
Letters in High Energy Physics LHEP 01, 21, 2018

Quasi-Newtonian Cosmological Models in Scalar-Tensor Theories
of Gravity

Heba Sami,1 , and Amare Abebe,2
1Center for Space Research, North-West University, South Africa

2Department of Physics, North-West University, South Africa
Received: 19 February 2018, Accepted: 3 May 2018, Published: 12 May 2018

Abstract
In this contribution, classes of shear-free cosmological dust models with irrotational fluid flows will be
investigated in the context of scalar-tensor theories of gravity. In particular, the integrability conditions
describing a consistent evolution of the linearised field equations of quasi-Newtonian universes are pre-
sented. We also derive the covariant density and velocity propagation equations of such models and anal-
yse the corresponding solutions to these perturbation equations.
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Although general relativity theory (GR) is a generalization

of Newtonian Gravity in the presence of strong gravitational
fields, it has no properly defined Newtonian limit on cosmo-
logical scales. Newtonian cosmologies are an extension of the
Newtonian theory of gravity and are usually referred to as
quasi-Newtonian, rather than strictly Newtonian formulations
[1, 2, 3]. The importance of investigating the Newtonian limit
for general relativity on cosmological contexts is that, there
is a viewpoint that cosmological studies can be done using
Newtonian physics, with the relativistic theory only needed
for examination of some observational relations [1]. General
relativistic quasi-Newtonian cosmologies have been studied in
the context of large-scale structure formation and non-linear
gravitational collapse in the late-time universe. This despite
the general covariant inconsistency of these cosmological mod-
els except in some special cases such as the spatially homoge-
neous and isotropic, spherically symmetric, expanding (FLRW)
spacetimes. Higher-order or modified gravitational theories of
gravity such as f (R) theories of gravity have been shown to ex-
hibit more shared properties with Newtonian gravitation than
does general relativity [4, 5]. In [1], a covariant approach to cold
matter universes in quasi-Newtonian cosmologies has been de-
veloped and it has been applied and extended in [2] in order to
derive and solve the equations governing density and velocity
perturbations. This approach revealed the existence of integra-
bility conditions in GR. In this work, we derive the evolution
of the velocity and density perturbations in the comoving (La-
grangian) and quasi-Newtonian frames. We investigate the ex-
istence of integrability conditions of a class of irrotational and
shear-free perfect fluid cosmological models in the context of
scalar-tensor gravity. Such work has been done in the context
of f (R) gravity [6], where some models of f (R) gravity have
been shown to exhibit Newtonian behaviour in the shear-free
regime.

The so-called f (R) theories of gravity are among the sim-
plest modification of Einstein’s GR. These theories come about
by a straightforward generalisation of the Lagrangian in the
Einstein-Hilbert action [7, 8] as

S f (R) =
1
2

∫
d4x
√
−g
(

f (R) + 2Lm

)
, (1)
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where Lm is the matter Lagrangian and g is the determinant
of the metric tensor gµν. Another modified theory of gravity
is the scalar-tensor theory of gravitation. This is a broad class
of gravitational models that tries to explain the gravitational
interaction through both a scalar field and a tensor field. A sub-
class of this theory, known as the action the Brans-Dicke (BD)
theory, has an action of the form

SBD =
1
2

∫
d4x
√
−g
[

φR− ω

φ
∇µφ∇µφ + 2Lm

]
, (2)

where φ is the scalar field and ω is a coupling constant con-
sidered to be independent of the scalar field φ. An interesting
aspect of f (R) theories of gravity is their proven equivalence
with the BD theory of gravity [8, 9] with ω = 0. If we define the
f (R) extra degree of freedom 2 as

φ ≡ f ′ − 1 , (3)

then the actions 1 and 2 become dynamically equivalent. In
a FLRW background universe, the resulting non-trivial field
equations lead to the following Raychaudhuri and Friedmann
equations that govern the expansion history of the Universe
[10]:

Θ̇ +
1
3

Θ2 = − 1
2(φ + 1)

[
µm + 3pm + f − R(φ + 1) + Θφ̇ (4)

+3φ
′′
( φ̇2

φ′2

)
+ 3φ̈− 3

φ̇φ̇
′

φ
′

]
,

Θ2 =
3

(φ + 1)

[
µm +

R(φ + 1)− f
2

+ Θφ̇
]

, (5)

where Θ ≡ 3H = 3 ȧ
a , H being the Hubble parameter, a(t) is

the scale factor, µm and pm are the energy density and isotropic
pressure of standard matter, respectively.

