
Letters in High Energy Physics LHEP 3, 8, 2019

Connections between physics, mathematics, and deep learning
Jean Thierry-Mieg

NCBI, National Library of Medicine, National Institutes of Health,
8600 Rockville Pike, Bethesda, MD 20894, USA

E-mail: mieg@ncbi.nlm.nih.gov

Abstract
Starting from Fermat’s principle of least action, which governs classical and quantum mechanics and from
the theory of exterior differential forms, which governs the geometry of curved manifolds, we show how
to derive the equations governing neural networks in an intrinsic, coordinate-invariant way, where the loss
function plays the role of the Hamiltonian. To be covariant, these equations imply a layer metric which is
instrumental in pretraining and explains the role of conjugation when using complex numbers. The differ-
ential formalism clarifies the relation of the gradient descent optimizer with Aristotelian and Newtonian
mechanics. The Bayesian paradigm is then analyzed as a renormalizable theory yielding a new derivation
of the Bayesian information criterion. We hope that this formal presentation of the differential geometry
of neural networks will encourage some physicists to dive into deep learning and, reciprocally, that the
specialists of deep learning will better appreciate the close interconnection of their subject with the foun-
dations of classical and quantum field theory.

Keywords: Deep learning, Mechanics, Differential Geometry,
Bayesian Information Criterion, Renormalization
DOI: 10.31526/lhep.3.2019.110

1. BACKGROUND
1.1. What is a neural network good for
The purpose of a neural network, the logical architecture be-
hind deep learning [1], is to transform an input vector X into a
labelling vector Ŷ; for example, in a supervised learning prob-
lem, the vector X may represent an image and the output Ŷ
a classification probability like ’this image has a probability
92/100 of representing a cat’. In more complex settings like
reinforcement learning and adversarial networks [2, 3], the Ŷ
may represent a choice between several actions. But in all cases,
during the training phase, one provides a set of N training vec-
tors {X}, computes the corresponding set of output vectors
{Ŷ}, and compares {Ŷ} to a set of truth vectors {Y} represent-
ing the desired outputs of the neural network. The comparison
is performed by selecting a loss function

L =
1
N ∑

X
L(X). (1)

L plays the role of the Hamiltonian in classical mechanics and
will be used to define the time flow of the neural network dur-
ing the training iterations.

1.2. How is it designed
A neural network consists of a large collection of very sim-
ple interconnected computing cells described below, called ar-
tificial neurons. Each neuron acts nearly trivially, but complex
learning emerges from their combination. The actual design of
a neural network is specified by a set of choices, called the
hyperparameters of the net. They include the number of lay-
ers of the net, the types and number of neurons in each layer,
and their connectivity. The hyperparameters are selected by the
user and are not automatically adjustable. At present, the de-
sign of the network remains an art, but it has been observed

that deep networks, with many layers, learn better than shal-
low networks as each successive layer spontaneously builds a
higher-level representation of the data. In 2017, many publi-
cations described neural network with over 100 layers, hence,
the rebranding around 2007 of the ’Artificial Neural Networks’
paradigm of the 1980s under the new name ’Deep Learning’.

1.3. How does it work
The magic of the neural network is that, during the train-
ing phase, the neural network automatically modifies the re-
sponse of its individual neurons until the predicted outputs
{Ŷ} closely match the desired outputs {Y}. Here is how it
works.

Each neuron performs an affine transformation Y = WX +
b on its input vector X, followed by a nonlinear activation func-
tion Φ like a sigmoid, or a rectified linear unit (ReLU), only al-
lowing the propagation of positive signals (Y > 0). Z = Φ(Y)
are then used as the X input of the next layer. The activation
functions play a crucial role. Without them, the network would
be equivalent to a large matrix multiplication and could only
solve a linear classification problem. But the presence of sev-
eral layers of nonlinearities allows the neural network to learn
to recognize very complex relationships in the input data, up
to understanding natural language, playing chess and go, or
driving a car. The basic method is amazingly simple.

At time zero, the W and b coefficients, collectively called
the parameters of the neural network, are initialized with small
random numbers in order to break any existing symmetry.
Then the time evolution of the parameters is driven by a sim-
ple differential equation, called the steepest descent, which de-
pends on the choice of the loss function L.

To construct this equation, the main idea is to realize that
L is not supposed to constrain the {X} vectors, which repre-
sent the external data, for example, texts or images, but should
rather be regarded as a function of the parameters {W} of the
neural network, and that this dependency survives the averag-
ing over the X:

L(W) =
1
N ∑

X
L(X, W). (2)

1



Letters in High Energy Physics LHEP 3, 8, 2019

We now remember that we want W to evolve in time un-
til the network is well trained, so we postulate that W are un-
known functions of time:

W = W(t). (3)

Hence, the loss function itself becomes a function of time, hope-
fully converging towards a global minimum:

L(t) = L(W(t)). (4)

Let us now compute the exterior differential of L:

dL =
∂L
∂t

dt = ∑
W

∂L
∂W

∂W
∂t

dt. (5)

Starting from the differential of the loss function, it is then
generally postulated [4] that the time evolution of the W pa-
rameters is governed by the differential equation

dW = − ∂L
∂W

η dt, (6)

where the parameter η is called the learning rate. The rationale
for postulating this equation is explained in the next section
using the fundamental concepts of mathematics and physics.

