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Abstract
It has been known that B → D(∗)τντ are good observables in the search for the charged Higgs. The recent

obervation of deviation from standard-model by almost 4σ by Babar, Belle and LHCb in R(D(∗)) revived

the interest in possible signal of presence of charged Higgs in these modes. But such a large deviation

in the rates, where standard-model has tree level contribution, coming from a charged Higgs alone is

highly unlikely. However, these decay modes are good probes to search for small charged Higgs signal

if we can construct sensitive observables in these modes. In this work, we would like to propose four

new observables which shows much more sensitivity to the presence of charged Higgs than the usual

observables such as AD(∗)

λ and AD(∗)

θ . These four observable are (1) 1
AD

λ

, (2) Y1(q2) =
AD

θ

AD
λ

, (3) Y2(q2) =

dΓ(B→D∗τντ)
dΓD(λτ=+1/2)−dΓD(λτ=−1/2) and (4) Y3(q2) = (

q2

m2
τ
)(AD

λ + 1) 1
AD

λ

.
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1. INTRODUCTION.

The LHC discovery of a scalar behaving like the standard-

model (SM) Higgs boson [1] marks the tentative experimental

completion of SM with all the particles it predicted observed

experimentally. But even after the LHC discovery of SM like

Higgs, still it’s clear that it is not complete because in SM there

is no explanation of Dark Matter and Dark Energy, CP violation

due to KM weak phase is turn out to be too small to account for

the observed baryon asymmetry of the universe, then there is

the strong CP problem and also the fine tunning problem in

renormalization of Higgs mass etc. Hence it is pretty evident

that we require new-physics (NP) at some scale above about

200 GeV. The absence of clear cut NP signal from both flavor

and collider experiments till date may indicate that the scale of

NP is much higher than the electro-weak scale. However, there

are many loophole for low mass NP in current direct search by

LHC due to sensitivity limits of LHC to light weakly coupled

particles. But there has been reported many 2-4 σ deviations in

B meson decays by BABAR, Belle and LHCb recently, some of

which could the tip of the iceberg signals of NP. The reported

deviations from SM predictions by Babar [2] and Belle [3][6][7]

in R(D(∗)) = Br(B→D(∗)τν)
Br(B→D(∗) lν) and also LHCb [4] have reported an

excess in R(D∗) consistent with Babar and Belle results is the

strongest hints of a possible lepton flavor universality violat-

ing NP in b quark and/or τ lepton sector. Here l refers to e or µ.

The present world average from heavy-flavor-averaging-group

(HFAG) of these measurements is [8]

R(D)EXP = 0.397± 0.040± 0.028

R(D∗)EXP = 0.316± 0.016± 0.010.
(1)

Comparing these measurements with the SM predictions [10]

R(D)SM = 0.300± 0.008

R(D∗)SM = 0.252± 0.003,
(2)

there is a deviation of 2 σ for the R(D) and 3.4 σ for the R(D∗).

Taking the negative correlation of about -0.23 [9] between the

two data into account the combine deviation from SM is close

to 4σ. It is further supported by measurement of Br(B→ τν) by

Babar[5] and Belle[3] with HFAG average of [11]

BrEXP(B→ τν) = (1.06± 0.19)× 10−4, (3)

which is 1.4 σ above the SM prediction [12]

BrEXP(B→ τν) = (0.75± 0.1)× 10−4. (4)

Babar [2] and Belle [6] have ruled out 2HDM type-II at 99.8%

CL from the disagreement of its prediction with data as an ex-

planation of the anomalies in R(D) and R(D∗). From the on set

it is very easy to see that these anomalies can be explained by

a non-universal left-handed vector particle but a simple non-

universally interacting heavier gauge boson (W
′±) is highly

constrained by null results from LHC search for W
′ → tb̄ sig-

nals [13][14], and also by precision measurements in µ [15] and

τ [16]. Therefore as of now it is very difficult to built a non-

universal gauge model that can fit all the constrains and so in
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this paper we will mostly strick to a model-independent anal-

ysis only. It has been shown first in references [18][19][20]1 that

the observed excess in R(D(∗)) can be explained with baryon

and lepton number conserving Lepto-quark (LQ) models and

followed in with many special cases and variations of the LQ

models has been proposed to explain not only R(D(∗)) but also

observed deviations in RK =
Br(B→Kµµ)
Br(B→Kee) and the so called P

′
5

anomalies. But some of these LQ models turn out to be not vi-

able when all precision data till date are taken into account,

for details see the recent review in [21]. In any case as of now

the experimental inputs seems to be too few and far apart to

build a complete and consistent NP model if at all NP shows

up at the reach of the upgraded LHC and Belle-II. In following

sections, we will give a general model-independent analysis of

possible contribution from charged scalar to these deviations

and observables sensitive to their presence. This paper is orga-

nized as follows: In Section II we present the general formalism

of the analysis and lay the theoretical framework of the paper.

