set for the model. After that, the flow of 

the model development cycle is explained, including the proposed model design. Experiments on 

model benchmarking were organized with the aim of testing and comparing the performance of the 

proposed model with traditional models. After that, the experimental results are discussed in the 

Results and Discussion section. The article concludes with conclusions and recommendations for 

future research. 

II. Methods 

A. Research Framework 

The framework of the proposed method is explained using Figure 1, which is divided into four 

main activities: a) generating the training dataset (trainDS), b) developing the proposed model, c) 

determining the top-K recommendations, d) benchmarking the model and e) validating the 

recommendation. Before explaining the steps for creating a training set, the basic idea of the proposed 

approach is explained first. 

Generating 
Training 
Dataset

Developing 
Proposed 

Model

Determining Top-K 
Recommendation

Benchmarking 
the Model

Validating the 
Recommendation

 

Fig. 1. Research framework 

RNN is usually used to estimate a next-value in the future by learning time series of data in the 

past and present [17], [31], [32], so how does RNN predict the next term of a current sentence? 

Intuitively, a sentence or phrase is made up of terms, and a term is made up of letters, which are 

written or typed one letter at a time. As such, a text written can be assumed as time series data as 

well. For example, large-scale textual paragraphs, such as a collection of scholarly publications on 

deep learning, are used as a training set for model building. Given an input prompt such as "recurrent 

neural net" to the model, the model predicts the appearance of the following letter or term, referring 

to all the text in the dataset of deep learning publication. The nature of the prediction is generative 

because the sentences formed are composed of new terms [33], [34]. While generative predictions 

are formed by modeling the probability distribution of the entire input data domain, a discriminative 

prediction aims to differentiate or classify input data into specific categories or labels [35]–[38]. 

Some examples include sentiment analysis or textual classification. 

Several studies explain that RNN predicts the next item in a market basket. RNN that uses time 

series data can be used to predict the next item with the assumption that the user picks up item by 

item and puts it in the shopping cart following a particular time series [32], [33], [39], [40]. In another 

perspective, items viewed sequentially within a browsing session can also be considered time-series 

data [5], [17], [20], [41], [42]. However, the next-item prediction model that learns items that have 

been purchased still have weaknesses, namely that the process of recording items by the cashier (both 
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in an offline and online store) is carried out randomly and ignores the order in which the customer 

picks up the items. As a result, the time series nature of the items picked up by customers is lost. 

In this study, as explained via Figure 2, a solution to this limitation is also included in the proposed 

model generation. Time-series training data is not created from item purchase transaction data but 

from associative rules mined from transaction data. The rules also form a predictive relationship via 

the confidence metrics that if an item 𝑥1 is purchased, then 𝑥2 is purchased if 𝑥2 is purchased, then 

so is 𝑥3, and so on. If it is sorted in such a way based on the highest support and confidence, then the 

confidence relationship of this rule also forms an item series, namely 𝑥1 → 𝑥2 → 𝑥3. Similarly, a 

model can be built to predict the next item if this rule series is trained to the RNN. There is no 

percentage division between the training and testing set because it models the probability distribution 

of the entire input data domain to form a generative model. The model then produces the probability 

of all existing items as next-items with a total probability of one. By ranking these probabilities, top-

k item recommendations are obtained. 

 

Fig. 2. Illustration of model development from series of rules 

 

For illustration, as in Figure 2, the series of items visited by the user in a browsing session, e.g. 

[𝑥1, 𝑥2, 𝑥4], is considered an input prompt for the model, and the model responds by generatively 

predicting the items that will appear next, similar to how generative text-generation works. All items 

have a certain probability of being the next-item, and a computer program will sort these probabilities 

to get, for example, the top 3 items that are the next-item recommended to the user.  

