

Kurdistan Journal of Applied Research (KJAR) Print-ISSN: 2411-7684 | Electronic-ISSN: 2411-7706

Website: Kjar.spu.edu.iq | Email: kjar@spu.edu.iq



# Confounding Risk Factors in Developing Type 1 Diabetes Mellitus among Children and Adolescents at Sulaimani Chronic Diabetes Health Center

Chia H. Sadiq Midwifery Department Sulaimani Technical Institute Sulaimani Polytechnic University Sulaimani- Iraq <u>Chia.sadiq@spu.edu.iq</u> Pary M. Azize Nursing Department Sulaimani Technical Institute Sulaimani Polytechnic University Sulaimani- Iraq Pary.azize@spu.edu.iq

#### **Article Info**

Volume 6 – Issue 1- June 2021

**DOI:** 10.24017/science.2021.1.7

#### Article history:

Received: 16/03/2021 Accepted: 16/05/2021

#### Keywords:

Effect, type 1diabetes mellitus, children, adolescence, chronic, diabetes center,

# ABSTRACT

Diabetes Mellitus consider as a common chronic health condition throughout the world and the most common endocrine disease in children and adolescences. The study aim is to determine the risk factors, which lead to type 1 diabetes mellitus among children and adolescent in diabetes health center at Sulaimani city. the study was conducted using descriptive cross sectional study at a special center for Type 1 Diabetes Miletus A questionnaire was created and administered to a (170) mothers or fathers as a convenience sample. Descriptive statistics analysis such as (frequency, percentage, mean and stander deviation) and also to identify the effective factors affecting diabetes in children and Adolescents Factorial analysis (principal component analysis) was used. The finding show that, 39.4 % of samples were aged between (9-13) years old, which stated as the highest rate among all age groups, while the minority of age was between (1-4) years old, which was equal to 8.2% of the total and the (Mean  $\pm$ S.D) was equal to 10.44 $\pm$ 4.04 respectively. The majority of age at diagnosis was between (5-8) years old, which is 35.3% and their food habit was normal diet, which is 73.5%, while the Sugar diet and Fatty diet were 25.9% and 0.6%y respectively. Most of the participants, 19.4% of the participant's family history was Type 2 diabetes, which was the first rank of the family history and majority of them were Kurdish in nationality. Age at diagnosis and mode of delivery considered as the first factor affect the type 1 diabetics mellitus. The second most common factor effect on diabetes disease in children and adolescents are maternal habit and maternal disease followed by Gestational age at birth and Neonatal disease, then food habits, Neonatal weight was estimated as the fourth component factors affecting Type 1 diabetes mellitus. The fifth component factors in ranking are Residency and Family history of autoimmune disease, finally the weakest factor is nationality by total variance of 8.552%. the early year of child's life played a vital role in development of type 1 diabetes mellitus, also maternal diseases (gestational diabetes, preeclampsia and perinatal infection during pregnancy), healthy diet during pregnancy and education programs are recommended

# **1. INTRODUCTION**

Diabetes Mellitus (DM) is a common chronic health condition throughout the world and the most common endocrine disease in children and adolescences [1]. Globally, the rate of type I diabetes mellitus has been increased by 2-5% annually, and approximately in 2010 about 1:300 cases in 18 years of age were suffered from T1DM in the US population [2]. The incidence has decreased among children aged 2-6 years with significant increases between age 10 - 14 years [2,3]. Deficiency in secretion of insulin or an autoimmune disease of the beta cells destruction of pancreas mostly leads to Type 1 diabetes among children, [3]. T1DM ( insulin-dependent diabetes mellitus) that is due to 'unknown cause' [4]. Various causes of impairment in the pancreatic beta-cell functions are dietary component, viral infection, the autoimmune disease.

Although, genetic risk factors is another predisposing risk factor for developing T1DM, allowing the autoimmune process to progress [5,6]. Typically, T1DM is diagnosed after the onset of obvious hyperglycemia [7]. Islet autoimmunity has defined as the persistently existence of autoantibodies to pancreatic beta-cell islet antigens. Usually, islet immunity occurs in early life, and the prevalence has increased in the second years of life [8,9].

Recently a study has been indicated that perinatal infection that affects children in utero, or during early childhood [10]. A variety of maternal-related incidents are linked in the development with risk of type 1 diabetes among children but not in adults [11]. Another factor that may contribute to diabetes, is thyroid disease. A strong relationship between the occurrences of thyroid disease and relatives of a diabetic patient in compared with children and adolescents did not have diabetes[12].

This study has been conducted to find out the maternal and neonatal risk factors in the development of T1D among children and adolescents in the diabetes health center at Sulaimani city.

# 2. METHODS AND MATERIALS

This study was conducted through using a descriptive cross sectional study at a special center for T1DM children at Sulaimani City. Either parent of diagnosed T1DM children were participated in this study. A structured interview has been applied using a validated questionnaires based on T1DM's epidemiological risk factors in children and adolescents after a comprehensive review of literature in order to reach the study's objectives. A questionnaire was created and administered to a (170) mothers or fathers as a convenience sample. The data were about Child and adolescent socio-demographic information such as (age, age of diagnosis, residency, nationality, food habit and family history of autoimmune disease) then Potential maternal risk factors during pregnancy ( prenatal) such as maternal food habit and maternal disease during pregnancy) and Potential neonatal risk factors ( postnatal such as mood of delivery, gestational age, neonate weight and disease) affecting T1DM using a structured informant questionnaire.

