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Abstract
The status of the experimental and theoretical investigations on the polarizabilities of the nucleon is pre-
sented. This includes a confirmation of the validity of the previously introduced recommended values of the
polarizabilities [1, 2]. It is shown that the most reliable approach to a prediction of the polarizabilities is
obtained from the nonsubtracted dispersion theory, where the appropriate degrees of freedom taken from
other precise experimental data are taken into account. The present values of the recommended polarizabil-
ities are αp = 12.0 ± 0.5, βp = 1.9 ∓ 0.5, αn = 12.6 ± 1.2, and βn = 2.6 ∓ 1.2 in units of 10−4fm3 and

γ
(p)
π = −36.4± 1.5, γ

(n)
π = +58.6± 4.0, γ

(p)
0 = −0.58± 0.20, and γ

(n)
0 = +0.38± 0.22 in units of 10−4fm4.
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1. INTRODUCTION
The polarizabilities belong to the fundamental structure con-
stants of the nucleon, in addition to the mass, the electric
charge, the spin, and the magnetic moment. The proposal to
measure the polarizabilities dates back to the 1950s. Two exper-
imental options were considered: (i) Compton scattering by the
proton and (ii) the scattering of slow neutrons in the Coulomb
field of heavy nuclei. The idea was that the nucleon with its
“pion cloud”, i.e., pions being part of the constituent-quark
structure, obtains an electric dipole moment under the action
of an electric field vector which is proportional to the electric
polarizability. After the discovery of the photoexcitation of the
∆ resonance, it became obvious that the nucleon also should
have a strong paramagnetic polarizability, because of a virtual
spin-flip transition of one of the constituent quarks due to the
magnetic field vector provided by a real photon in a Compton
scattering experiment. However, experiments showed that this
expected strong paramagnetism is not observed. Apparently a
strong diamagnetism exists which compensates the expected
strong paramagnetism. Though this explanation is straightfor-
ward, how it may be understood in terms of the structure of
the nucleon remained unknown [1]. A solution of this problem
was found later when it was shown that the diamagnetism is a
property of the structure of the constituent quarks [3, 4, 5, 6, 7].
In retrospect, this is not a surprise, because constituent quarks
generate their mass mainly through the interaction with the
QCD vacuum via the exchange of a σ meson. This mecha-
nism is predicted by the linear σ model on the quark level
(QLLσM) [2] which also predicts the mass of the σ meson to
be mσ=666 MeV. The σ meson has the capability of interacting
with two photons being in parallel planes of linear polariza-
tion. We will show in the following that the σ meson as part of
the constituent-quark structure, therefore, provides the largest
part of the electric polarizability and the total diamagnetic po-
larizability.

2. DEFINITION OF ELECTROMAGNETIC
POLARIZABILITIES

A nucleon in an electric field E and a magnetic field H obtains
an electric dipole moment d and magnetic dipole moment m

given by [1]

d = 4π α E, (1)

m = 4π β H, (2)

in a unit system where the electric charge e is given by e2/4π =
αem = 1/137.04. The proportionality constants α and β are de-
noted as the electric and magnetic polarizabilities, respectively.
These polarizabilities may be understood as a measure of the
response of the nucleon structure to the fields provided by a
real or virtual photon, and it is evident that we need a second
photon to measure the polarizabilities. This may be expressed
through the relations

δW = −1
2

4π α E2 − 1
2

4π β H2, (3)

where δW is the energy change in the electromagnetic field due
to the presence of the nucleon in the field. The definition im-
plies that the polarizabilities are measured in units of a volume,
i.e., in units of fm3 (1 fm=10−15 m).

3. MODES OF TWO-PHOTON REACTIONS
AND EXPERIMENTAL METHODS

Static electric fields of sufficient strength are provided by the
Coulomb field of heavy nuclei. Therefore, the electric polariz-
ability of the neutron can be measured by scattering slow neu-
trons in the electric field E of a Pb nucleus. The neutron has no
electric charge. Therefore, two simultaneously interacting elec-
tric field vectors (two virtual photons) are required to produce a
deflection of the neutron. Then, the electric polarizability can be
obtained from the differential cross section measured at a small
deflection angle. A further possibility is provided by Comp-
ton scattering of real photons by the nucleon, where during the
scattering process two electric and two magnetic field vectors
simultaneously interact with the nucleon.

