

 Vol. 11, No. 4, Desember 2022

 ISSN 0216 – 0544

e-ISSN 2301– 6914

179

DESIGN AND DEVELOPMENT OF BACKEND APPLICATION FOR

THESIS MANAGEMENT SYSTEM USING MICROSERVICE

ARCHITECTURE AND RESTFUL API

aAch. Khozaimi, bYoga Dwitya Pramudita, cFirdaus Solihin, dAhmad Khairi Ramadan

a, b, c, d Teknik Informatika, Trunojoyo University of Madura 69162

E-mail: khozaimi@trunojoyo.ac.id, yoga@trunojoyo.ac.id, fsolihin@trunojoyo.ac.id

Abstract

A thesis is a scientific work completed by students with the aim of developing the

knowledge gained during the lecture period. Students at Universitas Trunojoyo Madura

(UTM), Faculty of Engineering, particularly Informatics Engineering, carry out their

theses manually and on paper. Thesis Management System (TMS) is software designed

to help with the thesis execution process by reducing paper usage and increasing time

efficiency. Monolithic system development can disrupt the service process if

improvements are being made to the system. Therefore, in this research, a Thesis

Management System (TMS) will be built using a microservice approach to make it

easier to maintain and develop the system, for example, system scalability. As a means

of communication between services, TMS is designed and developed using the REST

API. TMS has undergone system performance testing to verify that it performs well

under certain conditions. The results show that the number of requests increases the

performance response time, CPU usage, and memory consumption, with an average

resource usage of each service based on a response time of 61.64 ms, CPU usage of

8.64%, and memory usage of 89.47 Mb. As the number of requests on the service

increases, so does resource usage in each service, but this has no effect on device

performance because the increase is so low.

Key words: Thesis management, RESTful API, Microservice, Monolithic, TMS-UTM.

INTRODUCTION

Thesis is a scientific work that contains a

result explanation of research problem in a

particular field of science. The thesis must also

be scientifically accountable and carried out

based on predetermine rules or procedures[1].

The purpose of thesis is that students are able to

write scientific papers in accordance with their

fields and are assisted by supervisors who are

suitable for that field [2]. All this time, the

Faculty of Engineering students, especially the

Informatics Engineering Study Program, carry

out the process of making thesis manually or

paper-based, both in implementation and in

managing thesis data/files. The process of

executing the thesis manually is very time-

consuming, laborious, and requiring a lot of

paper, both for the thesis purposes, proposal

printing and the thesis itself. In addition, during

the thesis process, students need to meet with

some of parties such as coordinators,

supervisors and examiners to be able to

complete the administration of the thesis file.

Several previous researchers have

succeeded building a system, the aim is to

minimize problems that occur in the

implementation of the thesis. In 2010 Akh.

Khozaimi, Firdaus Solihin and Achmad Jauhari

have successfully developed a Final Project

Information System or Sistem Informasi Tugas

mailto:khozaimi@trunojoyo.ac.id
mailto:yoga@trunojoyo.ac.id
mailto:fsolihin@trunojoyo.ac.id

180 Jurnal Ilmiah KURSOR, Vol. 11, No. 4, Desember 2022, hal 179 - 186

Akhir (SIMTAK) [1]. The focus of research is

system development that can manage, monitor

and record the thesis process also provide

information related to the thesis. This system is

redeveloped in 2019 by Ach. Khozaimi, Sigit

Susanto Putro and Mujibur Rohman [3]. In this

study, a computational method in the form of

cosine similarity was applied to reduce the

degree of similarity in the title and the method

used by students in the implementation of the

thesis. The system that has been built in

previous research uses a monolithic

architecture, where every service in the system

has a high linkage so that when a change occurs

in a service it can affect other services.

Therefore, it is necessary to build a system that

implements a microservice architecture where

each service will work independently, so that it

can facilitate further development in system

improvement. It is enough to fix the system for

each problematic service without interfering of

another services performance [4].