The data was collected from (170) enrolled either parents who registered their children to the diabetes center through a telephone conversation because of the situation of Covid 19. Non-probability sampling was used to select purposive sample of participants who met the criteria of selection. The permission was taken from the center first, and then the researchers were asked about the telephone number for each family in order to get their approval for their participation in this study. Interviews were conducted individually with each with telephone follow-up, The

data were about Child and adolescent socio-demographic information such as (age , age of diagnosis, residency, nationality, food habit and family history of autoimmune disease) then Potential maternal risk factors during pregnancy (prenatal) such as maternal food habit and maternal disease during pregnancy) and Potential neonatal risk factors (postnatal such as mood of delivery, gestational age, neonate weight and disease) affecting T1DM using a structured informant questionnaire. All statistical computation is enhanced using statistical method (SPSS 21). The data had been coded, tabulated, and presented in a descriptive form. The statistical procedure that was applied to determine the results of the present study included:

1. Alpha-cronbach has been used for testing the reliability of the questionnaire.

2. Descriptive statistical data analysis (Child and adolescent demography, Potential maternal risk factors and Potential neonatal risk factors)

3. Inferential data analysis:

A. Descriptive statistics data (frequency, percentage, mean and stander deviation)

**B.** Factorial analysis (principal component analysis) was used in order to identify the effective factors affecting Diabetes decease in children and Adolescents

C. One way ANOVA (F-test)

| Table 1): Child and adolescent demography data |                  |         |  |  |  |
|------------------------------------------------|------------------|---------|--|--|--|
| Variables                                      | Frequency        | Percent |  |  |  |
| Age (Date of birth )                           |                  |         |  |  |  |
| 1-4 years old                                  | 14               | 8.2     |  |  |  |
| 5-8 years old                                  | 42               | 24.7    |  |  |  |
| 9-13 years old                                 | 67               | 39.4    |  |  |  |
| 14-17 years old                                | 47               | 27.6    |  |  |  |
| Mean ±S.D                                      | 10.44            | 4±4.04  |  |  |  |
| Age at diagnosis of type 1 diab                | oetes (if known) |         |  |  |  |
| 1-4 years old                                  | 58               | 34.1    |  |  |  |
| 5-8 years old                                  | 60               | 35.3    |  |  |  |
| 9-11 years old                                 | 47               | 27.6    |  |  |  |
| 14-17 years old                                | 5                | 2.9     |  |  |  |
| Residency                                      |                  |         |  |  |  |
| Rural                                          | 7                | 4.1     |  |  |  |
| Urban                                          | 97               | 57.1    |  |  |  |
| Sub-urban                                      | 66               | 38.8    |  |  |  |
| Nationality                                    |                  |         |  |  |  |
| Kurd                                           | 169              | 99.4    |  |  |  |
| Arab                                           | 1                | 0.6     |  |  |  |
| Other                                          | 0                | 0.0     |  |  |  |
| Childs and adolescent                          | food habits      |         |  |  |  |
|                                                |                  |         |  |  |  |
| Normal diet                                    | 125              | 73.5    |  |  |  |
| Fatty diet                                     | 1                | 0.6     |  |  |  |
| Sugar diet                                     | 44               | 25.9    |  |  |  |
| Family history of autoim                       | mune disease     |         |  |  |  |
| Type I DM                                      | 4                | 2.4     |  |  |  |
| Type I DM                                      | 33               | 19.4    |  |  |  |
| Type I +Type II DM                             | 5                | 2.9     |  |  |  |
| Thyroid disease                                | 23               | 13.5    |  |  |  |
| Heart disease                                  | 11               | 6.5     |  |  |  |
| Cancer disease                                 | 3                | 1.8     |  |  |  |
| No disease                                     | 23               | 13.5    |  |  |  |
| Type 2 diabetes mellitus +thyroid disease      | 23               | 13.5    |  |  |  |
| Type 1 diabetes+ thyroid disease               | 3                | 1.8     |  |  |  |

**3. RESULTS** (ble 1): Child and adolescent demography data

| Thyroid disease + heart disease                      | 9   | 5.3  |
|------------------------------------------------------|-----|------|
| Type 2 diabetes mellitus + heart disease             | 9   | 5.3  |
| Type 2 diabetes mellitus + cancer disease            | 3   | 1.8  |
| Heart disease + cancer disease                       | 2   | 1.2  |
| Type 1 diabetes mellitus + cancer disease            | 1   | 0.6  |
| Thyroid disease + cancer disease                     | 1   | 0.6  |
| Type 1 DM + type II diabetes mellitus +heart disease | 1   | 0.6  |
| Type II DM + thyroid disease + heart disease         | 8   | 4.7  |
| Type 11 DM + thyroid disease + cancer disease        | 5   | 2.9  |
| Type II DM+ heart disease + cancer disease           | 3   | 1.8  |
| Maternal hab                                         | its |      |
| Normal                                               | 97  | 57.1 |
| Tea                                                  | 73  | 42.9 |
| Maternal dise                                        | ase | •    |
| No disease                                           | 104 | 61.2 |
| Pre-eclampsia                                        | 8   | 4.7  |
| Gestational diabetes                                 | 2   | 1.2  |
| Perinatal infection                                  | 52  | 30.6 |
| Gestational diabetes + perinatal infection           | 4   | 2.4  |
| Total                                                | 170 | 100  |