In the following, we discuss the experimental options we
have to measure the polarizabilities of the nucleon. As outlined
above, two photons are needed which simultaneously interact
with the electrically charged parts of the nucleon. These pho-
tons may be in parallel or perpendicular planes of linear polar-
ization and in these two modes measure the polarizabilities α,
β, or spin polarizabilities γ, respectively. The spin polarizability
is nonzero only for particles having a spin.
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In total, the experimental options discussed above provide
us with 6 combinations of two electric and magnetic field vec-
tors. These are described in the following.
• For photons in parallel planes of linear polarization, we

have
(case 1) α : E ↑↑ E′,

(case 2) β : H→→ H′,

(case 3) − β : H→← H′.

(4)

• For photons in perpendicular planes of linear polariza-
tion, we have

(case 4) γE : E ↑→ E′,

(case 5) γH : H→↓ H′,

(case 6) − γH : H→↑ H′.

(5)

Case (1) corresponds to the measurement of the electric polar-
izability α via two parallel electric field vectors E and E’. These
parallel electric field vectors may be provided as longitudinal
photons either by the Coulomb field of a heavy nucleus or
by Compton scattering in the forward direction or by reflect-
ing the photon by 180◦. Real photons simultaneously provide
transvers electric E and magnetic H field vectors. This means
that in a Compton scattering experiment linear combinations of
electric and magnetic polarizabilities and linear combinations
of electric and magnetic spin polarizabilities are measured. The
combination of case (1) and case (2) measures α + β and is ob-
served in forward-direction Compton scattering. The combina-
tion of case (1) and case (3) measures α − β and is observed
in backward-direction Compton scattering.The combination of
case (4) and case (5) measures γ0 ≡ γE + γH and is observed
in forward-direction Compton scattering. The combination of
case (4) and case (6) measures γπ ≡ γE− γH and is observed in
backward-direction Compton scattering. Compton scattering
experiments exactly in the forward direction and exactly in the
backward direction are not possible from a technical point of
view. Therefore, the respective quantities have to be extracted
from Compton scattering experiments carried out at interme-
diate angles.

4. EXPERIMENTAL RESULTS
The experimental polarizabilities of the proton (p) and the neu-
tron (n) may be summarized as follows:

αp = 12.0± 0.5, βp = 1.9∓ 0.5,

αn = 12.6± 1.2, βn = 2.6∓ 1.2,
(6)

in units of 10−4 fm3.

The experimental spin polarizabilities of the proton (p) and
neutron (n) are

γ
(p)
π = −36.4± 1.5, γ

(n)
π = 58.6± 4.0, (7)

in units of 10−4 fm4.
The experimental polarizabilities of the proton have been

obtained as an average from a larger number of Compton scat-
tering experiments [1]. In addition, a recent reanalysis of these
data leading to αp = 12.03± 0.72 has been taken into account
[8]. The experimental electric polarizability of the neutron is
the average of an experiment on electromagnetic scattering of

a neutron in the Coulomb field of a Pb nucleus and a Comp-
ton scattering experiment on a quasifree neutron, i.e., a neutron
separated from a deuteron during the scattering process. The
two results are [1] αn = 12.6± 2.5 from electromagnetic scatter-
ing of a slow neutron in the electric field of a Pb nucleus, and
αn = 12.5± 2.3 from quasifree Compton scattering by a neu-
tron initially bound in the deuteron. In addition, the result ob-
tained from the experimental electric polarizability of the pro-
ton αp and the predicted ratio αn/αp leading to αn = 12.7± 0.9
has been taken into account [9]. The average given above is ob-
tained from these three numbers.

Furthermore, there have been experiments at the Univer-
sity of Lund (Sweden), where the electric polarizability of
the neutron is determined through Compton scattering by the
deuteron. The results obtained in this way are model depen-
dent.