Monolithic architecture development is a

way of developing a system where all the

components in the system are packaged

together [4]. The development of a thesis

management system with a monolithic

architecture has several weaknesses, such as the

difficulty of repairing because every

component or service in a monolithic system

has a very high linkage. Another problem arises

when making technological changes that are

quite difficult to do because the developer has

to change the entire system. Unlike the

microservice architecture, in a microservice

architecture, each service in a system will be

independence. So that it can make it easier to

repairs to a service, it will not affect other

services [4]. The adoption of a microservice

architecture is also very advantageous in terms

of scalability, because it can only scale the

required service components without the need

to scale the entire system as in a monolithic

architecture[5]. In implementing a

microservice architecture, where each service is

separate, an intermediary web service is needed

[6].

Web services are divided into SOAP snd

REST[7]. SOAP is an XML-based mark-up

language used to exchange object data on a

network. Sending data using SOAP is not

optimal for large-scale data [6]. In addition, the

use of XML-based also has a larger format than

JSON in REST communication applications.

REST is a very common architectural style used

today [8][9] where for the communication

process using JSON. APIs that follow the

REST style are called RESTful APIs. REST is

also a practical approach in web application

development [9]. REST is very suitable to be

used to communicate between systems that

work independently such as microservices.

REST is simpler and lighter than SOAP

[10][11].

Thesis Management System is a system that

was built with the aim of simplifying the thesis

implementation process and changing the thesis

implementation process from Base on Paper to

Paperless so that paper usage can be minimized.

The development of the thesis management

system will be carried out by implementing a

microservice architecture with RESTful API

communication so that further improvements

can be carried out more easily. The results of

the development of this thesis management

system will be tested functionally to ensure the

function of each service runs well and

performance testing to ensure the system can

work well under certain conditions. [12].

MATERIAL AND METHODS

System Overview
Thesis Management System (TMS) is a

system built to simplify the thesis execution

process and change the thesis implementation

process from Base on Paper to Paperless, so that

paper usage can be minimized and at the same

time can save time. The development of the

thesis management system is carried out by

implementing a microservice architecture with

RESTful API communication, that makes

further improvements and developments can be

carried out more easily[13]. In the board sense,

the description of the system architecture that

will be applied in this study is based on the

microservices architecture, which is shown in

the following figure.

This system is divided into 4 small services,

namely user services, discussion services,

scheduling services and thesis services. The

distribution of services in this system is based

on the required features and to facilitate the

scaling of system components. The user service

will be in charge of managing user data

including lecturer and student data, the

discussion service will handle the discussion

process that is accessed when the guidance

process and trial discussions occur, the

scheduling service will solve problems related

Ach. Khozaimi., Yoga D.P., Firdaus S., & Ahmad K.R., Design and Development of ... 181

to scheduling from registration to the schedule

has been arranged, and the last service is thesis

service, this service is in charge of overcoming

the thesis process, ranging from topic delivery,

lecturer guidance to thesis assessment. Each

service will manage its own data with a

different database. The thesis service will be

connected to the thesis database.

Fig 1. System architecture.

Microservice
Microservice is a new approach in

implementing service-oriented systems [14].

Microservices divide a complex system into a

collection of small independent services [9]. By

microservice architecture approach, it is

possible to develop each service separately, this

can speed up system development. In the

application of microservice architecture also

allows the use of different technologies in each

microservice [10]. In this software architecture

development, the emphasis is on separating

system services into several services according

to the scope of needs. Apart from

microservices, there are also other services such

as monolithic. Monolithic architecture is a way

of developing software where all the

components of the business reside in a system

that is packaged together [3].

The characteristics and advantages of

microservice architecture is that, it can use

various technologies and can easily change the

technology used, resilience, scalability, and

deployment of targeted independent

organizations [10]. For applications that require

high concurrency and capacity, a microservice

architecture is a good choice. Microservices

architecture provides an effective solution in

solving problems such as large, complex, and

time-consuming team projects in software

update iterations, and difficult maintenance on

large application integrations and releases [3].

The communication pattern in the

microservices architecture is divided into 2

parts. Application communication and backend

services are as shown in Figure 2. Backend

services here have their respective functions

and duties. Apps are consumers calling backend

services such as mobile apps and web service

clients.

Fig 2. Application and service communication

backend.

Connecting directly to the backend service

is a very flexible way. However, this allows the

application to call various backend services for

requests which can cause delays for remote

calls. Backend services are usually based on a

microservices architecture. Service sharing is

affected by business development. This causes

all types of applications need to be improved to

be able to adapt to service changes. Another

communication pattern in the microservice

architecture is communication using an API

gateway which can be seen in Figure 3.