It is clear from the table (1): 39.4 % of participants were aged between (9-13) years old, which estimated as the highest rate among all age groups followed by 27.6% were between (14-17) years old, while the minority of age 8.2% were between (1-4) years old and the (Mean ±S.D) was to equal 10.44±4.04. In addition, the majority of age at diagnosis was between (5-8) years old, which was 35.3%, 34.1% were diagnosed between (1-4) and 27.6 of age at diagnosis 34.1% and 27.6 of age at diagnosis (9-11) years old and only 2.9% was between (14-17) years old. Among the study participants, 57.1% were from urban residency. The majority of nationality was Kurdish nationality which was 99.4% of the study. The majority of the Childs and adolescent food habits was normal diet, which was 73.5%, while the Sugar diet and Fatty diet were 25.9% and 0.6% by respectively. Most of the participants, 19.4% of Family history was Type 2 diabetes, which, was the first rank of the family history. While, 2.9%, 1.8% and 1.2% of the family history was (Type 1+Type 2diabetes), (Type 2 diabetes + cancer disease) and (heart disease + cancer disease) respectively. In addition, the majority of 57.2% of maternal habits were normal followed by only 42.9% were tea habits. In addition, the highest rate 61.2% of maternal not suffered from disease and 30.6% had Perinatal infection, and only 2.4% was (Gestational diabetes + perinatal infection ) which was the lowest percentage among all Maternal diseases.

| Table (2): | Potential | neonatal | risk | factors | data |
|------------|-----------|----------|------|---------|------|
|------------|-----------|----------|------|---------|------|

| Variables                   | Frequency                | Percent |  |  |  |
|-----------------------------|--------------------------|---------|--|--|--|
| Mode of delivery            |                          |         |  |  |  |
| Vaginal delivery            | 101                      | 59.4    |  |  |  |
| Instrument vaginal delivery | 0                        | 0.0     |  |  |  |
| Cesarean section            | 69                       | 40.6    |  |  |  |
|                             | Gestational age at birth |         |  |  |  |
| Preterm                     | 26                       | 15.3    |  |  |  |
| Full term                   | 136                      | 80      |  |  |  |
| Post term                   | 8                        | 4.7     |  |  |  |
|                             | Neonatal weight          |         |  |  |  |
| Normal weight               | 140                      | 82.4    |  |  |  |
| Underweight                 | 11                       | 6.5     |  |  |  |
| Overweight                  | 10                       | 5.9     |  |  |  |
| Obesity                     | 9                        | 5.3     |  |  |  |

| Neonatal disease                |     |      |  |  |
|---------------------------------|-----|------|--|--|
| No disease                      | 64  | 37.6 |  |  |
| Respiratory disease             | 10  | 5.9  |  |  |
| Jaundice                        | 36  | 21.2 |  |  |
| Infection                       | 29  | 17.1 |  |  |
| Heart disease                   | 2   | 1.2  |  |  |
| Respiratory disease + jaundice  | 14  | 8.2  |  |  |
| Jaundice + infection            | 9   | 5.3  |  |  |
| Jaundice + heart disease        | 1   | 0.6  |  |  |
| Respiratory disease + infection | 1   | 0.6  |  |  |
| Respiratory disease + jaundice  | 4   | 2.4  |  |  |
| disease + infection             |     |      |  |  |
| Total                           | 170 | 100  |  |  |

It is clear from the table 2: 59.4% of participants had Vaginal delivery and only 40.6% was Caesarean section. Most participants, 80% were full term and only 15.3% were preterm. While, 4.7% of them were post term. Most participants, 82.4% were normal weight while 6.5% and 5.9% of the neonatal weight were underweight and overweight respectively and only 5.3% of them were Obesity. In addition, 37.6% of them were healthy no neonatal disease and the second rank of the neonatal disease was Infection which was 17.1%. Jaundice + heart disease and respiratory disease + infection of the Neonatal disease was the lowest percentage among all Neonatal disease

## Table (3): Socio-demographic risk factors

| Comment | Initial Eigenvalues |                  |              | Extraction Sums of Squared<br>Loadings |                  |                 | Rotation Sums of Squared<br>Loadings |                  |                 |
|---------|---------------------|------------------|--------------|----------------------------------------|------------------|-----------------|--------------------------------------|------------------|-----------------|
| T       | Total               | % Of<br>Variance | Cumulative % | Total                                  | % Of<br>Variance | Cumulative<br>% | Total                                | % Of<br>Variance | Cumulative<br>% |
| 1       | 1.692               | 21.148           | 21.148       | 1.692                                  | 21.148           | 21.148          | 1.684                                | 21.055           | 21.055          |
| 2       | 1.396               | 17.452           | 38.600       | 1.396                                  | 17.452           | 38.600          | 1.370                                | 17.127           | 38.182          |
| 3       | 1.046               | 13.069           | 51.669       | 1.046                                  | 13.069           | 51.669          | 1.079                                | 13.487           | 51.669          |
| 4       | .974                | 12.172           | 63.841       |                                        |                  |                 |                                      |                  |                 |
| 5       | .961                | 12.018           | 75.860       |                                        |                  |                 |                                      |                  |                 |
| 6       | .945                | 11.818           | 87.678       |                                        |                  |                 |                                      |                  |                 |
| 7       | .668                | 8.351            | 96.029       |                                        |                  |                 |                                      |                  |                 |
| 8       | .318                | 3.971            | 100.000      |                                        |                  |                 |                                      |                  |                 |