Section III contains an introduction to observable sensitive to

NP. Section IV contains the core of this work and it deals with

new and more sensitive observables to the presence of charged

scalar NP. In section V we conclude the paper.

2. THEORETICAL FRAMEWORK.

We assume that all the neutrinos is are left-handed, then the

most general effective Hamiltonian that contains all possible

four-fermion operators of dimention four for the decay process

b→ clνl , where l = τ, µ or e here, is given as [20]

He f f =
4GF√

2
Vcb[(δll + Cl

VL
)Ol

L + Cl
VR
Ol

R

−Cl
SL
Ol

SL
− Cl

SR
Ol

SR
+ Cl

TOl
T ]

(1)

with the operators define as

Ol
L = (c̄LγµbL)(l̄LγµνlL), Ol

R = (c̄RγµbR)(l̄LγµνlL),

Ol
SL

= (c̄RbL)(l̄RνlL), Ol
SR

= (c̄LbR)(l̄RνlL) and

Ol
T = (c̄RσµνbR)(l̄LγµννlL). (2)

In Eqs.(1) we have explicitly shown the relative negative sign

between effective four fermion operators due to exchange of

heavy scalar particles and heavy vector particles. This is due to

sign difference between a scalar propagator and a vector propa-

gator2. In many analysis, the relative sign is implicitly absorbed

1as far as author knows
2This is why in forces mediated by exchange of scalars, particles carrying same

charges attract towards each other while in forces mediated by exchange of vector

particles, particles with same charges repel each other.

into the effective coefficients, but if the relative sign between

the vector four current operators and the scalar four current op-

erators are explicitly shown will help us rule out few models,

where NP is scalar and real parts of Cl
SL

and Cl
SR

are dominant,

given that we expect NP contribution is less than the SM contri-

bution. For instance, in 2HDM of type-I and type-II, the effec-

tive coupling are real and positive and so these types of models

will interfere destructively with SM, due to the relative nega-

tive sign, and so 2HDM of type-I and type-II can only reduce

the values of R(D(∗)) instead of increasing it as required by ex-

periments in all the parameter spaces where the NP part is less

than SM part. So it is clear from this that the relative sign can

actually help us in ruling out all the models of new scalar par-

ticles whose effective coupling are non-negative for the most

parts of the parameter space where NP part is less than the SM

part. In this work, we will not deal with new vector and ten-

sor terms. So the following analysis is important if in the future

experiments in these modes, presence of only scalar type NP

is found, then we need new and more sensitive observables to

better differentiate the NP from SM. In the next section, we give

a brief analysis on how future experiments in these modes can

differentiate the presence of scalar NP from vector NP, scalar

NP from tensor type NP and scalar NP from the presence of

both vector and tensor type NP. Now then, with the presence

of only scalar and vector (SM) type operators remaining we can

express the effective Hamiltonian in Eqs.(1) as

He f f =
GF√

2
Vcb[(c̄γµ(1− γ5)b)(l̄γµ(1− γ5)νl)

− (c̄(εSl + εPl γ5)b)(l̄(1− γ5)νl)]

(3)

where

εsl = Cl
SR

+ Cl
SL

, εpl = Cl
SR
− Cl

SL
. (4)

The most stringent B physics constrains on the scalar NP ex-

planation of R(D(∗)) comes from the decay rates Br(Bc → τντ)

or Br(Bu → τντ) depending on the particularities of the NP

model. So in what follows we will take these observables and

their measured bounds as additional constrains, wherever ap-

plicable, when fixing the coefficients of the effective opera-

tors to R(D(∗)) data. Assuming all hadronization are due to

strong interaction, due to parity conservation of strong force,

only scalar and vector current can contribute in R(D) and so

it only constrains the εsl and in the case of Br(Bc → τντ) and

Br(Bu → τντ), only pseudo-scalar and axial-vector current can

contribute and so these observables only constrain εpl . How-

ever, to R(D∗), both vector and axial-vector currents can con-

tribute but only pseudo-scalar current can contribute and so

R(D∗) constrains εpl . In presence of charged scalar particle, the
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dΓ(B→ Dτντ)

dq2 =
G2

F|Vcb|2|~pD|q2

96π3m2
B

(1− m2
τ

q2 )2{|H0|2(1 +
m2

τ

q2 ) +
3m2

τ

2q2 |Ht|2[(1−
q2

mτ(mb −mc)
Re(ετ

s ))
2 +

q4

m2
τ(mb −mc)2

(Im(ετ
s ))

2]}

(5)

differential decay rate of B→ D(∗)τντ can be expressed as [17]
and

dΓ(B→ D∗τντ)

dq2 =
G2

F|Vcb|2|~pD∗ |q2

96π3m2
B

(1− m2
τ

q2 )2{(|H00|2 + |H−−|2 + |H++|2)(1 +
m2

τ

q2 ) +
3m2

τ

2q2 |H0t|2[(1−
q2

mτ(mb −mc)
Re(ετ

p))
2

+
q4

m2
τ(mb −mc)2

(Im(ετ
p))

2]}.