2. NEURAL NETWORKS FROM THE POINT
OF VIEW OF DIFFERENTIAL GEOME-
TRY

2.1. Fermat’s principle of least action
The governing principle of a very large part of theoretical
physics, including general relativity, classical and quantum me-
chanics, and the standard model of the fundamental interac-
tions, is a suitable generalization of Fermat’s principle of least
action [5]. In its original form, in the seventeenth century, it
simply stated that a ray of light will follow the fastest path be-
tween two points, explaining refraction by assuming that light
travels slower in water than in the air, a true statement which
was verified experimentally only much later and was in plain
contradiction with the unfortunate hypothesis of Descartes that
light would travel faster in water than in the air. Around 1930,
following Elie Cartan, Einstein, and Hermann Weyl, it had be-
come apparent that the best formalism to express the least ac-
tion principle is the formalism of exterior differential geometry,
whereby particles travel along straight lines, called geodesics,
in a curved space representing the presence of external forces,
like electromagnetism or gravity, and the eventual existence of
constraints.

We would like to show that the training of a neural network
follows the same paradigm and can be expressed in the same
formalism. This is not really new or surprising, but this point
of view is not emphasized in the recent book of Goodfellow,
Bengio, and Courville [2], or in the book of Géron [3], or in the
excellent lectures of Ng [6].

The neural network steepest descent equation implements
Fermat’s principle of least action in the following sense. The
neural network flows along the shortest path in parameters
space leading to a given decrease of the loss function. How-
ever, to define a distance in {W} space, we need a metric g. If

we call W [i] an individual parameter, for example, a matrix co-
efficient associated to the ith layer, the neural network equation
reads

dW [i] = −g[ij]
∂L

∂W [j]
η dt. (7)

In this equation, notice the presence of upper and lower
indices called contravariant and covariant, respectively, which
are needed each time one wishes to write consistent equations
in a system of coordinates which is not orthonormal; that is,
either the axes are not orthogonal or the base vectors have dif-
ferent lengths.

The layer metric g is needed in two equations: it is needed
to transform the partial derivative ∂[j]L with a lower (covari-
ant) [j] index into a quantity with an upper (contravariant) [i]
index, so that it can be added to the upper (contravariant) index
differential dW [i]. A metric is also needed to construct in {W}
space the elementary square distance ds2, familiar from general
relativity [7]:

ds2 = g[ij]dW [i]dW [j], (8)

where the lower (covariant) index metric g[ij] is defined as the

inverse of the upper (contravariant) index metric g[ij]:

g[ij]g[jk] = δ
[i]
[k]. (9)

The parameters of each layer [i] are naturally organized as a
matrix W [i] feeding its output vector as the input of the follow-
ing layer. In this matrix notation, ds2 is expressed as the Frobe-
nius norm:

ds2 = g[ij] Tr(dW [i]t dW [j]), (10)

where the superscript t denotes the transposed matrix. By def-
inition of the matrix product, this equation is just a covariant
notation for the sum of the squares of all elements of the dW
matrix, weighted by the g metric. If we choose the same met-
ric g in equations (7) and (8), the neural network equation then
implies that the length of the path from an initial configuration
W0 to a final configuration W1 computed as

I =
∫ W1

W0

ds (11)

is minimal relative to the distance from W0 to any other (local)
configuration W with the same loss function as W1, exactly as
required by the principle of least action [8]. At each instant, the
W parameters flow normally to the sheet of configurations with
equal loss, where orthogonality is defined relative to the metric
g.

The existence of the layer metric g is implied by the struc-
ture of the equations. But from a pragmatic point of view, it
plays a useful role. This means that all cell layers do not have to
be created equally. A classical method introduced by Hinton is
called pretraining. One first trains a rather shallow neural net-
work on a large set of unlabelled examples, allowing the neural
network to recognize the main features of a new kind of data,
and then one freezes the coefficients of these layers and trains
additional layers which try to transform the output of the shal-
low network into the desired results using a possibly smaller
set of labelled examples with known truth values.

For example, suppose that the first 6 layers of the network
were pretrained and that 3 additional layers need training. Us-
ing a diagonal metric, we would set g[ij] = δij (the unit ma-
trix) for i, j > 6, so that they would be trained normally. How-
ever, we would set the upper index (contravariant) metric g[ij]

2



Letters in High Energy Physics LHEP 3, 8, 2019

to zero for i, j <= 6, or equivalently the lower index (covari-
ant) metric g[ii] to ∞, making the parameters of the low layers
immutable. Alternatively, we could set the low layer g[ij] to a
high value, like 100, allowing the pretrained part of the net-
work to adjust conservatively to the new condition at a very
slow rate. We could also decide that the parameters of layers
with many cells are stiffer or softer than the parameters of lay-
ers with fewer cells. Here, we have treated the metric as lay-
ered, but if a layer contains several distinct types of cells, it also
makes sense to give a different stiffness to each group. Such
techniques are widely used when pretraining deep networks.

We see that writing the equations of the neural network in
the classical notations of the physicist forced us to introduce
in (7) a metric which was not apparent in (6) and to anticipate
the concept of variable stiffness of the successive layers of the
neural-net.