5. CALCULATION OF POLARIZABILITIES
Recently, great progress has been made in disentangling the to-
tal photoabsorption cross section into parts separated by the
spin, the isospin, and the parity of the intermediate state [10,
11], using the meson photoproduction amplitudes of Drechsel
et al. [12]. The spin of the intermediate state may be s = 1/2
or s = 3/2 depending on the spin directions of the photon
and the nucleon in the initial state. The parity change during
the transition from the ground state to the intermediate state is
∆P = yes for the multipoles E1, M2, · · · and ∆P = no for the
multipoles M1, E2, · · · . Calculating the respective partial cross
sections from photomeson data, the following sum rules can be
evaluated:

α + β =
1

2π2

∫ ∞

ω0

σtot(ω)

ω2 dω, (8)

α− β =
1

2π2

∫ ∞

ω0

√
1 +

2ω

m
[σ(ω, E1, M2, · · · )

− σ(ω, M1, E2, · · · )] dω

ω2 + (α− β)t , (9)

γ0 = − 1
4π2

∫ ∞

ω0

σ3/2(ω)− σ1/2(ω)

ω3 dω, (10)

γπ =
1

4π2

∫ ∞

ω0

√
1 +

2ω

m

(
1 +

ω

m

)
·∑

n
Pn[σ

n
3/2(ω)− σn

1/2(ω)]
dω

ω3 + γt
π , (11)

Pn = −1 for E1, M2, · · · multipoles,

Pn = +1 for M1, E2, · · ·multipoles,
(12)

(α− β)t =
1

2π

[
gσNN M(σ→ γγ)

m2
σ

+
g f0 NN M( f0 → γγ)

m2
f0

+
ga0 NN M(a0 → γγ)

m2
a0

τ3

]
, (13)
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γt
π =

1
2πm

[
gπNN M(π0 → γγ)

m2
π0

τ3

+
gηNN M( f0 → γγ)

m2
η

+
gη′NN M(η′ → γγ)

m2
η′

]
, (14)

where ω is the photon energy in the lab frame. The sum rules
for α + β and γ0 depend on nucleon-structure degrees of free-
dom only, whereas the sum rules for α− β and γπ have to be
supplemented by the quantities (α− β)t and γt

π , respectively.
These are t-channel contributions which may be interpreted as
contributions of scalar and pseudoscalar mesons being parts of
the constituent-quark structure. The sum rule for α+ β depends
on the total photoabsorption cross section and, therefore, does
not require a disentangling with respect to quantum numbers.
The sum rule for α − β requires a disentangling with respect
to the parity change of the transition. The sum rule for γ0 re-
quires a disentangling with respect to the spin of the interme-
diate state. The sum rule for γπ requires a disentangling with
respect to spin and parity change.

The t-channel contributions depend on those scalar and
pseudoscalar mesons which (i) are part of the structure of the
constituent quarks and (ii) are capable of coupling to two pho-
tons. These are the mesons σ(600), f0(980), and a0(980) in case
of (α− β)t and the mesons π0, η, and η′ in case of γt

π . The con-
tributions are dominated by the σ and the π0 mesons whereas
the other mesons only lead to small corrections.

6. RESULTS OF CALCULATION
The results of the calculation are summarized in the following
eight equations [10, 11]:

αp = +4.5 (nucleon) + 7.6 (const. quark) = +12.1, (15)

βp = +9.4 (nucleon)− 7.6 (const. quark) = +1.8, (16)

αn = +5.1 (nucleon) + 7.6 (const. quark) = +12.7, (17)

βn = +10.1 (nucleon)− 7.6 (const. quark) = +2.5, (18)

in units of 10−4fm3,

γ
(p)
0 = −0.58± 0.20 (nucleon), (19)

γ
(n)
0 = +0.38± 0.22 (nucleon), (20)

γ
(p)
π = +8.5 (nucleon)− 45.1 (const. quark) = −36.6, (21)

γ
(n)
π = +10.0 (nucleon) + 48.3 (const. quark) = +58.3, (22)

in units of 10−4fm4.