(6)

Now from Eqs.(5) and Eqs.(6) we can see that models where

Re(ετ
/sp), Im(ετ

s/p) < 1, the dominant contribution comes from

the Re(ετ
s/p) as it has a term linear in Re(ετ

s/p) from the mixing

with the SM part where as Im(ετ
s/p) enters only in quadratic

powers. As seen from the above two equations, the relative sign

does not affect the contribution from the complex part of new

physics, but it affects the contributions from the real part of new

scalars. In any case, whether the ετ
s/p are real or complex, the

new observables that we will introduce in the following sec-

tions are more sensitive towards presence of scalar NP then the

previously existing observables. For details of the relation be-

tween vector, axial-vector, scalar, psuedo-scalar and tensor cur-

rents and their respective form factors see [19][20][22]. For nu-

merical values of the parameters in the form factors, we will use

those given in [20] with exception that we will use R3(1) = 0.97

instead of R3(1) = 1.22 of that reference.

3. OBSERVABLES SENSITIVE TO NP.

With lack of any persistent sign of NP from direct searches at

LHC, the precision physics is becoming more and more impor-

tant to at-least sense the direction of the possible nature of NP.

So it has become crucial to find sensitive observables to NP

that can be tested in flavor precision machines such as Belle

II and LHCb etc. The remaining part of this work is concern

with finding more sensitive observables than the usual ones

like tau spin asymmetry, AD(∗)

λ , and forward-backward asym-

metries, AD(∗)

θ , which will be defined in the following sections.

We will be mainly concerned with charged scalar NP and de-

fine four very sensitive new observables to charged scalar NP

in this work.

3.1. Observables sensitive to non-scalar NP.

In case of new vector particles with substantial couplings to

vector and axial-vector currents, since only vector current will

contribute to hadronization in R(D), R(D) constrains only the

vector coupling (1+εvNP ). Where we will denote by εvNP and

εaNP , the effective couplings of new vector particles to vector

and axial-vector effective four currents respectively. Now since

R(D) = Br(B→Dτν)
Br(B→Dlν) , we have

R(D)NP
R(D)SM

= |1 + εvNP |2 =
0.397
0.300

= 1.323, (1)

and for real εvNP and εaNP , we have εvNP = 0.150 gives R(D) =

0.397. Now using this value of εvNP in R(D∗) which gets contri-

butions from both vector current and axial-vector current, we

can fit the R(D∗) = 0.316 if we set εaNP = 0.121. So a new vector

particle which couples to the different generations of fermions

differently can explain the observed excess in the R(D(∗)) eas-

ily. Now if the observed excess in R(D(∗)) has some contribu-

tion due to new vector particles, then as pointed out in [22], the
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observable

X1(q2) = R(D∗)− R(D∗L) (2)

is independent from effects due to presence of any new scalar

particles, and so this observable also should show excess simi-

lar to R(D∗), where R(D∗L) refers to the ratio for the longitudi-

nally polarized D∗. Another observable which can be used to

check the presence of new non-scalar particles contributing to

R(D(∗)) are defined as [20][22]

XD
2 (q2) = RD(q2)(AD

λ − 1) and XD∗
2 (q2) = RD∗ (q2)(AD∗

λ − 1)

(3)

where the AD
λ and AD∗

λ are the τ spin-asymmetry defined as

[18][25][26][27]

AD
λ =

dΓD(λ = +1/2)dq2 − dΓD(λ = −1/2)dq2

dΓD(λ = +1/2)dq2 + dΓD(λ = −1/2)dq2

=

3m2
τ

2q2 |Ht|2 − (1− m2
τ

2q2 )|H0|2

3m2
τ

2q2 |Ht|2 + (1 + m2
τ

2q2 )|H0|2

(4)

and

AD∗
λ =

dΓD∗ (λ = +1/2)dq2 − dΓD∗ (λ = −1/2)dq2

dΓD∗ (λ = +1/2)dq2 + dΓD∗ (λ = −1/2)dq2

=

3m2
τ

2q2 |H0t|2 − (1− m2
τ

2q2 )[|H00|2 + |H−−|2 + |H++|2]
3m2

τ

2q2 |H0t|2 + (1 + m2
τ

2q2 )[|H00|2 + |H−−|2 + |H++|2]
.