Fig 3. API gateway communication.

In this communication pattern, the

application and each service need to access the

API gateway to communicate. Each backend

service will be registered to the API gateway.

The API Gateway will accept requests from

applications and direct them to the service in

question [15]. Every request must go through

182 Jurnal Ilmiah KURSOR Vol. 11, No. 4, Desember 2022, hal 179 - 186

an API gateway, so that every application

cannot communicate directly with every

service.

RESTful API
API (Application Program Interface) is an

interface programming application that

provides a way for applications to relate and

integrate from one application to another. [16].

The API here has a role as an intermediary

between different applications. REST

(Representational State Transfer) is a software

architecture model that is very commonly used

for distributed systems that focuses on

scalability and interaction between components

in the system and generalization of interfaces

[8]. REST is a practical approach to developing

web applications where the developer's system

needs to be upgraded or required a simpler way

to communicate with independent systems.

REST is stateless and data oriented. All

requests are independent and the server does

not store any request status [9].

Application Program Interface (API) that

follows the REST style is called a RESTful API

which uses a Uniform Resource Identifier

(URI) to represent data [9]. RESTful API is also

a distributed system that focuses on scalability

and interactions between components

documented by the API method, it makes easier

for developers to learn about the system that is

running and can be used as a guide to use the

features provided [17]. RESTful APIs use URIs

(Uniform Resource Identifiers) which are used

to identify resources. The methods used in

REST include [18] [9]:

GET to get resources

POST to create a new source

PUT to update resource based on resource id

DELETE is used to delete a resource or set

of resources.

RESULT AND DISCUSSION

The Thesis Management System test

scenario is a performance test of the system that

has been built. Performance testing is carried

out on the system to ensure the system can be

used under the expected workload.

Performance testing on the client side is to get

the response time of the request. Meanwhile,

from the server side, it is used to determine the

amount of CPU and RAM usage when

executing a request. The parameters to be tested

in the performance test can be seen in the

following table.

Table 1. Performance test parameters.

No Parameter Unit Description

1 Response

Time

Milisecon

(ms)

Client time to

wait for

response to

requests

made

2 CPU

Usage

Percent(%) CPU usage

while

performing a

process

3 RAM

Usage

Bytes Amount of

RAM

(memory)

usage when

executing

requests

The performance test of the Thesis

Management System is carried out with 2 tools,

namely apache jmeter [19] and performance

monitoring and testing is carried out in the test

environment listed in the following table.

Table 2. Testing scope

No Device Type

1 Operating

System

Windows 10

2 CPU Intel® Core¬TM i7-

9700 CPU @ 3.20 GHz

(12 CPUs), ~3.2 GHz

3 Memory 8192 MB

Table 3. API

No Server Endpoint

1 Thesis Assesment

2 Thesis Thesis

3 Scheduling Manage_schedule

4 Scheduling Validation

Performance testing is performed on 2

services with 5 request cases ranging from 200,

400, 600, 800 to 1000 requests. From each

service, 2 APIs are used as test materials and

each API is tested 5 times for each request case.

The API used in this test plan can be seen in the

following table.

Thesis Service Test Results
In the Thesis service, there are 2 APIs tested,

namely the thesis API and the assessment API.

The following is a graph of the results of testing the

response time, CPU usage and memory usage on the

API thesis and the API assessment on the thesis

service.

Ach. Khozaimi., Yoga D.P., Firdaus S., & Ahmad K.R., Design and Development of ... 183

Fig 4. Graphics of thesis API response time

Fig 5. Graphics thesis API CPU usage

Fig 6. Graphics of thesis API memory usage

Fig 7. Graphics of assessment API response

time

Fig 8. Graphics of assessment API CPU usage

Fig 9. Graphics of assessment API memory

usage

Scheduling Service Test Results
In the Scheduling service, there are 2 APIs

tested, namely the API manage schedule and the API

validation. The following is a graph of the results of

testing response time, CPU usage and memory

usage on the API manage schedule and API

validation on the scheduling service.