(3.1) :Total Variance Explained

| Factors                              | Component |      |      |  |  |
|--------------------------------------|-----------|------|------|--|--|
|                                      | 1         | 2    | 3    |  |  |
| Age                                  | .913      | .022 | .007 |  |  |
| Age at diagnosis                     | .892      | .013 | 040  |  |  |
| Residency                            | 117       | .287 | 684  |  |  |
| Nationality                          | .006      | 311  | .046 |  |  |
| Childs and adolescent food habits    | .061      | .478 | .151 |  |  |
| Family history of autoimmune disease | 147       | .193 | .754 |  |  |
| Maternal habits                      | .057      | .625 | 016  |  |  |
| Maternal disease                     | 107       | .731 | 127  |  |  |

#### (3.2):Rotated Component Matrixa

Table (3.1) and (3.2) shows three socio-demographic data affecting the rate of Diabetes in children and Adolescents using the correlation matrix analysis, among risk factors by using (principal component analysis PCA). The analysis indicated that three in eighth items were eliminated are as follows:

The first principal component is the Age of the child, it represents the most effective factor, which explained the variance equal to (21.148%) from the total cumulative variance (51.669%) in loading value equal to (0.913) followed by Age at diagnosis factor, as the other most effective risk factor in loading value equal to (0.892).

The second most Common factor effect on Diabetes Disease in Children and Adolescents and its occupied variance value equal to (17.452%) from the total cumulative variance (51.669%) and includes four risk factors: Nationality risk factor in loading value equal to (-0.311), Childs and adolescent food habits risk factor in loading value equal to (0.478), Maternal habits risk factor in loading value equal to (0.625) and Maternal disease risk factor in loading value equal to (0.731).

Third principal components: it's occupied variance value equal to (13.069%) from the total cumulative variance (51.669%) and it includes two risk factors: Family history of autoimmune disease risk factor in loading value equal to (0.754) and Residency risk factor to loading value equal to (-0.684).

Maternal habits risk factor in loading value equal to (0.625) and Maternal disease risk factor in loading value equal to (0.731).

Third principal components: it's occupied variance value equal to (13.069%) from the total cumulative variance (51.669%) and it includes two risk factors: Family history of autoimmune disease risk factor in loading value equal to (0.754) and Residency risk factor to loading value equal to (-0.684).

The analysis indicated that three in eighth items were eliminated are as follows:

1<sup>st</sup> Factor:

This factor containing these variables (Age of the child and age at diagnosis) by total variance 21.148%.

 $F_1 = 0.913$ (Age of the child) +0.892(Age at diagnosis)

2<sup>nd</sup> Factor:

This factor containing these variables (Nationality, Childs and adolescent food habits, maternal habits and maternal disease) by total variance 17.452%.

 $F_2 = -0.311$ (Nationality) +0.478(Childs and adolescent food habits) +0.625(Maternal habits) +0.731(Maternal disease)

3<sup>rd</sup> Factor:

This factor containing these variables (Family history of autoimmune disease and Residency) by total variance 11.050%.

 $F_3 = 0.754$  (Family history of autoimmune disease) -0.684(Residency)

|           |       | Initial Eigenvalues |              | Extraction Sums of Squared<br>Loadings |                  |              | Rotation Sums of Squared<br>Loadings |                  |              |
|-----------|-------|---------------------|--------------|----------------------------------------|------------------|--------------|--------------------------------------|------------------|--------------|
| Component | Total | % of<br>Variance    | Cumulative % | Total                                  | % of<br>Variance | Cumulative % | Total                                | % of<br>Variance | Cumulative % |
| 1         | 1.228 | 30.706              | 30.706       | 1.228                                  | 30.706           | 30.706       | 1.183                                | 29.585           | 29.585       |
| 2         | 1.096 | 27.393              | 58.100       | 1.096                                  | 27.393           | 58.100       | 1.141                                | 28.514           | 58.100       |
| 3         | .962  | 24.040              | 82.140       |                                        |                  |              |                                      |                  |              |
| 4         | .714  | 17.860              | 100.000      |                                        |                  |              |                                      |                  |              |

# Table (4): Potential neonatal risk factors (4.1):Total Variance Explained

#### (4.2):Rotated Component Matrix<sup>a</sup>

| Footowa                  | Component |      |  |  |
|--------------------------|-----------|------|--|--|
| Factors                  | 1         | 2    |  |  |
| Mode of delivery         | .174      | 772  |  |  |
| Gestational age at birth | 738       | .372 |  |  |
| Neonatal weight          | .121      | .520 |  |  |
| Neonatal disease         | .770      | .368 |  |  |

Table (4.1) and (4.2) underlines two potential neonatal risk factors in the fourth items, which affects the presence of Diabetes in children and Adolescents as it represents below:

First principal components: its occupied variance value equal to (30.706%) from the total cumulative variance (58.100%) and it includes two risk factors: Gestational age at birth in loading value equal to (-0.738) and Neonatal disease to loading value equal to (0.77).

Second principal components: its occupied variance value equal to (27.393%) from the total cumulative variance (58.100%) and it includes two risk factors: Mode of delivery in loading value equal to (-0.772) and Neonatal weight to loading value equal to (0.52).

The analysis of study identified from factor, which are clarify 58.100% of the variance, and the result identified four (2) factors, for example

1<sup>st</sup> Factor:

This factor containing these variables (Gestational age at birth and Neonatal disease) by total variance 30.706%.