(5)

As shown in a general analysis in presence of new scalar, vector

and tensor type operators in [20], the observables XD(∗)
2 (q2) are

independent of contributions from the scalar NP. So in future

measurements in these modes, if the deviations in R(D(∗)) re-

main and comparable deviations in XD(∗)
2 (q2) are found, then

we can be sure that the most dominant NP is a non-scalar

NP. Now from Eqs.(5) we can see that, since H0t and H00 de-

pends only on axial vector and psuedo-scalar current form fac-

tors, if R(D∗) shows deviation from SM but AD∗L
λ is consistent

with SM, then the scalar and tensor contribution is negligible

and a new vector boson with substantial coupling to the axial-

vector current is the most likely NP. Similarly, if R(D) shows

deviation from SM but Aλ
D does not show any noticeable de-

viation, then the scalar and tensor contribution is negligible

and a new vector boson with substantial coupling to the vec-

tor current is the most likely NP. If in future experiments in

these modes, we found that XD(∗)
2 (q2), Aλ

D, AD∗L
λ and R(D(∗))

all shows comparable deviations from SM, then we can be sure

of presence of tensor type NP or vector and tensor type NP and

no or atleast negligible presence of scalar type NP. In what fol-

lows, we will assume the scenario where future measurements

in these modes finds that deviations in R(D(∗)) remains but no

comparable deviations are found in the observables XD(∗)
2 (q2),

a clear sign of presence of scalar type NP. Then we will need

the new and more sensitive observables that we propose in the

following sections to better probe the presence of scalar NP in

these modes.

3.2. Observables sensitive to charged scalar.

Besides R(D)(q2) and R(D∗)(q2), we can define many more

observables that are sensitive to the presence of new charged

scalar particles in the B → D(∗)τντ decay distributions. One

such observable is tau spin asymmetry (AD(∗)
τ ) which is already

defined in Eqs.(4) and Eqs.(5) of section 3.1. Another is the

forward-backward asymmetry defined as [18][22]

AD(∗)

θ =

∫ 0
−1 d cos θ(d2ΓD(∗)

τ /dq2d cos θ)−
∫ 1

0 d cos θ(d2ΓD(∗)
τ /dq2d cos θ)

dΓD(∗)
τ /dq2

(6)

which can be expresses as

AD
θ =

3m2
τ

2q2
Re(H0H̄∗t )

|H0|2(1 + m2
τ

2q2 ) +
3m2

τ

2q2 |H̄t|2
(7)

and

AD∗
θ =

3
4

[|H++|2 − |H−−|2 + 2 m2
τ

q2 Re(H00H̄∗0t)]

[(|H−−|2 + |H++|2 + |H0|2)(1 + m2
τ

2q2 ) +
3m2

τ

2q2 |Ht|2]

(8)

where the bar over Ht and H0t refers to Ht(1 − q2

mτ(mb−mc)
εs)

and H0t(1−
q2

mτ(mb+mc)
εp) respectively. The forward-backward

asymmetry is important because R(D(∗))(q2), R(D∗L)(q
2) and

AD(∗)
τ do not give independent information, as they can be ex-

pressed in terms of each other using XD(∗)

1 and XD(∗)
2 , and so

only AD(∗)

θ are independent constrains in the complex ε planes

[22].

4. MORE SENSITIVE OBSERVABLES TO
CHARGED SCALAR.

The question is, AD(∗)
τ and AD(∗)

θ are observables sensitive to

charged scalars but can we construct new observables which

are more sensitive to charged scalars than AD(∗)
τ and AD(∗)

θ ? In

what follows we will give an affirmative answer to this ques-

tion by giving four new observables which are more sensitive

to the presence of charged scalars than AD(∗)
τ and AD(∗)

θ . To

show sensitivity of new observables, we will use the scalar pa-

rameters from the model given in [30][31], where the effective

4
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scalar couplings (ε) are same as in Type-II 2HDM for the µ and