An important observation is that thanks to the lineariza-
tion procedure, inherent to the differential formalism, we never
need to compute the inverse of a matrix. In the forward action,
we compose the successive actions of several layers. In the pull-
back equation, which maps the differential dL of the loss func-
tion back to the differential dW of the parameters, we only need
the transpose of the Jacobians of the forward actions, not their
inverse. This is crucial, because a neural network often involves
very large matrices, and computing the inverse of a very large
matrix is at best very slow and very often numerically unstable.

2.2. Understanding the metric when using complex numbers
A way to illustrate the role of the g metric is to analyze the
situation when the W coefficients are complex numbers. The
square length of a complex number z = x + iy is not given by
the square of z but by the product of z by its conjugate z. In
other words, in z, z space, the metric is antidiagonal:

gz z = gz z = 0, gz z = gz z = 1/2. (12)

As a result, we find that the differential of W is proportional to
the derivative of L with respect to W rather than with respect
to W because the g metric in (7) will always couple a complex
to its conjugate:

dW [i] = −2 g[ij]
∂L

∂W [j]
η dt. (13)

The need to take the partial derivatives with respect to the com-
plex conjugates of the parameters would not be self-evident if
we had not explicitly introduced the g metric.

Complex neural networks are naturally important in do-
mains where the input vectors X are best described by complex
functions, as in sound recognition or imaging where the phase
of the signal characterizes the direction of the source. But they
are also promising in other domains. The complex differen-
tiable (holomorphic) functions are much more constrained than
real differentiable functions, and the space of vectors of norm
one (zz = 1) is connected in the complex case, the points of
norm one z = eiφ form a continuous circle, whereas the points
of norm one on the real line x = ±1 are disconnected. These
two properties should facilitate the exploration of the parame-
ter landscape, and although complex neural networks are not
yet natively supported in TensorFlow, we expect that they will
be widely used within a few years. See [9] for a recent applica-
tion of complex neural networks to the analysis of MRI medical

pictures, [10] for an application to sound patterns, or [11] for an
introduction to the complex Cayley transform.

2.3. Mechanical interpretation of the gradient descent opti-
mizers

The loss function L(W) can be interpreted as the potential en-
ergy of the system, usually denoted by V(x) in classical me-
chanics. The negative of the gradient of L with respect to W
therefore represents the force F causing the network to move
across the parameter space W with speed v. In these notations,
the pullback equation reads

v =
∂W
∂t

= ηF. (14)

As in Aristotle’s mechanics [12], this equation tells us that the
speed v of the mobile is proportional to the force. This equation
is physically correct only in a situation dominated by a huge
friction, like a horse pulling a plough. In those cases, the motion
is usually very slow. If we hope to accelerate the convergence of
the network, it seems reasonable to look for an equation appli-
cable to cases with less friction and faster displacement and to
postulate with Newton that the acceleration a, rather than the
speed v, is proportional to the force, according to the following
equation:

ma = m
∂v
∂t

= F− λv, (15)

describing the acceleration a, of a point of mass m, subject to a
force F, with friction coefficient λ. The mechanical inertia asso-
ciated to the mass of the mobile stabilizes the module of the
speed and the orientation of the trajectory. On a flat section
of the landscape, where F = 0, the motion continues and the
speed v only decays exponentially as e−λt/m. This method, in-
troduced in [13], is called the gradient descent ’momentum’ op-
timizer. As hoped, the network converges faster and more often
than with the Aristotle equation.

The current best methods, RMS propagation [14] and then
Adam [15], introduce a further refinement. Close examination
of the trajectories shows that the network is subject to a Brow-
nian motion because each new set of training examples in-
troduces a modification of the loss function L(W) and tends
to drive the weight configuration in a different direction [16].
However, only the average motion is desirable. A solution is to
compute

∂F
∂t

= −β(F− F), (16)

which defines F as the rolling average of F, with exponential
time decay β, and to postulate the following descent equation:

ma = m
∂v
∂t

= γF− λv, (17)

where the variable coefficient γ dampens the effect of the com-
ponents of F in the directions in which F fluctuates, as mea-
sured by maintaining the rolling exponential time average of
F2

w in each w direction. These methods strongly accelerate the
convergence towards a good local minimum of L, although it
is sometimes reported that the network is overadapted to the
examples and does not generalize so well to new test examples
[17].

3



Letters in High Energy Physics LHEP 3, 8, 2019

2.4. On the paucity of local minima in high dimension
A network can only be trained well if the gradient descent
paradigm can discover configurations with a very low loss
function, such that each training example X is mapped very
close to its known target value Y. Furthermore, one hopes that
such a good mapping will generalize well to new test examples
not seen during the training. Therefore, a very interesting ques-
tion is to evaluate the risk of being trapped in a false minimum.