 $F_1 = -0.738$  (Gestational age at birth) +0.77(Neonatal disease)

2<sup>nd</sup> Factor:

This factor containing these variables (Mode of delivery and Neonatal weight) by total variance 27.393%.

 $F_2 = -0.772$  (Mode of delivery) +0.52 (Neonatal weight)

| Component | Initial Eigenvalues |                  | Extraction Sums of Squared<br>Loadings |       |                  | Rotation Sums of Squared<br>Loadings |       |                  |                 |
|-----------|---------------------|------------------|----------------------------------------|-------|------------------|--------------------------------------|-------|------------------|-----------------|
| Component | Total               | % of<br>Variance | Cumulative<br>%                        | Total | % of<br>Variance | Cumulative<br>%                      | Total | % of<br>Variance | Cumulative<br>% |
| 1         | 1.975               | 16.45<br>7       | 16.457                                 | 1.975 | 16.457           | 16.457                               | 1.881 | 15.67<br>6       | 15.676          |
| 2         | 1.550               | 12.91<br>6       | 29.373                                 | 1.550 | 12.916           | 29.373                               | 1.419 | 11.82<br>6       | 27.501          |
| 3         | 1.179               | 9.823            | 39.196                                 | 1.179 | 9.823            | 39.196                               | 1.306 | 10.88<br>1       | 38.382          |
| 4         | 1.105               | 9.206            | 48.402                                 | 1.105 | 9.206            | 48.402                               | 1.108 | 9.235            | 47.618          |
| 5         | 1.035               | 8.626            | 57.028                                 | 1.035 | 8.626            | 57.028                               | 1.105 | 9.211            | 56.829          |
| 6         | 1.026               | 8.552            | 65.580                                 | 1.026 | 8.552            | 65.580                               | 1.050 | 8.752            | 65.580          |
| 7         | .926                | 7.719            | 73.299                                 |       |                  |                                      |       |                  |                 |
| 8         | .862                | 7.187            | 80.486                                 |       |                  |                                      |       |                  |                 |
| 9         | .763                | 6.361            | 86.847                                 |       |                  |                                      |       |                  |                 |
| 10        | .659                | 5.488            | 92.335                                 |       |                  |                                      |       |                  |                 |
| 11        | .615                | 5.126            | 97.461                                 |       |                  |                                      |       |                  |                 |
| 12        | .305                | 2.539            | 100.00<br>0                            |       |                  |                                      |       |                  |                 |

 Table (5): Risk Factors for Diabetes Mellitus among children and Adolescents

 (5.1): Total Variance Explained

# (5.2):Rotated Component Matrix

| Factors                              | Component |      |      |      |      |      |
|--------------------------------------|-----------|------|------|------|------|------|
|                                      | 1         | 2    | 3    | 4    | 5    | 6    |
| Age (Date of birth )                 | .860      | 027  | 125  | .001 | 035  | 061  |
| Age at diagnosis                     | .874      | 061  | 023  | .053 | .009 | 036  |
| Residency                            | 051       | .119 | .171 | .010 | .824 | .045 |
| Nationality                          | 082       | 135  | 158  | .068 | 053  | .842 |
| Childs and adolescent<br>food habits | .029      | .237 | 036  | 817  | .052 | 037  |
| Family history of autoimmune disease | 092       | .128 | .451 | 022  | 585  | .148 |
| Maternal habits                      | 029       | .738 | 201  | .029 | 100  | 209  |
| Maternal disease                     | 027       | .671 | .335 | 111  | .218 | .140 |
| Mode of delivery                     | 519       | 192  | 139  | .112 | 077  | 463  |
| Gestational age at birth             | .285      | .305 | 557  | .027 | 044  | .175 |
| Neonatal weight                      | .061      | .420 | .036 | .632 | .106 | 005  |
| Neonatal disease                     | .055      | .094 | .740 | .079 | .022 | 048  |

According to the table (5.1) and (5.2) shows six risk factors affecting the presence of Diabetes in children and Adolescents using the correlation matrix analysis, among risk factors by using (principal component analysis PCA). The analysis indicated that three in eighth items were eliminated are as follows:

The analysis of study identified from factor, which are clarify 65.580% of the variance, and the result identified four (6) factors, for example

1<sup>st</sup> Factor:

This factor containing these variables (Age, Age at diagnosis and Mode of delivery) by total variance 16.457%.

 $F_1 = 0.860$  (Age) +0. 874 (Age at diagnosis) -0.519(Mode of delivery).

2<sup>nd</sup> Factor:

This factor containing these variables (Maternal habits and Maternal disease) by total variance 12.916%.

 $F_2 = 0.738$ (Maternal habits ) +0.671(Maternal disease)

3<sup>rd</sup> Factor:

This factor containing these variables (Gestational age at birth and Neonatal disease) by total variance 9.823%.

 $F_3 = -0.557$  (Gestational age at birth) +0.740(Neonatal disease)

4<sup>th</sup> Factor:

This factor containing these variables (Childs and adolescent food habits and Neonatal weight) by total variance 9.206%.

 $F_4 = -0.817$  (Childs and adolescent food habits) +0.632(Neonatal weight) 5<sup>th</sup> Factor:

This factor containing these variables (Residency and Family history of autoimmune disease) by total variance 8.626%.