The electric polarizabilities αp and αn are dominated by a
smaller component due to the pion cloud (nucleon) and a larger
component due to the σ meson as part of the constituent-quark
structure (const. quark). The magnetic polarizabilities βp and
βn have a large paramagnetic part due to the spin structure of
the nucleon (nucleon) and an only slightly smaller diamagnetic
part due to the σ meson as part of the constituent-quark struc-
ture (const. quark). The contributions of the σ meson may be
supplemented by small corrections due to f0(980) and a0(980)
mesons [6, 7, 10, 11]. These contributions are disregarded here
because of their smallness and uncertainties [9].

The spin polarizabilities γ
(p)
0 and γ

(n)
0 are dominated by de-

structively interfering components from the pion cloud and the
spin structure of the nucleon. The different signs obtained for
the proton and the neutron are due to this destructive interfer-

ence [11]. The spin polarizabilities γ
(p)
π and γ

(n)
π have a minor

component due to the structure of the nucleon (nucleon) and a
major component due to the pseudoscalar mesons π0, η, and
η′ as structure components of the constituent quarks (const.
quark).

Differing from other theoretical approaches, the presently
applied dispersion theory is based on fundamental relations
only. The precision of the results of the present calculation only
depends on the precision of the photomeson data used as an in-
put. A consideration shows that the errors of the results given
in Equations (15)-(22) are of the same order of magnitude as or
somewhat smaller than those of the corresponding experimen-
tal results.

7. DISCUSSION
In a first approach, the electric polarizabilities of proton and
neutron have been related to the dipole moment of the transi-
tions

p→ n + π+ and n→ p + π−. (23)

Since the n + π+ dipole moment is smaller than the p + π−

dipole moment, we expect that the related contributions to the
electric polarizabilities in Equations (15) and (17) are smaller
for the proton than those for the neutron. This is in agreement
with the observation where αp(nucleon) =+4.5 (Eq. 15) and
αn(nucleon)=+5.1 (Eq. 17) are given. The difference between
the two numbers, namely, αn(nucleon)-αp(nucleon) = 0.6, pre-
cisely corresponds to the difference between the electric polar-
izabilities of neutron and proton, as seen in Equations (15) and
(17). The reason for this agreement is that the constituent-quark
parts of the two polarizabilities are the same.

The quantity 7.6 (const. quark) entering into Equations (15)
to (18) corresponds to the σ meson as part of the constituent-
quark structure. This quantity has a positive sign when being
part of the electric polarizabilities or a negative sign when rep-
resenting the diamagnetic polarizabilities. The investigation of
these quantities has been carried out previously in a number
of publications [13, 14, 15, 16, 17]. All the relevant information
may be found in these publications.

The meaning of the spinpolizabilities in relation to the
structure of the nucleon is less straightforward than that of the
polarizabilities.

In addition to dispersion theory, chiral perturbation theory
plays a prominent role in the current investigations of nucleon
Compton scattering and polarizabilities. Therefore, it is advis-
able to carry out a comparison of the two approaches. This is
done in Table 1.

One essential difference between the two versions is the
missing t-channel contribution in the BChPT version. The t-
channel provides the total diamagnetism and the largest part
of the electric polarizability. Another essential difference is con-
tained in the Nπ component of the electric polarizability. The
procedure used in the BChPT method corresponds to the Born
approximation of the DR method, leading to an error in the
BChPT method of more than a factor of 2.
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αp(BChPT) αp(DR) βp(BChPT) βp(DR)
Nπ +6.9 +3.09 -1.8 +0.48
∆π +4.4 +1.4 -1.4 +0.4

∆-pole -0.1 -0.01 +7.1 +8.56
t-channel – +7.6 – -7.6

Total +11.2 +12.1 +3.9 +1.8

TABLE 1: Predicted electric αp and magnetic βp polarizabilities
for the proton, where BChPT [18] denotes covariant chiral per-
turbation theory and DR dispersion theory
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