B. Generating Training Dataset 

Training dataset generation is described in Figure 3. Process #1 is pre-processing of raw 

transaction dataset T, including feature (column) selection which produces a dataset T1 consisting of 

two columns: invoice number (invNo) and itemIDs purchased according to that number.  
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#3
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[x1,…xSLen]:y

 

Fig. 3. Training dataset generation flow 

 

Process #1 also generates a data dictionary containing the itemID and item’s description. 

Examples of records in T1 are as follows: 

invNo;  itemIDs 

000001; 𝑥1, 𝑥2, 𝑥3, 𝑥4 

000002; 𝑥1, 𝑥3, 𝑥4, 𝑥5 

Etc. 

Process #2 is mining the association rules from the itemIDs column in T1, uses Apriori principles, 

with mining parameters: minsup, minconf and maximum rule length. The found rules are sorted 

based on the highest support and confidence and then stored in the rule database (ruleDB).  

Process #3, forming a training set from ruleDB. The rules have been obtained and are sorted based 

on the highest support and confidence as follows.  

{𝑥1→𝑥2, 𝑥1→𝑥3, 𝑥2→𝑥4, 𝑥3→𝑥2, 𝑥4→𝑥5, 𝑥5→𝑥6} 

 

After sorting, a series of rules are created with the following notes: 1) the consequence of the rule 

in the i-th term becomes the antecedent for the (i+1)-th term. Rules can only be used once to construct 

a series. An i-th series is made as long as possible by using as many rules as possible; after no more 

rules can arrange the i-th series, the (i+1)-th series is the same way using the rest of the rules. From 

the previous ordered rule example, the resulting rule series is as in (3) and (4). 

𝑆1 = 𝑥1 → 𝑥2 → 𝑥4 → 𝑥5 → 𝑥6, or simplified 𝑆1 = [𝑥1, 𝑥2, 𝑥4, 𝑥5, 𝑥6]               (3) 

𝑆2 = 𝑥1 → 𝑥3 → 𝑥2, or simplified 𝑆2 = [𝑥1, 𝑥3, 𝑥2]                 (4) 

An illustration of the rule series pattern handled by LSTM in the learning phase is given in Figure 

4. The model learns the itemID flow pattern as arranged in the rule series in two parts: X and the 

label of X, namely y. X has a dimension, which is also called series or sequence length (SLen), while 

the y dimension is one. SLen represents the duration of a session that neurons can remember; in the 

example above if SLen = 3, then in the first session [𝑥1, 𝑥2, 𝑥4] is X, and 𝑥5 is the y, which is the next 

item of X. 

As the session moves forward, X is now [𝑥2, 𝑥4, 𝑥5] and y is 𝑥6, while 𝑥1 is already out of session 

and will be forgotten by neurons. In the illustration, the L box represents the LSTM layer, and F box 

represents the output layer, which is fully connected to the total number of available next-items 

(labels), i.e., all itemIDs in ruleDB. 

If X is stored in an array or a list in Python language, then the above explanation also implies that 

shifting the session forward (towards the right), algorithmically pops up the itemID on the leftmost 

X, pushes itemID y to the rightmost X, and assigns a new next-item y as label for the new X. This 

algorithm also describes the mechanism for forming a training dataset (trainDS) from series of rules 

that have been built.  
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Fig. 4. Rule series patterns learned by the model  

For given a series of rules S, Session duration SLen = 3, and ruleDB, do the following stages: 

• Initialization: aims to create an initial record in the form X:y, with X’s length = SLen and y’s 

length = 1. The following steps are performed 

1. X = S[0 : SLen] #Python’s way to take S[0] to S[SLen-1] as X 

2. y = S[SLen] # set S[SLen] as y.  

3. idx = SLen # index last accessed from S 

• Shifting: aims to generate the next record from the previous X by shifting the session forward: 

1. X = X.pop(0) # pop the leftmost X value 

2. X.append(y) # push y into the rightmost X  

• Labelling: aims to labelling the new record X with y, 

1. idx +=1 # increase index of S 

2. y = S[idx] # set S[idx] as y 

3. S = S[idx:] # trim S starting from index 0 to idx 

 

S is trimmed so that the shifting step can be repeated. However, if all entries in S have been used 

so that S becomes empty, then the formation of training data from a rule series S also ends. 