e but enhanced by a factor η in the τ sector. This model cor-

responds to the η = −1 case in a 2HDM of type-II, where η

is an anomalous multiplicative factor only affecting the τ or b

Yukawa coupling with charged Higgs, given in the comments

at the end of reference [31] about the anomalous SUSY. In that

model ετ
s ≈ ετ

p ≈ ετ = −mbmτ
tan β2

M2
H±

where as ε
e,µ
s ≈ ε

e,µ
p ≈

εe,µ = +mbme,µ
tan β2

M2
H±

. The most important constrains in this

model come from the Br(Bc → τντ) and Br(Bu → τντ) in

fitting R(D(∗)). But since Br(Bc → τντ) is not measured yet

and theoretical estimations still allow Br(Bc → τντ) from 5%

to 30% [23] compare to SM value of 2.22% [24]. So as of now

Br(Bu → τντ) = (1.06 ± 0.19) × 10−4, which is 1.4σ in ex-

cess of SM value, is the most important constrain on scalar

parameters in fitting R(D(∗)). Now from fitting R(D(∗)) and

Br(B → τντ) simultaneously we get the best fit value of tan β
MH±

as tan β
MH±

= 0.098± 0.020, which gives the lepton (l) mass inde-

pendent charge scalar parameter contributing to H̄t and H̄0t,

see Eqs.(5) and Eqs.(6), as

εl
s

ml
=

εl
p

ml
=

εl

ml
= ∓mb(

tan β

MH±
)2 = ∓0.041± 0.016 (1)

where the upper sign is for the τ lepton and lower sign is for

the e and µ leptons.

These values of εl

ml
give

Br(B→ τντ)NP = (1.21± 0.783)× 10−4, (2)

R(D)NP = 0.340± 0.197 (3)

and

R(D∗)NP = 0.255± 0.067. (4)

Comparing Eqs.(3,4) to Eqs.(1), we can see that the model pre-

diction fits the combine R(D(∗)) data within 1σ of the experi-

mental values.

4.1. 1
AD

λ

One of the the most sensitive new observable to charged scalars

that we can construct turn out to be 1
AD

τ
given as

1
AD

λ

=

3m2
τ

2q2 |H̄t|2 + (1 + m2
τ

2q2 )|H0|2

3m2
τ

2q2 |H̄t|2 − (1− m2
τ

2q2 )|H0|2
. (5)

This 1
AD

τ
observable has two key features that makes it a better

observable than AD
τ . First as seen from the Figure 1, although

AD
τ shows pretty good sensitivity to NP, but 1

AD
τ

is more sensi-

tive to NP in the entire range of the plot. Secondly in contrast to

4 5 6 7 8 9 10 11

0.4

0.6

0.8

1.0

S Gev2

A
Τ

D

4 5 6 7 8 9 10 11

1.0

1.5

2.0

2.5

3.0

3.5

4.0

S Gev2

1

A
Τ

D

FIGURE 1: This figure shows the plots of AD
τ (Left) and 1

AD(∗)
τ

(Right) where the Blue (SM) and the Red (NP) with the 1 σ error

bar shown around the NP plot. Here ετ
s = ετ

p = −0.072± 0.028

is used from Eqs.(1).

AD
τ , 1

AD
τ

show much more sharp maxima, which can be used to

measure the shift in the position of the maxima of the SM and

the NP due to presence of charged scalar. For the left plot in

Figure 1, the SM (Blue) maxima of 1
AD

τ
occurs at q2 = S = 6.637

with maxima value of 4.119 where as the maxima with the pres-

ence of scalar NP (Red) occurs at q2 = S = 6.250 with maxima

value of 3.292, where q2 = S = (pB − pD)
2 is the momentum

transferred squared. Now the difference between the position

of the SM maxima and maxima due to scalar NP is 0.387. So if

the experimental error in measurements of the position of this

maxima and the error in the prediction of the position of the SM

maxima can be reduced such that the combined experimental

error and theoretical (SM) error can be reduced below 0.078,

then we can have a 5σ discovery potential for scalar NP with

ε as small as -0.072. Now when integrated in q2 for the 1
AD

λ

we

have

5
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∫ (mB−mD )2

m2
τ

dq2dΓ/dq2∫ (mB−mD )2

m2
τ

dq2[dΓ(λ=+1/2)/dq2−dΓ(λ=−1/2)/dq2]
|SM

−

∫ (mB−mD)2

m2
τ

dq2dΓ/dq2∫ (mB−mD)2

m2
τ

dq2[dΓ(λ = +1/2)/dq2 − dΓ(λ = −1/2)/dq2]
|NP

= 0.551

(6)

where as for the AD
λ we have

∫ (mB−mD )2

m2
τ

dq2[dΓ(λ=+1/2)/dq2−dΓ(λ=−1/2)/dq2]∫ (mB−mD )2

m2
τ

dq2dΓ/dq2
|SM

−

∫ (mB−mD)2

m2
τ

dq2[dΓ(λ = +1/2)/dq2 − dΓ(λ = −1/2)/dq2]∫ (mB−mD)2

m2
τ

dq2dΓ/dq2
|NP = 0.070.