Fig 10. Graphics of manage schedule API

response time

184 Jurnal Ilmiah KURSOR Vol. 11, No. 4, Desember 2022, hal 179 - 186

Fig 11. Graphics of manage schedule API CPU

usage

Fig 12. Graphics of manage schedule API

memory usage

Fig 13. Graphics of validation API response

time

Fig 14. Graphics of validation API CPU usage

graph

Fig 15. Graphics of validation API memory

usage

Based on the results of the tests that have been

carried out on the thesis service, the average data for

each test indicator is obtained. For thesis API testing

on thesis services, the average response time is

117.83 ms with an average response time increase of

4.83%. The average CPU usage is 9.78% with an

average CPU usage increase of 53.43% and an

average memory usage of 112.14 Mb with an

average memory usage increase of 20.83%. As for

testing scheduling services, the average of each

indicator for each API tested is obtained. In testing

the Manage schedule API, the average response time

is 159.78 ms with an average increase in response

time of 4.62%. The average CPU usage is 10.77%

with an average CPU usage increase of 52.38% and

an average memory usage of 94.70 Mb with an

average memory usage increase of 21.14%. While

the API Validation the average response time is

35.94 ms, while the average increase in response

time is 4.10%. The average CPU usage in API

validation is 9.67% with an average increase in CPU

usage of 49.02% and an average memory usage of

110.22 Mb with an average increase in memory

usage of 13.07%.

CONCLUSION

Based on the overall test results, it is known

that the number of requests causes an increase

in performance both in response time, CPU

usage and memory usage with an average

resource usage of each service based on

response time of 61.64 ms, CPU usage of

8.64% and memory usage of 89 ,47 Mb.

However, the increase in resource usage on

client and server devices that occurs does not

affect device performance because the increase

is not too high.

Ach. Khozaimi., Yoga D.P., Firdaus S., & Ahmad K.R., Design and Development of ... 185

REFERENCES

[1] A. Khozaimi, Ach.; Solihin, Firduas;

Jauhari, “PERANCANGAN DAN

PEMBUATAN SISTEM INFORMASI

TUGAS AKHIR (SIMTAK),” J.

Simantec, vol. 1, no. 3, pp. 203–211,

2010, [Online]. Available:

https://simantectrunojoyo.files.wordpres

s.com/2014/04/6-khozaimi-firdaus-

jauhari-perancangan-dan-pembuatan-

sistem-informasi-tugas-akhir.pdf.

[2] Y. R. Pradana, A. A. Supianto, and Y. T.

Mursityo, “Prediksi Bidang Penelitian

dan Rekomendasi Dosen Pembimbing

Skripsi Berdasarkan Konten Latar

Belakang pada Naskah Proposal

Menggunakan Metode Multi-Class

Support Vector Machine dan Weighted

Product,” J. Teknol. Inf. dan Ilmu

Komput., vol. 8, no. 2, p. 403, 2021, doi:

10.25126/jtiik.2021824511.

[3] A. Khozaimi, S. S. Putro, and M.

Rohman, “Pengembangan Aplikasi

Managemen Tugas Skripsi (Studi

Kasus : Program Studi Teknik

Informatika Universitas Trunojoyo

Madura),” MATRIK J. Manajemen,

Tek. Inform. dan Rekayasa Komput.,

vol. 18, no. 2, pp. 237–245, 2019, doi:

10.30812/matrik.v18i2.392.

[4] Z. Ren et al., “Migrating web

applications from monolithic structure to

microservices architecture,” ACM Int.

Conf. Proceeding Ser., 2018, doi:

10.1145/3275219.3275230.

[5] Y. Chandra, T. Putra, T. Adi, P. Sidi, and

J. E. Samodra, “Implementasi Arsitektur

Microservice pada Aplikasi Web

Pengajaran Agama Islam Home

Pesantren,” J. Inform. Atma Jogja, vol. 1,

no. November, pp. 88–97, 2020.

[6] F. Arifien and M. Riastuti, “Model

Interoperabilitas Web Service Feeder

PDDIKTI Menggunakan Enterprise

Javabeans (EJB) dan REST-API,” vol.

3, 2019.

[7] D. Rathod, “Performance Evaluation of

Restful Web Services and Soap / Wsdl

Web Services,” Int. J. Adv. Res. Comput.