Drawing from our life-long 3-dimensional experience, we
expect local minima to be very frequent: in a mountain land-
scape, there are many lakes and on a rainy day huge numbers
of little puddles of water are forming. However, neural net-
works often have millions of W parameters, and, in high di-
mension, local minima become extremely rare relative to sad-
dle points [1]. In a space of dimension D + 1 a horizontal plane
tangent to an equipotential L surface is defined by D linear
equations, indicating that each partial derivative relative to a
different direction vanishes. In each of these directions, the sec-
ond derivative may point up or down, yielding 2D configura-
tions, but only one of them, when all second derivatives point
upwards, corresponds to a local minimum. All other configura-
tions characterize saddle points where some escape routes re-
main open. The true local minima are therefore exponentially
rare, with probability 2−D, relative to the saddle points, and
this helps to understand why neural networks are not con-
stantly trapped in false minima. Some authors even try to show
that, in concrete situations, the different minima discovered in
the network are most often connected by a quasi-horizontal
path [18]. These qualitative observations may help understand
the otherwise amazing success of gradient descent equation
to find deep minima in these extremely complex manifolds. It
would be interesting to know in which sense the conjecture that
there would exist a single connected globally minimal region
could be validated.

2.5. Finite learning steps
On a computer, we can only deal with a finite number of steps
of calculation, so we must replace the infinitesimal differential
equation (6) by the approximate finite difference equation:

δW = − ∂L
∂W

η δt, (18)

where η is the learning rate and ηδt now represents a small but
finite quantity called the learning step. If the step is too small,
one needs too many iterations; if too big, the linearization ap-
proximation may be broken since some terms of order (ηδt)2

may become as large as or larger than some terms linear in
ηδt. These nonlinearities interfere with the logic of the calcula-
tion which may become unstable and miss the true minimum.
Of course, following the classical Runge-Kutta methods dating
back to 1900, it is recommended to adapt the step to the steep-
ness of the differential equation and go fast in shallow regions
and slow over cliffs. However, it must be understood that the
main cause of the problem is not the excessive step δW in one
of the D directions, where D is the number of parameters, but
the possible interferences between the D2/2 pairs of variables,
the D3/6 triplets, and so on, interferences which do not exist in
the truly infinitesimal dW formalism. The problem is well illus-
trated by the model of a car driving on a multilanes freeway.
Using differential equations, the car may continuously adapt

its direction and follow its own lane, but if it moves by quan-
tum jumps, it may well in a bend change lane and end up on
an exit ramp, away from its final destination.

The finite learning steps have, however, two advantages.
First, they allow the introduction of activation functions, like
the ReLU diode, presenting (nondifferentiable) angles because
the difference equation (18) remains well defined. At the same
time, they allow the network to traverse the thin ridges and to
jump over the narrow ditches which may be present in the pa-
rameter landscape [16]. This type of evolution is analogous to
the tunnel effect which allows electrons to traverse transistors
and prompts us to sketch the quantum mechanical aspects of
the theory of neural networks.

3. RENORMALIZATION THEORY
AND BAYESIAN STATISTICS

Up to here, we have shown how neural networks are governed
by the principles of classical mechanics. In this section, follow-
ing a suggestion of the referee, we draw the correspondence
between Bayesian statistics and modern quantum field theory
and show how the renormalization procedure helps answer-
ing a practical question: how many parameters can be trained
given the number of training examples.

3.1. The cross-entropy loss function
To make the connection with thermodynamics and quantum
mechanics, we must first revisit the definition of the loss func-
tion L(W). Given numerical outputs {Ŷ}, the simplest way to
compare them to the desired results {Y} is to choose as loss
function the Euclidean distance

L =
1
2 ∑ (Y− Ŷ)2, (19)

where the sum extends over all the training examples. The gra-
dient of L is proportional to the difference (Y− Ŷ)

dL = ∑
a
(Y− Ŷ)a

∂Ŷa

∂Wi dWi, (20)

and the gradient descent equation (7) is simple.
When the desired outputs are qualitative, as in a classifica-

tion problem, a more complex loss function, called the cross-
entropy, is used. To understand its definition, assume that the
W parameters are known and compute the probability of cor-
rectly assigning each X example to its correct class, that is, the
probability of a perfect classification:

P = ∏
a
(P̂a)na , (21)

where P̂a is the probability of correctly assigning an example
belonging to class a and na is the true number of training ex-
amples belonging to class a. Notice that there is a single exact
configuration, so there is no need for a combinatorial factor. The
log of P becomes a sum over all classes:

log(P) = ∑
a

na log(P̂a). (22)

In the limit where na is a large number, na converges to NPa,
where N denotes the total number of training samples and Pa

4



Letters in High Energy Physics LHEP 3, 8, 2019

denotes the true probability of class a in the training set. The
log of the probability therefore converges towards

limN→∞ log(P) = N ∑
a

Palog(P̂a). (23)

Since all the probabilities are smaller than 1, the logs are nega-
tive, and it is more natural to insert a minus sign and define the
quantity:

L0 = − ∑
a

Pa log(P̂a). (24)

L0 is called the cross-entropy; it measures the distance be-
tween the desired probability distribution P and the predicted
distribution P̂ and is closely related to the Shannon entropy
−∑ P log(P). To construct a probability distribution from the
output vector Ŷa of the neural network, one postulates a Boltz-
mann like distribution, called the soft-max:

P̂a =
eŶa

∑b eŶb
⇒ ∑

a
P̂a = 1, (25)

where eŶ play the role of the familiar energy/temperature ra-
tios e−E/kT . As usual, the zero-energy level is arbitrary: the
probabilities P̂a are not modified if all Ŷ are shifted by the same
constant.