(7)

From Eqs.(6) and Eqs.(7) we see that 1
AD

λ

is an order of mag-

nitude more sensitive to charged scalar than AD
λ . So in the q2

integrated ratios of AD
λ and 1

AD
λ

, for AD
λ we require SM plus Ex-

perimental combine error to reduce below 0.014 where as for
1

AD
λ

we only require SM plus Experimental error to reduce be-

low 0.110 to have 5σ discovery potential of scalar NP with ετ

as small as -0.072. One may expect that another potential sensi-

tive observable would be 1
AD∗

τ
, but due to suppression of scalar

NP contribution in D∗ mode by a factor of mb−mc
mb+mc

relative to D

mode, the observables AD∗
τ and 1

AD∗
τ

are not that sensitive and

so we will not use these observables in this work.

4.2. Y1(q2) =
AD

θ

AD
λ

Another sensitive observable to charged scalar NP can be de-

fined as

Y1(q2) =
AD

θ

AD
λ

=

3m2
τ

2q2 Re(H0H̄∗t )
3m2

τ

2q2 |H̄t|2 − (1− m2
τ

2q2 )|H0|2
. (8)

In Figure 2 we have shown the plot of Y1(q2) (left) and
1

Y1(q2)
(Right).3 As seen from that Figure, besides showing

prominent difference between SM and scalar NP, in the two

plots, the Y1(q2) is more sensitive towards the low q2 region

where as the 1
Y1(q2)

is more sensitive towards the high q2 region.

And one of the most important features of these observables

turn out to be the difference between the position of SM max-

ima and the scalar NP maxima in Y1(q2). The SM (Blue) max-

ima occurs at q2 = S = 6.038 with the maxima value of 1.589

3one may think that actually 2q2

3m2
τ

Y1(q2) will be more sensitive but it turns out

that is not the case, in fact the opposite case turn out to be true!
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FIGURE 2: This figure shows the plots of Y1(q2) (left) and 1
Y1(q2)

(Right) where the Blue (SM) and the Red (NP) with the 1 σ error

bar shown around the NP plot. Here ετ
s = ετ

p = −0.072± 0.028

is used from Eqs.(1).

where as the scalar NP (Red) maxima occurs at q2 = S = 5.379

with the maxima value of 1.306, the difference between the po-

sitions of the two maximas is 0.659. So if the experimental error

in measurements of the position of the maxima and the error in

the prediction of the position of the SM maxima can be reduced

such that the combined experimental error and theoretical (SM)

error can be reduced below 0.132, then we can have a 5σ discov-

ery potential for scalar NP with ε as small as -0.072 with this

observable. This observable shows the maximum shift in the

position of the scalar NP maxima from the position of SM max-

ima of all the new observables in this work for a given value of

ε. And we have

6
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∫ (mB−mD)2

m2
τ

dq2d[
∫ 0
−1 d cos θ(d2ΓD

τ /d cos θ)−
∫ 1

0 d cos θ(d2ΓD
τ /d cos θ)]/dq2∫ (mB−mD)2

m2
τ

dq2[dΓ(λ = +1/2)/dq2 − dΓ(λ = −1/2)/dq2]
|SM

−

∫ (mB−mD)2

m2
τ

dq2d[
∫ 0
−1 d cos θ(d2ΓD

τ /d cos θ)−
∫ 1

0 d cos θ(d2ΓD
τ /d cos θ)]/dq2∫ (mB−mD)2

m2
τ

dq2[dΓ(λ = +1/2)/dq2 − dΓ(λ = −1/2)/dq2]
|NP = 0.221,

(9)

so there is a difference of 0.221 between the q2 integrated

value of observable Y1 in SM compared to the q2 integrated

value of observable Y1 in scalar NP. This means that in the q2

integrated value of Y1, we only require SM plus Experimental

combine error to reduce below 0.044 to have a 5σ discovery po-

tential of scalar NP with ετ as small as -0.072.

4.3. Y2(q2) = dΓ(B→D∗τντ)
dΓD(λτ=+1/2)−dΓD(λτ=−1/2)

We can also define another sensitive observable to charged

scalar NP as

Y2(q2) =
dΓ(B→ D∗τντ)

dΓD(λτ = +1/2)− dΓD(λτ = −1/2)

=
|pD∗ |
|pD|

(|H−−|2 + |H++|2 + |H00|2)(1 + m2
τ

2q2 ) +
3m2

τ

2q2 |H̄0t|2

|H̄t|2 3m2
τ

2q2 − (1− m2
τ

2q2 )|H0|2

(10)

and a plot of the the observable Y2(q2) is shown in the Figure 3.

One of the key feature of this observable is the gap between the

SM maxima and NP maxima, which is 2.167. In this observable,

the contrast between SM and scalar NP comes out more promi-

nently than any of the other new observables for ε as small as

-0.072. But in this observable the shift between the position of

SM maxima and scalar NP maxima is very small, about 0.165.