 $F_5 = 0.824$ (Residency)-0.585 (Family history of autoimmune disease)  $6^{th}$  Factor:

This factor containing these variables (Nationality) by total variance 8.552%.

 $F_6 = 0.842$  (Nationality)

| Table (6): Comparison between Potential maternal risk factors during pregna | ancy with age of child |
|-----------------------------------------------------------------------------|------------------------|
| and adolescent                                                              |                        |

| Variables        | Items                                      | Mean  | S.D  | Significance test  |
|------------------|--------------------------------------------|-------|------|--------------------|
| Maternal habits  | Normal                                     | 10.33 | 4.27 |                    |
|                  | Tea                                        | 10.59 | 3.73 | F=0.171<br>P=0.68  |
|                  | Smoking                                    | 0     | 0    | 1 -0.00            |
| Maternal disease | No disease                                 | 10.72 | 3.91 | F=0.913<br>P=0.458 |
|                  | Pre-eclampsia                              | 8.00  | 4.75 |                    |
|                  | Gestational diabetes                       | 11.00 | 2.83 | 1-0.150            |
|                  | Perinatal infection                        | 10.29 | 4.18 |                    |
|                  | Gestational diabetes + perinatal infection | 9.75  | 4.65 |                    |

It is clear in the table (6) that there is no statistically significance difference between age of child and adolescent in Maternal habits p=0.68 and Maternal disease p=0.458 because the result of the p-value was more than the common alpha 0.05.

| Table (7): Comparison between Po | otential neonatal risk factors | with age (Date of birth) | of child and |
|----------------------------------|--------------------------------|--------------------------|--------------|
|                                  | adolescent                     |                          |              |

| adolescent |                             |      |      |                           |  |  |
|------------|-----------------------------|------|------|---------------------------|--|--|
| Variables  | Items                       | Mean | S.D  | Significance test         |  |  |
|            | Vaginal delivery            | 11.2 | 3.88 | <i>a</i> )                |  |  |
| Mode of    | Instrument vaginal delivery | 0    | 0    | <i>b</i> ) <i>F</i> =9.17 |  |  |
| delivery   | Casaraan section            | 9.3  | 4.03 | 7                         |  |  |
|            | Cesarean section            |      |      | P=0.003                   |  |  |
| Gestationa | Preterm                     | 8.1  | 3.65 |                           |  |  |
| l age at   | Full term                   | 10.9 | 3.96 | F=5.578                   |  |  |
| birth      | Post term                   | 10.0 | 4.34 | P=0.005                   |  |  |
|            | Normal weight               | 10.3 | 4.08 |                           |  |  |

| Neonatal<br>weight  | Underweight                              | 9.7   | 4.07 |         |
|---------------------|------------------------------------------|-------|------|---------|
|                     | Overweight                               | 11.8  | 3.05 | F=0.808 |
|                     | Obesity                                  | 11.7  | 4.21 | P=0.491 |
| Neonatal<br>disease | No disease                               | 11.0  | 4.06 |         |
|                     | Respiratory disease                      | 9.7   | 3.3  |         |
|                     | Jaundice                                 | 10.56 | 4.44 |         |
|                     | Infection                                | 10.38 | 3.36 |         |
|                     | Heart disease                            | 11.5  | 7.78 | F=1.379 |
|                     | Respiratory disease + jaundice           | 8.14  | 4.67 | P=0.201 |
|                     | Jaundice + infection                     | 8.67  | 2.4  |         |
|                     | Jaundice + heart disease                 | 12.0  |      |         |
|                     | Respiratory disease + infection          | 8,0   |      |         |
|                     | Respiratory disease + jaundice disease + | 12.25 | 2.36 |         |
|                     | infection                                |       |      |         |

It is clear in the table (7) that there is statistically significance difference between age (Date of birth) of child and adolescent in Mode of delivery p=0.003 and Gestational age at birth p=0.005, because the result of the p-value was less than the common alpha 0.05.But, there is no statistically significance difference between age (Date of birth) of child and adolescent with Neonatal weight and Neonatal disease, because (p-vale >0.05).

# 4. DISCUSSION

Insulin-dependent diabetes mellitus (IDDM) is also known as Type 1 diabetes, which is a chronic autoimmune disease in children. This study anticipated determining the environmental factors that dispose to type 1DM in children and adolescents. Potential maternal predisposing risk factors during pregnancy (prenatal) such as maternal food habit and maternal disease during pregnancy) and Potential neonatal risk factors (postnatal such as the mood of delivery, gestational age, neonate weight, and disease) affecting T1DM among children and adolescents.

Regarding the child and adolescent demographic data, the current study found that the highest rate of age was between (9-13) years old. Age at diagnosis of T1DM is a major risk factor for the development of T1DM, the majority of age at diagnosis of type 1 diabetes is between 5-8 years old.

This was further reported in a study [2] that demonstrated that the incidence of type1diabetes is higher in children rather than the adult. Furthermore, in a similar study conducted in a six-center in the USA, the study revealed that approximately 80% of all DM cases for all type diabetes were found among those less than 9 years of age[13].

Family history of Type 2 Diabetes appears to be a risk factor for T1DM. This article reported that family history of T2DM has been listed among the crucial risk factors in contributing to the risk of T1DM. Therefore, the majority of diabetic patients were from a family history of T2DM in first and second-degree relatives. Similarly, a study by [14] in Yogoslavia revealed and [15] in Sweden also adjusted and found the association between T1DM and family history of T2DM. However, the finding is inconsistent with the study, which was conducted in Italy, the study noted that children who have family history of type 2 diabetes mellitus was not impacted the risk of type 1 diabetes [16].