The linearised thermodynamic quantities for the scalar
field are the energy density µφ, the pressure pφ, the energy flux

2 f ′ , f ′′ , etc. are the first, second, etc. derivatives of f w.r.t. the Ricci scalar R.
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qφ
a and the anisotropic pressure π

φ
ab, respectively given by

µφ =
1

(φ + 1)

[1
2

(
R(φ + 1)− f

)
−Θφ̇ + ∇̃2φ

]
, (6)

pφ =
1

(φ + 1)

[1
2

(
f − R(φ + 1)

)
+ φ̈− φ̇φ̇

′

φ
′ (7)

+
φ
′′
φ̇2

φ
′2 +

2
3
(Θφ̇− ∇̃2φ)

]
,

qφ
a = − 1

(φ + 1)

[ φ̇
′

φ
′ −

1
3

Θ
]
∇̃aφ , (8)

π
φ
ab =

φ
′

(φ + 1)

[
∇̃〈a∇̃b〉R− σab

( φ̇

φ
′

)]
. (9)

The total (effective) energy density, isotropic pressure, anisotropic
pressure and heat flux of standard matter and scalar field com-
bination are given by

µ ≡ µm

(φ + 1)
+ µφ, p ≡ pm

(φ + 1)
+ pφ ,

πab ≡
πm

ab
(φ + 1)

+ π
φ
ab, qa ≡

qm
a

(φ + 1)
+ qφ

a .

Given a choice of 4-velocity field ua in the Ehlers-Ellis covari-
ant approach [11, 12], the dynamics, kinematics and gravito-
electromagnetics of the FLRW background is characterised re-
spectively by the equations [2, 3]

∇̃aµm = 0 = ∇̃a pm, qm
a = 0 = πm

ab (10)

∇̃aΘ = 0, Aa = 0 = ωa, σab = 0 , (11)

Eab = 0 = Hab , (12)

where Θ, Aa, ωa, and σab are the expansion, acceleration, vortic-
ity and the shear terms. Eab and Hab are the “gravito-electric”
and “gravito-magnetic” components of the Weyl tensor Cabcd
defined from the Riemann tensor Ra

bcd as

Cab
cd = Rab

cd − 2g[a [cRb]
d] +

R
3

g[a [cgb]
d] , (13)

Eab ≡ Cagbhuguh, Hab ≡
1
2

ηae
ghCghbdueud . (14)

The covariant linearised evolution equations in the general case
are given by [2, 3]

Θ̇ = −1
3

Θ2 − 1
2
(µ + 3p) + ∇̃a Aa , (15)

µ̇m = −µmΘ− ∇̃aqm
a , (16)

q̇m
a = −4

3
Θqm

a − µm Aa , (17)

ω̇〈a〉 = −2
3

Θωa − 1
2

ηabc∇̃b Ac , (18)

σ̇ab = −2
3

Θσab − Eab +
1
2

πab + ∇̃〈a Ab〉 , (19)

Ė〈ab〉 = ηcd〈a∇̃c H〉bd −ΘEab − 1
2

π̇ab − 1
2
∇̃〈aqb〉 (20)

−1
6

Θπab ,

Ḣ〈ab〉 = −ΘHab − ηcd〈a∇̃cE〉bd +
1
2

ηcd〈a∇̃cπ
〉b
d , (21)

and the linearised constraint equations are given by

Cab
0 ≡ Eab − ∇̃〈a Ab〉 − 1

2
πab = 0 , (22)