Despite the apparent complexity of these definitions, this
choice is magic. As can be verified by a direct calculation, the
gradient equation

dL = ∑
a
(P− P̂)a

∂Ŷa

∂Wi dWi (26)

is nearly identical to the Euclidean gradient equation (20), with
the simple replacement of the difference Y − Ŷ by P− P̂. This
extremely beautiful equation is one of the jewels of the back-
propagation algorithm.

3.2. The Bayesian integral
Using classical statistics, we have computed (21) the probabil-
ity of a perfect classification, given a model specified by a set of
parameters {W}. However, since the network is only trained on
a finite number of examples N, the parameters of the optimal
model {W0} cannot be known exactly, and the crucial question
is to estimate if the network will generalize well in future tests
or if it is overfitting the training set. As a proxy, we propose to
estimate the probability of a perfect classification if we consider
a family of models approximating the unknown optimum. Us-
ing the Bayes formula, this quantity can be expressed as the
product of P , which represent the conditional probability of a
the perfect classification given a choice of the {W}, by the prior
probability P(W) of the {W} configuration, summed over all
{W} configurations. This sum is expressed by the integral

ΓN =
∫

dW P(W) P(W) =

=
∫

dW P(W) elog(P(W)) =

=
∫

dW P(W) e−NL0(W), (27)

where L0 is the cross-entropy loss function (24). In the absence
of any prior knowledge, the sum over W is unbounded and the
Γ integral diverges.

3.3. Regularization
Facing a divergent integral is familiar in quantum field theory.
The canonical way to work around this difficulty may seem
artificial and counter-intuitive, but it is validated by innumer-
able accurate experimental predictions in statistical and parti-
cle physics. It involves two steps. In the first step, called regu-
larization, a regularizer λ is introduced such that all integrals
converge when λ is finite. In the second step, called renormal-
ization, one tries to construct quantities which converge to-
wards a finite value when the regularizer goes to infinity. Only
these finite limits are called the observables of the theory.

In the present situation, to insure the convergence of the
intermediate calculations, we limit the range of variation of the
parameters by supposing that the prior probability P(W) can
be represented by a Gaussian distribution with large variance
λ2 and k-dimensional volume 1:

Γ0 =
∫

dWP(W) =

=
∫

dW(
1√

2πλ2
)kexp(

k

∑
i=1
−

W2
i

2λ2 ) = 1, (28)

where k denotes the number of parameters, that is, the dimen-
sion of the W space. The Gaussian factor −(Wi)

2/2λ2 can be
written in a covariant way as −gij WiW j/2 where the metric
gij is 1/λ2 times the k-dimensional identity matrix δij. Its deter-
minant g is equal to the product λ−2k; therefore, we can rewrite
Γ0 in a covariant way as

Γ0 =
∫

dW
√

g (2π)−k/2exp(−gijWiW j/2). (29)

We recognize dW
√

g as the covariant Riemannian volume ele-
ment [5, 7, 8].

Let us now define the regularized loss function:

L1 = L0 + ∑
i

W2
i

2Nλ2 , (30)

where L0 is the cross-entropy defined in (24) and N is the num-
ber of examples. L1 tends to L0 when Nλ2 tends to infinity.
Substituting (29,30) into (27), we obtain

ΓN =
∫

dW
√

g (2π)−k/2 e−N L1(W), (31)

which is similar to the thermodynamics partition functions:∫
Dφ P(φ) e−(1/kT)

∫
dxH(φ(x)), (32)

where H is the Hamiltonian of the systems. We learn in this
way that 1/N plays the role of the absolute temperature kT and
is the natural parameter to use in a perturbation expansion.

It should be noticed that, in neural network applications
[2, 3, 6], a corrective factor W2/2α2 is often added to the loss
function to limit the range of the W parameters during learning.
We learned in (30) that the coefficient α2 should scale like Nλ2

and we realized that to be rigorous we need a compensating
term (2πα2/N)−k/2 in the measure (28).

5



Letters in High Energy Physics LHEP 3, 8, 2019

3.4. The large number hypothesis and the regularized ground
state

Let us now make the bold supposition that L1(W) has a single
global minimum at position W1. Call w = W−W1 the displace-
ment away from this extremum and develop L1 in a Taylor se-
ries to second order in w. The terms linear in w vanish, since we
are at an extremum and we can write

L1(W) = L1(W1) +
1
2 hijwiwj, (33)

where hij denotes the matrix of the second partial derivative:

hij =
∂2L0

∂wi ∂wj +
δij

Nλ2 . (34)

In geometry, hij is called the Hessian and characterizes the cur-
vature radii of the k-dimensional ellipsoid best contacting the
surface L1 in the vicinity of W1. In statistics, the Hessian of L0
is called the Fisher information matrix for a single data point
and the second order Taylor expansion of L1 can be seen as
an application of the law of large numbers because the vari-
ance of the Gaussian distribution exp(−N L1) (31) is of order
1/N which becomes very narrow when N is large. Using (29)
to evaluate the integral of the Gaussian exp(−N hijwiwj/2), we
obtain ∫

dwP(W1 + w)e−NL1(W1+w) =

= Nk/2
√

g
√

h
e−NL1(W1) = e−NL2(W1), (35)

where

L2(W1) = L1(W1) +
k
2

log(N)