In terms of another autoimmune disease ( such as thyroid disease ), this study represents that about 13.5% of the family history was thyroid disease among the first and second degree of a diabetic patient. Similarly, a study in 2009, reported that [12], thyroid daises among relative of the diabetic patient was significantly classified with increased risk of developing T1DM. The most common endocrine disease is both DM Type I and thyroid disease. (HLA-DR3) genes

were the major HLAallele causative to the genetic thyroid disease and type 1 diabetes susceptibility [17].

Regarding the maternal habits and mother who have illness in pregnancy, this study referred to the higher number of diabetic children's mothers had no particular dilatory habits, and only about nearly half of maternal habits were drinking tea at the time of pregnancy, being a confounding risk factor in the association between type 1 DM of their offspring, in a similar study has stated by Visalli et al. in Italy, tea habits during pregnancy were considerably linked to DM Type 1 in their offspring [18].

Among maternal diseases ( gestational diabetes, pre-eclampsia, and prenatal infection), this indicated that the highest percentage of maternal diabetic children had no diseases during pregnancy, but a quarter of maternal infection during pregnancy is relatively small as a confounding risk factor of T1DM. In a study in Sweden, the investigator indicated that enter viral infection in pregnancy is a risk factor for childhood-onset diabetes in their children before 15 years of age [19]. However, in a cohort study between (1989-1998) from Norway [20], this study identified 1824 cases were diagnosed with T1 diabetes diagnosed, the study has determined that perinatal infection, pre-eclampsia, and cesarean section have not contributed factors for an increased occurrence of Type 1 DM in their offspring. Mother gestational diabetes (GDM) in this study estimated as the lowest percentage among all maternal disease, this results is inconsistent with [21], the study showed in an Iranian hospital in 2015, in a case-control retrospective study, one-hundred participants aged between 1-15 years were recruited, the study reported that there was an important relationship between mothers GDM and early childhood type 1diabtes, which noticed (OR=3,789 P=0.05).

This study has demonstrated that birth weight is not correlated with an increased risk of Type I DM among children and adolescents, this result is consistent with a matched case-control studies, which concluded that there was no relationship between birth weight and DM Type1 [22,23]. In contrast, in a recent meta-analysis revealed that over birth weight (more than 4 kg) was associated with a higher risk of T1DM (10% (OR 1.10, 95% CI (1.04, 1.19); p = 0.003), in comparison to those who have a birth weight between 3.0 and 3.5 kg [23].

Regarding potential neonatal risk factors, this study stated the highest percentage of participants had no diseases during the childhood period. Jaundice and infection in this study indicated 21%,17% respectively. Similarly, a study in the UK [24], in Europe [25], was reported neonatal jaundice, infection, and respiratory disease are risk factors for T1DM. In addition, an Iranian study was also stated that children who have jaundice at delivery birth, or after delivery, and ABO incongruity are at increased risk of Type1DM [10].

Among mothers types of delivery such as (NVD(normal vaginal delivery), cesarean section(S.C). The results of this study found that nearly half of mother's diabetic patients had delivered by S.C, this is results in a meta-analysis observational [26], the study indicated that cesarean section is linked with the developing to the risk of type 1 DM of their offspring.

# 5. CONCLUSION

The early childhood period of age has a significant role in developing an increased risk of T1DM among children and adolescents, also maternal diseases (gestational diabetes, pre-eclampsia, and prenatal infection during pregnancy), maternal habits (tea drinking during pregnancy). Besides, there was a higher percentage of T1DM in those who have a family history of thyroid disease and Type 2 DM in the first -degree and second-degree relatives and is one of the significant confounding risk factors for type 1diabetes among children and adolescents. A healthy diet during pregnancy and education programs are recommended for their family to give awareness about the importance of routine screening test in order to detect the disease in early age of children.

# REFERENCE

[1] E Hyppönen, SM Virtanen, MG Kenward, M Knip, HK Akerblom, "Obesity, increased linear growth, and risk of type 1 diabetes in children". Diabetes care journal. 23(12): 1755-60. 2000.

[2] DM Maahs, JM West NA, Lawrence, EJ Mayer-Davis, "Epidemiology of type 1 diabetes". Endocrinology and Metabolism Clinics .39 (3): 481-97. 2010.

[3] DW Cooke , L Plotnick , " Type 1 diabetes mellitus in pediatrics". pediatr Rev. 29 (11). 374-84, 2008 DOI: 10.1542/pir.29-11-374.

[4] JW Yoon, "The role of viruses and environmental factors in the induction of diabetes". Current topics in microbiology and immunology, Rev. (1;164). 95-123, 1990. DOI: 10.1007/978-3-642-75741-9\_6.

[5] AA Majeed AA, KH Mea, "Risk factors for type1 diabetes mellitus among children and adolescents in Basrah".Oman medical journal. 26(3): 189. 2011.

[6] MA Atkinson, GS Eisenbarth, "Type 1 diabetes: new perspectives on disease pathogenesis and treatment", The Lancet, 21;358 (9277). 221-229. 2001.

[7] American Diabetes Association, "2. Classification and diagnosis of diabetes". Diabetes care,1(38), (Supplement 1) \$8-16, 2015.