The training data of a rule series is said to be complete if all Xs with length SLen and its label y 

have been developed. However, in practice, because the value of SLen can vary (depending on the 

needs of model development), all S entries have been accessed even though the length of X has not 

yet reached SLen. An example of this case is 𝑆2 = [𝑥1, 𝑥3, 𝑥2], where all entries in 𝑆2 can only form 

X, but it does not yet have a label y. When this case arises, the fourth stage must be done as follows: 

• Padding: aims to complete entry X so that it has the length SLen, and has a label y. The steps are 

as follows: 

1. While the length of X < SLen: 

1 Search for rules �́� → �́� in ruleDB, where �́� = X[-1]. 

2 If found: X.append(�́�). 

2. If the length of X == SLen, then the formation of X is complete, and 

i. Continue searching from the last position for the rule �́� → �́�, if �́� = X[-1] then set label 

y = �́� 

The result of the padding step for 𝑆2 is X = [𝑥1, 𝑥3, 𝑥2] and y = 𝑥4. 

C. Developing Proposed Model 

Like the text generator model, the proposed next-item prediction model is also generative – a 

model that can generate predictions for next items for several sessions in the future. The flow of 

model development in this study is given in Figure 5, which forms a cycle as described in [43]. The 

trainDS and existing reference models are materials for designing and tuning models. Models that 

have met the requirements regarding loss and accuracy will be deployed to an implementable 

recommendation system. If it does not meet the requirements, then the model will be redesigned 
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which includes the composition of the layers and neuron cells, as well as the number of epochs and 

batches in the training process. The requirement is to have a model with a loss level < 0.5, and an 

accuracy > 80%.  

#1
Model 

designing/
tuning

Model 
specification

#2
Model 

training

Training 
results

#3
Model 

deployment

Meet 
requirement

?

No

trainDS, 
in the form of
[x1,…xSLen]:y

Reference 
model

Yes

 

Fig. 5. Model development lifecycle flow 

 

The neural network layers that make up the model are divided into three parts where the term is 

used about the Keras library for Python: 

• Input layer with dimension (SLen, 1), with SLen = 3, which is the dimension of X, and 1 is the 

dimension of y. 

• Hidden layers, for observation purposes, one to three LSTM layers are used in the experiments, 

where loss and accuracy are observed at each additional layer. Each LSTM layer is followed by 

a dropout layer, which removes cells that contribute to overfitting. The number of neurons is set 

to 256. The activation function applied is Tanh. 

• Output layer, which uses the Dense layer after the LSTM layers. This layer is called the fully 

connected layer to the output, which in this case, the output dimension is the number of itemIDs 

as they are all potentially following items. The activation function used is Softmax. 

LSTM is an RNN-type layer designed to handle time series data. LSTM has main components: 

cell, input gate, output gate and forget gate [31], [32]. Cells have the function of remembering past 

patterns in a series or sequence, is useful for remembering contexts that appeared in the past to be 

combined with current information in order to forecast patterns that will occur in the future. The 

memory duration that the LSTM layer will remember is specified in the sequence or series length. 

LSTM can produce generative predictions, where the model can generate new samples from the same 

data distribution [36], [37]. For example, given a reading book as training data, a generative model 

for text-generator can generate several terms that will appear after a series of terms is given as a 

trigger so that composed sentences look new. To do this, the model requires the entire training data 

to be studied [34], [44]. 

The proposed model design is depicted in Figure 6, while a summary of the model using one layer 

of LSTM + Dropout + Dense is also given in Figure 7. A summary of models using two and three 

LTSM is not given, but intuitively it can be understood from such a figure. All itemID series in 

trainDS are used as training data, without a test dataset because the model built is a generative model 

that must learn the probability of each itemID in a series of itemID in a whole trainDS. The design 

of this model is implemented with the Keras library using functional modeling. The layer 
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composition in each model is compiled by applying categorical cross-entropy loss, optimizer Adam. 