Ca
1 ≡ ∇̃bσab − ηabc∇̃bωc −

2
3
∇̃aΘ + qa = 0 , (23)

C2 ≡ ∇̃aωa = 0 , (24)

Cab
3 ≡ ηcd(∇̃cσd

b) + ∇̃
〈aωb〉 − Hab = 0 , (25)

Ca
5 ≡ ∇̃bEab +

1
2
∇̃bπab − 1

3
∇̃aη +

1
3

Θqa = 0 , (26)

Ca
b ≡ ∇̃b Hab + (µ + p)ωa +

1
2

ηabc∇̃bqa = 0 . (27)

If a comoving 4-velocity ũa is chosen such that, in the linearised
form

ũa = ua + va, vaua = 0, vava << 1 , (28)

the dynamics, kinematics and gravito-electromagnetics quanti-
ties 10-12 undergo transformation.
Here va is the relative velocity of the comoving frame with re-
spect to the observers in the quasi-Newtonian frame, defined
such that it vanishes in the background. In other words, it is a
non-relativistic peculiar velocity. Quasi-Newtonian cosmologi-
cal models are irrotational, shear-free dust spacetimes charac-
terised by [2, 3]:

pm = 0 , qm
a = µmva , πm

ab = 0 , ωa = 0 , σab = 0 . (29)

The gravito-magnetic constraint Eq. 25 and the shear-free and
irrotational condition 29 show that the gravito-magnetic com-
ponent of the Weyl tensor automatically vanishes:

Hab = 0 . (30)

The vanishing of this quantity implies no gravitational radia-
tion in quasi-Newtonian cosmologies, and Eq. 27 together with
Eq. 29 show that qm

a is irrotational and thus so is va:

ηabc∇̃bqa = 0 = ηabc∇̃bva . (31)

Since the vorticity vanishes, there exists a velocity potential
such that

va = ∇̃aΦ . (32)

A constraint equation CA = 0 is said to evolve consistently
with the evolution equations[2] if

ĊA = FA
B CB + GABa∇̃aCB , (33)

where F and G are quantities that depend on the kinematics,
dynamics and gravito-electromagnetics quantities but not their
derivatives. It has been shown [13] that the non-linear models
are generally inconsistent if the silent constraint 30 is imposed,
but that the linear models are consistent [2, 3]. Thus, a simple
approach to the integrability conditions for quasi-Newtonian
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cosmologies follows from showing that these models are in fact
a sub-class of the linearised silent models. This can happen by
using the transformation between the quasi-Newtonian and co-
moving frames.
The transformed linearised kinematics, dynamics and gravito-
electromagnetic quantities from the quasi-Newtonian frame to
the comoving frame are given as follows:

Θ̃ = Θ + ∇̃ava , (34)

Ãa = Aa + v̇a +
1
3

Θva , (35)

ω̃a = ωa −
1
2

ηabc∇̃bvc , (36)

σ̃ab = σab + ∇̃〈avb〉 , (37)

µ̃ = µ, p̃ = p, π̃ab = πab, q̃φ
a = qφ

a (38)

q̃m
a = qm

a − (µm + pm)va , (39)

Ẽab = Eab, H̃ab = Hab . (40)

It follows from the above transformation equations that

p̃m = 0 , q̃m
a = 0 = Ãa = ω̃a , (41)

π̃m
ab = 0 = H̃ab , σ̃ab = ∇̃〈avb〉 , Ẽab = Eab .

These equations describe the linearised silent universe except
that the restriction on the shear in Eq. 41 results in the integra-
bility conditions for the quasi-Newtonian models. Due to the
vanishing of the shear in the quasi-Newtonian frame, Eq. 19 is
turned into a new constraint

Eab −
1
2

π
φ
ab − ∇̃〈a Ab〉 = 0 . (42)

This can be simplified by using Eq. 18 and the identity for any
scalar ϕ:

ηabc∇̃a Ac = 0⇒ Aa = ∇̃a ϕ . (43)

In this case ϕ is the covariant relativistic generalisation of the
Newtonian potential.