N
+

1
N

log(

√
h
√

g
), (36)

where g is the metric of the vacuum (29), h is the determinant of
the regularized Hessian (34), W1 is the position of the minimum
of L1, and the factor (2π)k/2 present in (29) has canceled out.
The dependency in N is not fully explicit. First, the position
W1 of the minimum of NL1 is shifted relative to the position
W0 of the minimum of NL0 by the presence of the regularizing
term W2/2λ2 (30), contributing a correction of order 1/Nλ2.
Furthermore, the Hessian hij differs from the Fisher matrix. As-
suming an orthonormal frame, each eigenvalue (34) is shifted
from 1/σ2 to 1/σ2 + 1/Nλ2, where 1/σ2 is one of the eigenval-
ues of the Fisher matrix, contributing a second correction of or-
der 1/Nλ2. In a general frame, the correction is more complex,
but still of order 1/Nλ2, so the sum of the 2 corrections can be
written as L2(W1) = L2(W0) + c/Nλ2 and vanishes when N
or λ2 go to infinity. Notice, however, that L2(W1) (36) does not
correspond to an observable: it diverges when λ goes to infinity
since

√
g goes to zero and therefore log(

√
g) diverges.

3.5. Renormalization
To extract an observable from the regularized minimum
L2(W0), the term log(

√
g) must disappear. This happens if we

compute the difference between two models:

∆L2 = ∆L0 +
∆(W2

0 )

2Nλ2 +
∆k
2

log(N)

N
+

+
1
N

∆log(
√

h) +
∆c

Nλ2 . (37)

This quantity is renormalizable. When λ goes to infinity,
the regularizing term ∆ W2

0 /2Nλ2 and the correction factor
∆c/Nλ2 both tend to zero even if N is kept finite and we obtain
the finite observable

∆L2 = ∆L0 +
∆k
2

log(N)

N
+

1
N

log(
√

h1√
h2

). (38)

The advantage of the covariant
√

h notation is that it is valid in
any system of coordinates and we do not have to assume that
h1 and h2, the Hessian or Fisher Information matrices of the two
families of models, can be diagonalized at the same time.

The quantity (2N ∆L0 + ∆k log(N)) is called the Bayesian
Information Criterion (BIC) [19]. It quantifies a natural idea:
when the number N of training examples is large, we can train
a large network with a large number of parameters k, but if
N is limited, we cannot. The network would overfit the train-
ing set and not generalize properly to the test set. The BIC fac-
tor indicates that the sweet number of parameters scales like
2N/log(N).

When N is large, the third term in (38) is smaller. It is of or-
der 1/N and proportional to the log of the ratio of the volume
elements of the two families of models. This tells us that, for a
fixed value of the BIC, a family of models with a fancier depen-
dency on the choice of the parameters, yielding a larger volume
element, should be penalized relative to a simpler model. This
concept is well presented in [20].

In practical terms, when designing a neural network, we
have found an evaluation of the number N of examples needed
to train k parameters and we have shown that the L2 regularizer
should scale like 1/N.

It is also essential to understand that only the difference
∆L2 (38) between two families of model is well defined. In a
way, the renormalization effect ∆k log(N)/2N is analogous to
the Casimir effect, predicted in 1948 [21] and experimentally
verified in 1997 [22]. Two neighboring conducting plates attract
each other, even in the absence of electric charges, because the
pressure from the electromagnetic fluctuations of the vacuum
existing outside the capacitor are not fully compensated by
the fluctuations existing between the plates, since there is not
enough room to allow long wave-length vacuum fluctuations
in this narrow space. The effect is small but can be measured
[22]. In the same way, when we subtract the two regularized
Bayesian integrals (37), the correction term comes from the fact
that a model with k parameters cancels the long wavelength
fluctuations of these parameters, which are now squeezed in
a Gaussian of width σ/

√
N, whereas the remaining parame-

ters fluctuate up to the long wavelength λ. We cannot count
the total number of virtual parameters, but we can accurately
estimate the influence of the removal of ∆k large fluctuations in
the larger model. The metric term corresponds to the calcula-
tion of the Casimir effect when the parallel planar conductors
are replaced by a capacitor with a more complex shape.

It would also be the proper formalism to consider gauge
invariance with respect to groups of transformations like trans-
lations and rotations of training images. The equivalent of the
Yang-Mills differential forms would be introduced in the loss
function L, and since they are 1-forms, their pullback would
naturally trickle down into the descent equation.

6



Letters in High Energy Physics LHEP 3, 8, 2019

3.6. Looping the loop: the cogradient analytic descent equation
Training by gradient descent and Bayesian inference are usu-
ally considered as distinct. However, the metric in parameter
space, equations (7) and (34), provides an operational unifica-
tion. We illustrate this in the simple case of a quadratic potential
where the unified formalism provides a straightforward con-
struction of the optimal single-step cogradient descent.