After compilation, the model is fitted to all vectors X and y, with 1000 epochs in 8 batches. 

LSTM Dense

Input

Output

LSTM
Drop
out

Drop
out

  
Fig. 6. Proposed model design 

 

 

Fig. 7. Summary of model with one LSTM layer 

 

D. Determining Top-K Recommendation  

Briefly, the procedure carried out to generate next-items predictions is shown in Pseudocode 1. 

PSEUDOCODE 1. LSTM and GRU Stack 

1 Prepare the inputs: 

a) matrix Xs of all arrays X in trainDS in which X has a shape (SLen, 1). If 

the number of records in trainDS is N, then the Xs dimension is (N, SLen, 

1) 

b) Matrix Y i.e., X's label with shape (N, 1) 

2 Compile the arrangement of the layers into a model M 

3 Perform training by fitting data Xs to data Y with M, usually written M.fit(Xs, 

Y, number of epochs, number of batches), save the fitting with the lowest 

loss (along with accuracy) into M_best or an external file, such as “M.hdf5” 

#M_best is now ready to predict any series of itemID as input 

4 INPUT "enter a series of itemID as input" 

5 PREDICTION = M_best.predict(INPUT) 

6 PREDICTION is obtained in the form of a matrix containing the probability 

predictions for each itemID to become the next-items 
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The process of determining the top-K recommendations from prediction is given shown in 

Pseudocode 2. 

PSEUDOCODE 2. Generate next-items predictions 

1. Determine the value of K; 

2. Sort the probabilities in the PREDICTION array from the highest value, 

noting that each element represents an itemID index in the itemID-

Description data dictionary. 

3. Get the first K index of itemID in the array, 

4. Print item descriptions in itemID order 

5. K recommendation items obtained 

 

E. Benchmarking the Model 

The activity flow of benchmarking the model is given in Figure 8, which shows that the proposed 

model is compared with the query-based session method. The aspect being compared is the ability 

of the model always to be able to get predictions of the probabilities of all itemIDs to become the 

next-item concerning the items that the user is looking for in a session. Two test scenarios were run 

to examine both methods in terms of their adaptability in generating next-item recommendations. 

#1
Proposed  

Model testing

Input item 
series, as in 

some sessions

Next-items 
prediction

#2
Query-based 

method testing

Next-items 
prediction

#3
Comparison 

analysis

Analysis 
results

 
 

Fig. 8. Model benchmarking flow 

 

Test #1: the rule that produces the next-item in the query-based method is tested on the proposed 

method. The steps are as follows: 

1. Generate all rules X→Y with |X| = 3 and |Y| = 1, 

2. Each X in the rules has at least one next-item Y 

3. Enter all the Xs as the input for the proposed method and get the top-10 recommendations. 

4. Count the number of X that have top-10 recommendations 

5. If all X have top-10 recommendations, then the proposed model is adaptive to all query-based 

method inputs 

Test #2: combining several items that can produce recommendations through proposed items, then 

used as a query to find recommendations in the traditional method.: 

1. Simulate one 3-item series as input for the query-based method to find rules X→Y, where X is 

equal to the respective 3-item series 
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2. If the traditional query-based method cannot produce recommendations, then it is not an adaptive 

method. 

 

F. Validating the Recommendation 

The validity of the recommendation list can be confirmed through two approaches: system- or 

user-centered validity [45]–[50]. The recommendation results are matched with a set of items 

generated by the system, and here the validation results are objective. In the second approach, which 

is the one used in this study, recommendations are validated based on the user's perspective because 

in the end, users are expected to take action after seeing the contents of the recommendations. These 

perspective metrics include accuracy, familiarity, attractiveness, enjoyability, novelty, diversity, and 

context compatibility.  