First integrability condition
Since Eq. 42 is a new constraint, we need to ensure its consis-
tent propagation at all epochs and in all spatial hypersurfaces.
Differentiating it with respect to cosmic time t and by using
equations 9, 20 and 23, one obtains

∇̃〈a∇̃b〉
[

ϕ̇ +
1
3

Θ +
φ̇

(φ + 1)

]
+
[

ϕ̇ +
1
3

Θ (44)

+
φ̇

(φ + 1)

]
∇̃a∇̃b ϕ = 0 ,

which is the first integrability condition for quasi-Newtonian
cosmologies in scalar-tensor theory of gravitation and it is a
generalisation of the one obtained in [2], i.e., Eq.44 reduces to
an identity for the generalized van Elst-Ellis condition [1, 2, 3]

ϕ̇ +
1
3

Θ = − φ̇

(φ + 1)
. (45)

The evolution equation of the 4-acceleration Aa can be shown,
using Eqs. 45 and 23, to be

Ȧa +
[2

3
Θ +

φ̇

(1 + φ)

]
Aa = − 1

2(1 + φ)

[
µmva +

(1
3

Θ (46)

+
φ̇′

φ′
− 2φ̇

(1 + φ)

)
∇̃aφ

]
.

There is a second integrability condition arising by checking
for the consistency of the constraint 42 on any spatial hyper-
surface of constant time t. By taking the divergence of 42 and
by using the following identity:

∇̃b∇̃〈a Ab〉 =
1
2
∇̃2 Aa +

1
6
∇̃a(∇̃c Ac) +

1
3
(µ− 1

3
Θ2)Aa , (47)

which holds for any projected vector Aa, and by using Eq. 43 it
follows that:

∇̃b∇̃〈a∇̃b〉ϕ =
2
3
∇̃a(∇̃2 ϕ) +

2
3
(µ− 1

3
Θ2)∇̃a ϕ . (48)

By using Eqs. 48, 23 and 26, one obtains:

∇̃aµm −
[
φ̇ + 2

3 (φ + 1)Θ
]
∇̃aΘ + 1

(φ+1)

[
f
2 − µm (49)

+Θφ̇− Θφ̇′(φ+1)
φ′

]
∇̃aφ− 2(φ + 1)∇̃2(∇̃a ϕ)− 2

[
µm

+
R(φ+1)

2 − f
2 −Θφ̇− Θ2(φ+1)

3

]
∇̃a ϕ− ∇̃2(∇̃aφ) = 0 ,

which is the second integrability condition and in general it ap-
pears to be independent of the first integrability condition 44.
By taking the gradient of Eq. 45 and using Eq. 23, one can ob-
tain the peculiar velocity:

va = − 1
µm

[
2(φ + 1)∇̃a ϕ̇ +

( φ̇′

φ′
− ϕ̇− 3φ̇

(φ + 1)

)
∇̃aφ

]
. (50)

By virtue of Eqs. 16 and 17, va evolves according to

v̇a +
1
3

Θva = −Aa . (51)

The coupled evolution Eqs. 46 and 51 decouple to produce the
second-order propagation equation of the peculiar velocity va.
By using Eqs. 4 and 5 in Eq. 51 one obtains:

v̈a +
[
Θ +

φ̇

(φ + 1)

]
v̇a +

[1
9

Θ2 − 1
6(φ + 1)

(5µm − f (52)

−4Θφ̇)
]
va +

1
(φ + 1)

[ φ̇

(φ + 1)
− φ

′′

2φ
′ −

Θ
6
− φ̇

′

2φ
′

+
φ
′′
φ̇

2φ
′2

]
∇̃aφ = 0 .

In the previous section, we showed how imposing special re-
strictions to the linearized perturbations of FLRW universes in
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the quasi-Newtonian setting result in the integrability condi-
tions. These integrability conditions imply velocity and accel-
eration propagation equations resulting from the generalised
van Elst-Ellis condition for the acceleration potential in scalar-
tensor theories. In this section, we show how one can obtain the
velocity and density perturbations via these propagation equa-
tions, thus generalizing GR results obtained in [2].