The Bayesian formalism shows that, to second order, the
natural metric of the W space is the Hessian of the loss func-
tion (34). If we reinject this choice in the covariant definition
of the gradient descent (7), we obtain the so-called cogradient
descent. Assume that we are already in the vicinity of the abso-
lute minimum W0, and that the loss function is truly quadratic
in the w = W −W0

L =
1
2

aijwiwj. (39)

The Hessian hij, that is, the second derivative of L, is equal to
the matrix aij, and since hij is our choice for the metric gij, we
have

∂L
∂wi = aijwj = hijwj = gijwj. (40)

The upper index metric gij is the inverse lower index metric gij
(9); hence, (7) simplifies to

dwk = −η dt gki ∂L
∂wi = −η dt gki gij wj = −(η dt)wk. (41)

Using a finite learning step (η δt) = 1 (18), w jumps immedi-
ately to the true minimum

wk + δwk = 0. (42)

By reasoning on the differential geometric structure of the prob-
lem and on Bayesian probabilities, we have recovered the exact
single step solution of this simple quadratic problem.

In practice, there are two limitations to this analytic
method. The most obvious one is that we cannot easily obtain
an accurate numerical estimation of the Hessian hij, and even if
we could, computing its inverse hij would be numerically un-
stable when the number of parameters, that is, the dimension
of the matrix h, is large. A second limitation is that the single-
step convergence does not depend on the sign of the second
derivatives, more precisely on the sign of the eigenvalues of h.
δwk can be oriented uphill as well as downhill towards a local
extremum. The system would therefore be trapped by the (very
numerous) saddle points. Thus, despite its beauty, the cogradi-
ent method cannot be applied as is to deep learning. Neverthe-
less, many gradient descent methods attempt to evaluate the
Hessian in the direction of the propagation, that is, the second
difference w(t) − 2w(t − 1) + w(t − 2), in order to adjust dy-
namically the learning rate η.

4. CONCLUSION
The purpose of this note was to clarify the training paradigm of
a neural network using the standard concepts and notations of
differential geometry and classical mechanics, a point of view
not emphasized in the recent book of Goodfellow, Bengio, and
Courville [2], or in the book of Géron [3], or in the lectures of Ng
[6]. We have shown that the neural network steepest descent
equation implements Fermat’s principle of least action using

the cotangent pullback of the differential of the loss function.
Since, as the name implies, the cotangent pullback of a differ-
ential form uses the functions describing each layer in reverse
order, the back-propagation paradigm of the neural network is
easily understood. We have also shown that to be covariant,
the equations automatically imply a layer metric which is in-
strumental in the pretraining of neural networks and opens the
possibility of working with all kinds of numbers. In particu-
lar, if we use complex numbers, the metric introduces an other-
wise mysterious complex conjugation in the back-propagation
equation. The mechanical interpretation of the loss function as
the potential energy of the network in parameter space helps to
understand why the ’momentum’ method describes a Newto-
nian system with less friction than the simple gradient descent
equation and clarifies the Brownian motion aspects of the cur-
rent best optimizer, Adam.

We also pointed out that the linearization procedure, im-
plicit in any differential variation, avoids the calculation of in-
verse matrices, greatly facilitating the implementation of the
neural network algorithms, but that the finite steps δt used on
the computer will break the linearization logic when δt is too
large because some quadratic terms proportional to δt2 may
become larger than some terms linear in δt. Finally, we re-
called the beautiful interplay between the Boltzmann distribu-
tion exp(−E/kT) and the choice of the cross-entropy loss func-
tion −P log(P̂) leading to a gradient directly proportional to
P̂− P.

We then showed that the Bayesian evaluation of the ac-
curacy of a neural network is given by an integral similar to
the partition function of thermodynamics. This Bayesian inte-
gral diverges, but it can be regularized and the relative accu-
racy of two designs is renormalizable, linking the number N
of training examples to the number k of adjustable parame-
ters of the network k ∼ 2N/log(N). It also follows that the
most natural choice for the metric which appears in the gra-
dient descent equation is the Hessian of the cross-entropy loss
function, called in statistics the Fisher Information matrix, and
that using this metric, we recover the optimal cogradient de-
scent formalism. Our introduction of the metric in paramater
space (7) has provided a unification of training by gradient de-
scent and Bayesian inference which are usually considered as
distinct problems.

We hope that this formal presentation of the differential ge-
ometry of the neural networks will help some physicists to dive
into deep learning and, reciprocally, that the specialists of deep
learning with a background in biology or computer science will
better appreciate the close interconnection of their subject with
the very rich literature on classical and quantum field theory,
in the hope that some of the latter techniques are still awaiting
to be transposed into Deep Learning.

ACKNOWLEDGMENTS
We would like to thank the referee who prompted the analy-
sis of the Bayesian formalism, Danielle Thierry-Mieg and Do-
minik Miketa for critical suggestions, Mehmet Kayaalp and
John Spouge for insightful discussions, and David Landsman
for actively promoting research on neural networks. This re-
search was supported by the Intramural Research Program of
the National Library of Medicine, National Institute of Health.

7



Letters in High Energy Physics LHEP 3, 8, 2019

Appendix A. APPENDIX: TWO SIMPLE
ANALYTIC APPLICATIONS

When we look at the computer programs used to train the neu-
ral networks, it may seem that they work because they use suc-
cessive discrete training calculations. We show here that the
neural network approach to equilibrium follows normal differ-
ential equations which, in the simplest cases, can be integrated
analytically using the usual rules of calculus.