The number of 25 users were asked to evaluate seven metrics through one related question as 

follows [49], [50]: 

1. Accuracy: the recommended items match my interests and vice versa 

2. Familiarity: some recommended items are familiar to me and vice versa.  

3. Attractiveness: some recommended item to me is attractive and vice versa 

4. Enjoyability: I enjoy the items recommended and vice versa  

5. Novelty: the RS helps me discover new items and vice versa 

6. Diversity: the items recommended to me are varied and vice versa 

7. Context compatibility: recommended items take into account my personal context and vice versa 

For each question, users give a rating of 1 to 3, where 1 means the user strongly agrees with the 

question asked, 2 means a neutral perception, and 3 shows the user strongly disagrees. Users are 

uniformly asked to rate the ten 3-items in the generated rules and are assumed to be viewed by the 

user. The user validation table is described in Table 1. 

Table 1. The user validation table 

Description of items seen by user previously Illustration of item 

Jumbo Bag Red Retro spot, 

Jumbo Bag Woodland Animals, 

Jumbo Storage Bag Suki 

  

Top-10 recommendation by proposed method 
User’s validation rate (1, 2, or 3) on 

seven Metrics 

Items recommended Illustration 1 2 3 4 5 6 7 

3 Birds Canvas Screen 

 

       

36 Doilies Vintage Christmas 

 

       

Advent Calendar Gingham Sack 

 

       

Antique Glass Heart Decoration 

 

       

Assorted Color T-Light Holder 
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III. Results and Discussions 

The dataset used is Online retail data available on the UCI web portal. The number of records 

initially was 541,909 lines, but after grouping by invoice number, the number of records became 

22,106, consisting of 4059 unique items. As explained in the UCI web portal, this transnational 

dataset contains all transactions between 01/12/2010 and 09/12/2011 (almost one year) for UK-based 

and registered non-store online retailers. This company primarily sells unique gifts for any occasion. 

In order to make the proposed method be compared fairly with the query-based session method, 

the rules are mined with minsup = 1% and minconf = 50%. Using a lower minsup and minconf such 

as 0.1% and 10% respectively, results in an explosion of the number of rules to more than 2 million 

rules, which is not adequate for demonstrating the features and functionality of the proposed method 

and of the compared traditional method as well. 

The difference between the proposed approach and traditional AR-based RS methods is that only 

rules with X and Y lengths of precisely one item were mined out, or |X| = 1 and |Y| = 1; whereas to 

the traditional method 0 < |X|  3 and |Y| = 1 were applied. These approaches are carried out with 

the following considerations: first, with short rules, the number of rules that must be maintained in 

memory is less than long rules [51], [52].  

In the proposed approach, the number of rules generated is 194 rules which are then arranged as 

a series of rules that are used as the training dataset. The size of the training dataset becomes 824 

records. For the traditional method approach, the resulting rules are 194 rules, of which 40 rules have 

|X| = 3 and |Y| = 1 which is used for Test #1. Mining results for this traditional method are stored in 

ruleDB-trad. 

The results of applying 1 to 3 layers of LSTM show no significant difference between loss and 

accuracy. The lowest loss values for each application, respectively, are 0.2234, 0.2163 and 0.3118 

with an accuracy of 84.2%, 83.8% and 84.4%.  Charts of changes in loss and accuracy for each epoch 

for these three treatments with 1 LSTM layer is given in Figure 9. 

 
Fig. 9. Loss and accuracy of model with 1 LSTM + Dropout + Dense layers 

 

An essential note during experiments is that if the dropout layer is not applied, there is an 

improvement in loss, which is an average of 0.07 and an average accuracy of 93.7%. It is explained 

that Dropout can avoid overfitting by deleting cells randomly [39]. However, in some literature 

regarding text generators, no comparison was found between the results of the dropout and non-

dropout models[31], [44], [53]. In addition, because of its generative nature, the text-generator 
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method results in the formation of new sentences from new term arrangements so that the 'accuracy' 

of terms that should appear after the previous term intuitively does not result from applying the 

dropout layer only, but also the richness of vocabulary and sentences available in the training set. 