Sci., vol. 8, no. 7, pp. 415–420, 2017,

doi: 10.26483/ijarcs.v8i7.4349.

[8] A. Belkhir, M. Abdellatif, R. Tighilt, N.

Moha, Y. G. Gueheneuc, and E.

Beaudry, “An observational study on the

state of REST API uses in android

mobile applications,” in Proceedings -

2019 IEEE/ACM 6th International

Conference on Mobile Software

Engineering and Systems, MOBILESoft

2019, 2019, pp. 66–75, doi:

10.1109/MOBILESoft.2019.00020.

[9] B. M. Adam, A. Rachmat Anom Besari,

and M. M. Bachtiar, “Backend Server

System Design Based on REST API for

Cashless Payment System on Retail

Community,” IES 2019 - Int. Electron.

Symp. Role Techno-Intelligence Creat.

an Open Energy Syst. Towar. Energy

Democr. Proc., pp. 208–213, 2019, doi:

10.1109/ELECSYM.2019.8901668.

[10] F. Halili and E. Ramadani, “Web

Services: A Comparison of Soap and

Rest Services,” Mod. Appl. Sci., vol. 12,

no. 3, p. 175, 2018, doi:

10.5539/mas.v12n3p175.

[11] R. Choirudin and A. Adil, “Implementasi

Rest Api Web Service dalam

Membangun Aplikasi Multiplatform

untuk Usaha Jasa,” MATRIK J.

Manajemen, Tek. Inform. dan Rekayasa

Komput., vol. 18, no. 2, pp. 284–293,

2019, doi: 10.30812/matrik.v18i2.407.

[12] D. I. Permatasari, “Pengujian Aplikasi

menggunakan metode Load Testing

dengan Apache JMeter pada Sistem

Informasi Pertanian,” J. Sist. dan Teknol.

Inf., vol. 8, no. 1, p. 135, 2020, doi:

10.26418/justin.v8i1.34452.

[13] A. A. Mulyawan, “Sistem Pengelolaan

Target Perusahaan dengan Microservices

Architecture untuk Membantu

Peningkatan Kinerja Perusahaan,”

JATISI (Jurnal Tek. Inform. dan Sist.

Informasi), vol. 9, no. 1, pp. 12–22,

2022, doi: 10.35957/jatisi.v9i1.1423.

[14] M. A. F. N. Liqoo, “Analisis Pada

Arsitektur Microservice Untuk Layanan

Bisnis Toko Online,” TEKINFO, vol. 22,

186 Jurnal Ilmiah KURSOR Vol. 11, No. 4, Desember 2022, hal 179 - 186

no. 2, pp. 61–68, 2021, [Online].

Available: https://journals.upi-

yai.ac.id/index.php/TEKINFO/article/do

wnload/1761/1463.

[15] M. Song, C. Zhang, and E. Haihong, “An

Auto Scaling System for API Gateway

Based on Kubernetes,” 2018 IEEE 9th

Int. Conf. Softw. Eng. Serv. Sci., pp.

109–112, 2018.

[16] R. S. Saputra, I. R. Munadi, and D. D.

Sanjoyo, “Implementasi Dan Analisis

Performansi Platform As a Service

Untuk Api Gateway Menggunakan

Kong,” in e-Proceeding of Engineering,

2018, vol. 5, no. 3, pp. 4973–4979,

[Online]. Available:

https://libraryeproceeding.telkomuniver

sity.ac.id/index.php/engineering/article/

viewFile/7883/7776.

[17] O. Sahin and B. Akay, “A Discrete

Dynamic Artificial Bee Colony with

Hyper-Scout for RESTful web service

API test suite generation,” Appl. Soft

Comput. J., vol. 104, p. 107246, 2021,

doi: 10.1016/j.asoc.2021.107246.

[18] R. Gunawan and A. Rahmatulloh,

“JSON Web Token (JWT) untuk

Authentication pada Interoperabilitas

Arsitektur berbasis RESTful Web

Service,” J. Edukasi dan Penelit. Inform.,

vol. 5, no. 1, p. 74, 2019, doi:

10.26418/jp.v5i1.27232.

[19] E. H. Halili, Apache JMeter. 2008.

.

Ach. Khozaimi., Yoga D.P., Firdaus S., & Ahmad K.R., Design and Development of ... 187