[8] RA Insel, JL Dunne, MA Atkinson, JL Chiang, D Dabelea D, PA Gottlieb, CJ Greenbaum, KC Herold, JP Krischer, A Lernmark, RE Ratner, "Staging presymptomatic type 1 diabetes: a scientific statement of JDRF". the Endocrine Society, and the American Diabetes Association. Diabetes care, 1;38(10): 1964-1974, 2015.

[9] J Ilonen , A Hammais , AP Laine , J Lempainen , O Vaarala , RVeijola , O Simell , M Knip , " Patterns of  $\beta$ -cell autoantibody appearance and genetic associations during the first years of life". Diabetes: 1;62(10): 3636-3640. 2013.

[10] M Rewers, J Ludvigsson, "Environmental risk factors for type 1 diabetes". The Lancet: 4;387(10035): 2340-2348. 2016.

[11] RD Leslie, MD Castelli, "Age-dependent influences on the origins of autoimmune diabetes", evidence and implications, Diabetes, 1;53(12): 3033-3040, 2004.

[12]MA Moussa, M Alsaeid, TM Refai, N Abdella, N Al-Sheikh, JE Gomez, "Factors associated with type 1 diabetes in Kuwaiti children". Acta diabetologica, 1;42(3): 129-137.2005.

[13] S. Saraswathi, S. Al-Khawaga, N. Elkum, and K.Hussain, "A Systematic Review of Childhood Diabetes Research in the Middle East Region". Frontiers in Endocrinology. (10): 805. 2019.

[14] S. Šipetić, H. Vlajina, N. Koce, J. Marinković, S. Radmanović, and L. Denić, "Family history and risk of type 1 diabetes mellitus". Acta diabetologica. 39(3): 111-115. 2002.

[15] J Wahlberg , J Fredriksson , E Nikolic , O Vaarala , J. Ludvigsson "Environmental factors related to the induction of beta-cell autoantibodies in 1-yr-old healthy children", ABIS-Study Group, Pediatric diabetes. 6(4): 199-205. 2005.

[16] E. Altobelli, F. Chiarelli, M.Valenti, A.Verrotti, A. Blasetti, and F. Di Orio, "Family history and risk of insulindependent diabetes mellitus". A population-based case-control study, Acta diabetologica, 35(1): 57-60. 1998.

[17] L Levin, Y Ban, E Concepcion, TF Davies, DA Greenberg, Y Tomer, "Analysis of HLA genes in families with autoimmune diabetes and thyroiditis". Hum Immunol. 65(6): 640-647. 2004, doi: 10.1016/j.humimm.2004.02.026. PMID: 15219384

[18] N. Visalli, L. Sebastiani, E Adorisio, A. Conte, A.L. De Cicco, R. D'Elia, S. Manfrini, P. Pozzilli, "Environmental risk factors for type 1 diabetes in Rome and province, IMDIAB Group, Archives of disease in childhood. 88(8): 695-698. 2003.

[19] G.G. Dahlquist, S. Ivarsson, B. Lindberg, and M. Forsgren, "Maternal enteroviral infection during pregnancy as a risk factor for childhood". IDDM: a population-based case-control study, Diabetes. 44(4): 408-413, 1995.

[20] L.C. Stene, P. Magnus, R.T. Lie, O. Søvik, O. and G. Joner, "No association between preeclampsia or cesarean section and incidence of type 1 diabetes among children". A large, population-based cohort study, Pediatric research. 54(4): 487-490. 2003.

[22] M Ayati, AH Movahedian, Z. Mosayebi, "Assessment of Correlations Between Neonatal Jaundice and Phototherapy With Childhood Diabetes Type 1", Acta Med Iran. 58(30): 126-129. 2020.

[22] R. Ievins, S.E. Roberts, and M.J., Goldacre, "Perinatal factors associated with subsequent diabetes mellitus in the child", record linkage study, Diabetic Medicine. 24(6): 664-670. 2007.

[23] C.R., Cardwell.,L.C., Stene, G.,Joner, E.A., Davis, O. Cinek, J. Rosenbauer, J. Ludvigsson, C. Castell, J. Svensson, M.J Goldacre and T. Waldhoer," Birthweight and the risk of childhood-onset type 1 diabetes", a metaanalysis of observational studies using individual patient data, Diabetologia. 53(4): 641-651. 2010.

[24] L.C., Stene, K.S., Rønningen, M. Bjørnvold, D.E. Undlien, and G. Joner," An inverse association between history of childhood eczema and subsequent risk of type 1 diabetes", that is not likely to be explained by HLA-DQ, PTPN22, or CTLA4 polymorphisms, Pediatric diabetes. 11(6): 386-393. 2010.

[25]G.G Dahlquist, C. Patterson, and G. Soltesz, "Perinatal risk factors for childhood type 1 diabetes in Europe". The EURODIAB Sub study 2 Study Group, Diabetes care. 22(10): 1698-1702. 1999.

[26] CR Cardwell, LC Stene, G Joner, O Cinek, J Svensson, MJ Goldacre, RC Parslow, P Pozzilli, G Brigis, D Stoyanov, B Urbonaité, S Šipeti( E Schober, C Ionescu-Tirgoviste, G Devoti, CE de Beaufort, K Buschard, CC Patterson, "Caesarean section is associated with an increased risk of childhood onset type 1 diabetes mellitus". a metaanalysis of observational studies, Diabetologia. (51): 726-735. 2008.