The results of test #1 show that the proposed method can predict next-items and produce top-10 

recommendations for all 40 three-item X series where the query-based method can generate the next-

items. In contrast, the query-based method cannot generate top-10 recommendations for all X, but 

only 2 items, as shown in Table 2 (left-side), is because not all X which is the antecedent of the rules 

has 10 consequent items Y.  This is an advantage offered by the proposed method. 

For test #2, a manual inspection found several item combinations not in the ruleDB-trad database. 

These items are trained to the developed model to seek recommendations. One of the results is given 

in Table 2 (right-side), where the proposed method produces top-10 recommendations, and the 

traditional method does not find any items, which means traditional query-based methods are not 

adaptive in generating recommendations for any input itemIDs entered. 

Table 2. Top-10 recommendations produced for items seen by the user, which is a frequent itemset (left-side), and is not a 

frequent itemset (right-side) 

itemID Description itemID Description 

Items seen by user is frequent itemset Not a frequent itemset 

85099B  Jumbo Bag Red Retrospot 85099B Jumbo Bag Red Retrospot 

20712 Jumbo Bag Woodland Animals 20711 Jumbo Bag Toys 

21931 Jumbo Storage Bag Suki 20712 Jumbo Bag Woodland Animals 

Top-10 Recommendation by proposed method 

84731 3 Birds Canvas Screen 22282 12 Egg House Painted Wood 

22950 36 Doilies Vintage Christmas 84559B 3d Sheet of Cat Stickers 

90199B 5 Strand Glass Necklace Amethyst 72801C 4 Rose Pink Dinner Candles 

22580 Advent Calendar Gingham Sack 22371 Airline Bag Vintage Tokyo 78 
21143 Antique Glass Heart Decoration 23068 Aluminum Stamped Heart 

17164B Ass Col Small Sand Gecko Weight 90183A Amber Drop Earrings W Long Beads 

47421 Assorted Color Lizard Suction Hook 84879 Assorted Color Bird Ornament 

20749 Assorted Color Mini Cases 20749 Assorted Color Mini Cases 
47420 Assorted Color Suction Cup Hook 47420 Assorted Color Suction Cup Hook 

84950 Assorted Color T-Light Holder 84950 Assorted Color T-Light Holder 

Top Recommendation by traditional method 

22386 Jumbo Bag Pink Polka Dot   
22411 Jumbo Shopper Vintage Red Paisley No result  

 

Next, the proposed method's ability to generatively find recommendations for each input given in 

a session is demonstrated with the following step: 1) get the top-K recommendations from the 

itemIDs series, called X1, 2) the itemID in the first position of recommendation is assumed to be 

clicked by the user, so it goes into X1, and simultaneously pushes out a product from X1, and then 

this series becomes X2; 3) The second step is repeated until X5 is obtained, then the results are 

analyzed. Using K = 3, the result is shown as follows: 

• X1: {85099b: Jumbo Bag Red Retrospot, 20711: Jumbo Bag Toys, 20712: Jumbo Bag Woodland 

Animals} 

Top-3 recommendations: 23697: A Pretty Thank You Card (Clicked), 85161: Acrylic Geometric 

Lamp, 22915: Assorted Bottle Top Magnets 

• X2: {23697: A Pretty Thank You Card, 85099b: Jumbo Bag Red Retrospot, 20712: Jumbo Bag 

Woodland Animals} 

Top-3 recommendations: 22282: 12 Egg House Painted Wood (Clicked), 22374: Airline Bag 

Vintage Jet Set Red, 22915: Assorted Bottle Top Magnets 

• X3: {22282: 12 Egg House Painted Wood, 23697:  A Pretty Thank You Card, 20712: Jumbo 