The first example is often used in neural network as a reg-
ulator. It corresponds to a mass term in classical mechanics. To
ensure the existence of a single global minimum, the loss func-
tion should be chosen to be convex and bounded from below.
The simplest such function is the parabola

L(W) =
1
2

W2. (A.1)

We have
dL =

∂L
∂W

dW = W dW, (A.2)

and hence the neural network differential equation can be inte-
grated analytically:

dW = −W ηdt,
dW
W = d(Log(W)) = −ηdt,

W(t) = W0e−ηt,
L(t) = L0e−2ηt.

(A.3)

The parameter of the net moves continuously down the
parabola, and the loss function decreases to zero in an expo-
nential way.

The next simplest case is the quartic equation, which illus-
trates the fact that a softer loss function slows down the ap-
proach to equilibrium. Let us have

L(t) = α
8 W4(t),

dL = α
2 W3(t)dt.

(A.4)

The neural network differential equation becomes

dW = − α
2 W3 η dt,

−2 dW
W3 = d 1

W2 = αηdt,
1

W2 − 1
W2

0
= αηt,

W(t) = W0√
1+αηW2

0 t
,

L(t) = L0
(1+αηW2

0 t)2 ,

(A.5)

where W0 is the arbitrary initial value of the parameter. As ex-
pected, the approach to equilibrium in t−2 is slower than that
in the previous case, which behaved as e−t.

References
[1] Yoshua Bengio, Yann LeCun and Geoffrey Hinton. Deep

Learning. Nature, 521, 436-438, 2015.
[2] Ian Goodfellow, Yoshua Bengio and Aaron Courville.

Deep Learning. MIT Press, 2016.
[3] Aurélien Géron. Hands-On Machine Learning with Scikit-

Learn and TensorFlow. O’Reilly, 2017.
[4] David E. Rumelhart, Geoffrey E. Hinton and Ronald J.

Williams. Learning representations by back-propagating
errors. Nature. 323 (6088): 533 – 536, 1986.

[5] Lev Landau and Evgeny Lifshitz. Course of Theoretical
Physics, volume 1: Mechanics. Pergamon Press Ltd. Ox-
ford/London/Paris, 1960.

[6] Andrew Ng. Coursera lectures on deep learning.
https://www.coursera.org/learn/deep-neural-network,
2017.

[7] Charles W. Misner, Kip S. Thorne and John Archibald
Wheeler. Gravitation. W H Freeman and Company, 2 edi-
tion, 1973.

[8] Michael Spivak. A Comprehensive Introduction to Differ-
ential Geometry. Publish or Perish, INC, Houston, Texas,
1999.

[9] Patrick Virtue and Stella X. Yu. Better than Real,
Complex-valued neural nets for MRI fingerprinting.
arXiv:1707.00070v1, 2017.

[10] Andy Sarroff. Complex neural networks for audio.
https://andysarroff.com/papers/sarroff2018a.pdf, 2018.

[11] Ron Levie, Federico Monti, Xavier Bresson and Michael
M. Bronstein. CayleyNets: Graph Convolutional Neu-
ral Networks with Complex Rational Spectral Filters.
arXiv:1705.07664, 2017.

[12] Carlo Rovelli. Aristotle’s Physics: a Physicist’s Look.
arXiv:1312.4057 [physics.hist-ph], 2013.

[13] B.T. Polyak. Some methods of speeding up the conver-
gence of iteration methods. USSR Computational Math-
ematics and Mathematical Physics,4(5):1–17, 1964.

[14] Tijmen Tieleman and Geoffrey Hinton. Divide the gradi-
ent by a running average of its recent magnitude. Lecture
6.5-rmsprop: COURSERA: Neural Networks for Machine
Learning, 2012.

[15] Kingma D. and Ba J.. A method for stochastic optimiza-
tion. arXiv:1412.6980, 2014.

[16] Chen Xing, Devansh Arpit, Christos Tsirigotis and Yoshua
Bengio. A walk with SGD. arXiv:1802.08770, 2018.

[17] Jinghui Chen and Quanquan Gu. Closing the Generaliza-
tion Gap of Adaptive Gradient Methods in Training Deep
Neural Networks. arXiv:1806.06763, 2018.

[18] Felix Draxler, Kambis Veschgini, Manfred Salmhofera and
Fred A. Hamprecht. Essentially No Barriers in Neural Net-
work Energy Landscape. arXiv:1803.00885, 2018.

[19] Gideon Schwarz. Estimating the dimension of a model.
The Annals of Statistics 6:2,461-464, 1978.

[20] Jae Myung, Vijay Balasubramanian, and Mark A. Pitt.
Counting probability distributions: Differential geome-
try and model selection. PNAS 97, 21, 11170-11175, 2000.
https://doi.org/10.1073/pnas.170283897

[21] H.B.G. Casimir. On the Attraction Between Two Perfectly
Conducting Plates. Proc. Kon. Ned. Akad. Wetensch. B51,
793, 1948.

[22] S. Lamoreaux, Demonstration of the Casimir Force in
the 0.6 to 6 micrometer Range Physical Review Letters,
78(1),5-8, 1997.

8