Y2(q2) is very suitable to test especially models where both εs

and εp gets substantial contribution.

And we have ∫ (mB−mD∗ )
2

m2
τ

dq2dΓ(D∗)/dq2∫ (mB−mD)2

m2
τ

dq2[dΓ(λ = +1/2)/dq2 − dΓ(λ = −1/2)/dq2]
|NP

= 3.933

(11)

where as ∫ (mB−mD∗ )
2

m2
τ

dq2dΓ(D∗)/dq2∫ (mB−mD)2

m2
τ

dq2[dΓ(λ = +1/2)/dq2 − dΓ(λ = −1/2)/dq2]
|SM

= 5.292,
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FIGURE 3: This figure shows the plots of Y2(q2) (left) and 1
Y2(q2)

(Right) where the Blue (SM) and the Red (NP) with the 1 σ error

bar shown around the NP plot. Here ετ
s = ετ

p = −0.072± 0.028

is used from Eqs.(1).

(12)

so there is a difference of 1.359 between the q2 integrated value

of observable Y2 in SM compared to the q2 integrated value of

observable Y2 in scalar NP4. This implies that in q2 integrated

value of Y2, we only require SM plus Experimental combine

4this value may depend on the form factors being used for D and D∗ .
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error to reduce below 0.698 to have a 5σ discovery potential

with ετ as small as -0.072.

4.4. Y3(q2) = ( q2

m2
τ
)(AD

λ + 1) 1
AD

λ

Yet another sensitive observable to charged scalar NP can be

defined as

4 5 6 7 8 9 10 11
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FIGURE 4: This figure shows the plots of Y3(q2) (left) and 1
Y3(q2)

(Right) where the Blue (SM) and the Red (NP) with the 1 σ error

bar shown around the NP plot. Here ετ
s = ετ

p = −0.072± 0.028

is used from Eqs.(1).

Y3(q2) = (
q2

m2
τ
)(AD

λ + 1)
1

AD
λ

=
3|H̄t|2 + |H0|2

|H̄t|2 3m2
τ

2q2 − (1− m2
τ

2q2 )|H0|2
(13)

and the plot of this new observable is shown in Figure 4. The

SM (Blue) maxima occurs at q2 = S = 7.948 with the maxima

value of 11.871 where as the scalar NP (Red) maxima occurs

at q2 = S = 8.149 with the maxima value of 9.830, the differ-

ence between the positions of the two maxima is 0.201. So if

the experimental error in measurements of the position of the

maxima and the error in the prediction of the position of the SM

maxima can be reduced such that the combined experimental

error and theoretical (SM) error can be reduced below 0.041,

then we can have a 5σ discovery potential for scalar NP with ε

as small as -0.072 in this observable. This observable has simi-

lar behavior as the observable 1
AD

λ

in terms of the shape of the

graph as can be seen from comparing Figure 1 and Figure 4. As

the two Figures clearly show, Y3 is more sensitive to the lower

q2 values than the 1
AD

λ

, which is more sensitive towards higher

q2 values. Another big difference between Y3 and 1
AD

λ

is in their

q2 integrated values where

∫ (mB−mD )2

m2
τ

dq2 q2

m2
τ
[2dΓ(λ=+1/2)]/dq2∫ (mB−mD )2

m2
τ

dq2[dΓ(λ=+1/2)/dq2−dΓ(λ=−1/2])/dq2]
|SM

−

∫ (mB−mD)2

m2
τ

dq2 q2

m2
τ
[2dΓ(λ = +1/2)]/dq2∫ (mB−mD)2

m2
τ

dq2[dΓ(λ = +1/2)/dq2 − dΓ(λ = −1/2])/dq2]
|NP

= 1.216

(14)

Comparing the q2 integrated value of about 1.216 for Y3 above

to the q2 integrated value of about 0.551 for the 1
AD

λ

, it is clear

that the observable Y3 is much more sensitive observable to

charged scalar than 1
AD

λ

. Also from Eqs.(14) we see that for ob-

servable Y3, we only require SM plus Experimental combine

error to reduce below 0.243 to have a 5σ discovery potential of

scalar NP with ετ as small as -0.072. Similar observable can be

defined from AD∗
λ , however this observable is not that sensitive

to charged scalars due to suppression of charged scalar cou-

pling in D∗ final state by a factor of mb−mc
mb+mc

relative to D final

state in B→ D(∗)τντ .