Bag Woodland Animals} 

Top-3 recommendations: 84558a: 3D Dog Picture Playing Cards (Clicked), 22915: Assorted 

Bottle Top Magnets, 84879: Assorted Color Bird Ornament 

• X4: {22282: 12 Egg House Painted Wood, 84558a: 3D Dog Picture Playing Cards, 23697: A 

Pretty Thank You Card} 
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Top-3 recommendations: 21448: 12 Daisy Pegs in Wood Box (Clicked), 23442: 12 Hanging 

Eggs Hand Painted, 22906: 12 Message Cards with Envelopes 

• X5: {21448: 12 Daisy Pegs in Wood Box, 22282:  12 Egg House Painted Wood, 84558a: 3D 

Dog Picture Playing Cards} 

Top-3 recommendations: 22436: 12 Colored Party Balloons, 22150: 3 Stripey Mice Felt craft, 

84559a: 3D Sheet of Dog Stickers. 

In this simulation, it can be understood that whatever order of items the user sees, the system can 

always generate a new list of recommendations, and with this ability, the recommendation system is 

said to be generative in generating recommendations. 

The results of the user-centric validity test on the list of recommendations produced by the 

proposed model are shown in Figure 10, with the metrics being measured as accuracy, familiarity, 

attractiveness, enjoyability, novelty, diversity, and context compatibility, which are captured from 

the user's perspective.  As seen, users feel that the recommended items are less accurate than those 

the user has seen. However, in other metrics, users give the opposite response. In terms of familiarity, 

even though it is inaccurate, as many as 56% of users feel familiar with the recommended item. 

Furthermore, as many as 72% of users agree that recommended items are attractive, 76% of users 

enjoy the list of recommended items, and they also feel that they just found out that the recommended 

items are related to items they have previously viewed. 80% of users agree that the list of 

recommended items is diverse, and 56% of users also agree that the items are related to the context 

of the items they have seen. On the other hand, although it appears that many users have a neutral 

opinion, it can be said that few users disagree with the questions asked regarding the metrics being 

measured. 

 
Fig. 10. User validation of measured metrics 

An interesting thing to note is that 20% of users who have a neutral perception of accuracy think 

that the recommended product still has something to do with the product they have seen, namely that 

it has elements of animal shapes or something related to Christmas, such as the color red, and 

ornaments to decorate Christmas or New Year celebrations. 

This result is in line with the results of previous studies, which show that accuracy versus novelty 

and diversity are inverse metrics [54]–[58]. If accuracy is essential, recommendation results tend to 

be uniform because accuracy is associated with the degree of similarity between the recommended 

product and those the user has seen or purchased. Diversity, on the other hand, brings a list of 

recommended products that are not similar to any products the user has ever seen. Novelty is closely 

related to diversity because the user's new understanding of the product usually arises when they are 

presented with products that are not similar to those previously visited. 

Another important note is that AR-based RS does not produce recommended item Y with high 

similarity to a series of items X that the user has visited or purchased. The pair (X, Y) is formed from 

the Support and Confidence metrics, so if the results from the traditional method show that Y and X 
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look similar, it is because (X, Y) were purchased together, not because the product descriptions are 

similar. 

IV. Conclusions 

The ability of the proposed RNN-based session method to generatively and adaptively produce 

recommendations after recommendations from a series of items viewed by a user in a session has 

been demonstrated. Traditional query-based methods are incapable of this because next-item 

recommendations are not generated from the learning process but instead rely on rules. As a result, 

when the item array that a user is looking for in a session is not a frequent itemset, then the traditional 

method fails to find the next-item, hence also recommendations. The results of user-centered 

validation of several matrices toward the proposed method show that although the level of accuracy 

of recommended products and products seen by users is only 20%, other metrics reach above 70%, 

such as novelty, diversity, attractiveness and enjoyability. As a suggestion for future development, 

the model can be built by adding several layers of attention to remember a more extended sequence 

of rules, such as in the transformers model. 
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