5. CONCLUSIONS.

In this work, we have given four new observables which are

very sensitive to the presence of charged scalars in the B →
D(∗)τντ decays. All the new observables show substantial de-

viation from SM values in two main features of them i.e (1) in

presence of charged scalar, they all show substantial shift in

the position of the maxima from that of the SM value and (2)

in presence of charged scalar, they also show substantial devi-

ation in their q2 integrated value from that of the SM one. In

the following we will enumerate the key results for each new

observables from the preceding analysis.

I. 1
AD

λ

.

1. The shift in the position of the maxima due to the presence

of the charged scalar from SM in this observable turns out to

be 0.387. This implies that to have a 5 σ discovery potential of

charged scalar with ετ as small as -0.072, we only require the

combine theoretical (SM) error and experimental error in the

measurement of the position of this maxima to reduce just be-

8
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low 0.078.

2. The difference in the q2 integrated value of 1
AD

λ

|SM and 1
AD

λ

|NP

turns out to be 0.551, so we only need to reduce the combine

theoretical (SM) and experimental errors in the measurement

of the q2 integrated value of 1
AD

λ

just below 0.110 to have a 5 σ

discovery potential of charged scalar with ετ as small as -0.072.

3. In the q2 integrated value, 1
AD

λ

is a better observable than AD
λ ,

in probing the presence of charged scalar, by about an order of

magnitude.

II. Y1(q2) =
AD

θ

AD
λ

=
3m2

τ
2q2 Re(H0 H̄∗t )

3m2
τ

2q2 |H̄t |2−(1− m2
τ

2q2 )|H0|2
.

1. The shift in the position of the maxima due to the presence

of the charged scalar from SM in this observable turns out to

be 0.659. This implies that to have a 5 σ discovery potential of

charged scalar with ετ as small as -0.072, we only require the

combine theoretical (SM) error and experimental error in the

measurement of the position of this maxima to reduce just be-

low 0.132.

2. The difference in the q2 integrated value of Y1(q2)|SM and

Y1(q2)|NP turns out to be 0.221, so we only need to reduce the

combine theoretical (SM) error and experimental error in the

measurement of the q2 integrated value of Y1(q2) just below

0.044 to have a 5 σ discovery potential of charged scalar with

ετ as small as -0.072.

III. Y2(q2) = dΓ(B→D∗τντ)
dΓD(λτ=+1/2)−dΓD(λτ=−1/2)

=
|pD∗ |
|pD |

(|H−− |2+|H++ |2+|H00|2)(1+ m2
τ

2q2 )+
3m2

τ
2q2 |H̄0t |2

|H̄t |2 3m2
τ

2q2 −(1−
m2

τ
2q2 )|H0|2

.

1. The shift in the position of the maxima due to the presence

of the charged scalar from SM in this observable turns out to

be 0.165. This implies that to have a 5 σ discovery potential of

charged scalar with ετ as small as -0.072, we only require the

combine theoretical (SM) error and experimental error in the

measurement of the position of this maxima to reduce just be-

low 0.033.

2. The difference in the q2 integrated value of Y2(q2)|SM and

Y2(q2)|NP turns out to be 1.359, so we only need to reduce the

combine theoretical (SM) error and experimental error in the

measurement of the q2 integrated value of Y2(q2) just below

0.698 to have a 5 σ discovery potential of charged scalar with

ετ as small as -0.072.

3. (Note†) Results in this observable may depend on the differ-

ent form factors for D and D∗ being used.

IV. Y3(q2) = (
q2

m2
τ
)(AD

λ + 1) 1
AD

λ

= 3|H̄t |2+|H0|2

|H̄t |2 3m2
τ

2q2 −(1−
m2

τ
2q2 )|H0|2

.

1. The shift in the position of the maxima due to the presence

of the charged scalar from SM in this observable turns out to

be 0.201. This implies that to have a 5 σ discovery potential of

charged scalar with ετ as small as -0.072, we only require the

combine theoretical (SM) error and experimental error in the

measurement of the position of this maxima to reduce just be-

low 0.041.

2. The difference in the q2 integrated value of Y3(q2)|SM and

Y3(q2)|NP turns out to be 1.216, so we only need to reduce the

combine theoretical (SM) error and experimental error in the

measurement of the q2 integrated value of Y3(q2) just below

0.243 to have a 5 σ discovery potential of charged scalar with

ετ as small as -0.072.

So in short, we have proposed four new observables which are

very sensitive towards the presence of new charged scalars.

Some of these new observables are more sensitive then observ-

ables such as R(D(∗)) and AD(∗)

λ by an order of magnitude.

Most of these observables are related to D mode final states, we

can define similar observables in the D∗ mode final states but

even though these new observables are expected to be much

more sensitive then observables such R(D∗) and AD∗
λ , the sen-

sitivities of D∗ mode final observables are suppressed by a fac-

tor of mb−mc
mb+mc

relative to D mode final states.
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