We define the variables that characterise scalar inhomo-
geneities the matter energy density, expansion, peculiar veloc-
ity, acceleration as well as the scalar fluid and scalar field mo-
mentum, respectively, as follows:

∆m =
a2∇̃2µm

µm
, (53)

Z = a2∇̃2Θ , (54)

Vm = a2∇̃ava , (55)

A = a2∇̃a Aa , (56)

Φ = a2∇̃2φ (57)

Ψ = a2∇̃2φ̇ . (58)

The system of equations governing the evolutions of these
scalar fluctuations are given as follows

V̈m +

(
Θ
3
+

φ̇

(1 + φ)

)
V̇m − 1

2(φ + 1)

[
µmVm (59)

+
(1

3
Θ +

φ̇
′

φ
′ −

2φ̇

(φ + 1)

)
Φ
]
= 0 ,

D̈m +

[
φ̇

(φ + 1)

]
Ḋm −

[ 3µm

2(φ + 1)

]
Dm −ΘV̈m (60)

+
[Θ2

3
+

5µm

2(φ + 1)
− f

2(φ + 1)
+
∇̃2φ

(φ + 1)

+
3φ̇φ̇

′

2φ
′ (φ + 1)

− 3Θφ̇

2(φ + 1)

]
V̇m − ∇̃2V̇m

+

(
2
3

Θ− φ̇

(φ + 1)

)
∇̃2Vm +

Θ
(φ + 1)

Φ̇

+
1

2(φ + 1)

[ 2 f
(φ + 1)

− 3φ̈
′

φ
′ −

4µm

(φ + 1)
+

2
3

Θ2

+
4Θφ̇

(φ + 1)
− ∇̃2φ

(φ + 1)
− 7Θφ̇

′

φ
′

]
Φ = 0 ,

Φ̈− φ̇
′

φ
′ Φ̇−

[ φ̈
′

φ
′

φ̇
′2

φ
′2 −

Θφ̇

6(φ + 1)
− φ̇φ̇

′

2φ
′ (φ + 1)

(61)

+
φ̇2

(φ + 1)2

]
Φ−

[Θφ̇

3
+

φ̇2

(φ + 1)
− φ̈

]
V̇m

+
φ̇µm

2(φ + 1)
Vm = 0 .

Since the evolution equations obtained so far are too compli-
cated to be solved, the harmonic decomposition approach is ap-
plied to these equations using the eigenfunctions and the corre-
sponding wave number for these equations, therefore we write

X = ∑
k

XkQk(~x) , Y = ∑
k

Yk(t)Qk(~x) , (62)

where Qk(x) are the eigenfunctions of the covariantly defined
spatial Laplace-Beltrami operator[6, 14], such that

∇̃2Q = − k2

a2 Q . (63)

The order of the harmonic (wave number) is given by

k =
2πa

λ
, (64)

where λ is the physical wavelength of the mode. The eigen-
functions Q are covariantly constant, i.e.

Q̇k(~x) = 0 . (65)

Applying the harmonic decomposition, the second-order evo-
lution equations 59-68 can be rewritten as

V̈k
m +

(
Θ
3
+

φ̇

(1 + φ)

)
V̇k

m −
1

2(φ + 1)

[
µmVk

m (66)

+

(
1
3

Θ +
φ̇
′

φ
′ −

2φ̇

(φ + 1)

)
Φk
]
= 0 ,

∆̈k
m +

φ̇

(φ + 1)
∆̇m − 3µm

2(φ + 1)
∆k

m −ΘV̈k
m (67)

+
[Θ2

3
+

5µm

2(φ + 1)
− f

2(φ + 1)
− k2φ

a2(φ + 1)

+
3φ̇φ̇

′

2φ
′ (φ + 1)

− 3Θφ̇

2(φ + 1)
+

k2

a2

]
V̇k

m

−
[ 2k2

3a2 Θ− φ̇k2

(φ + 1)a2

]
Vk

m +
Θ

(φ + 1)
Φ̇k

+
1

2(φ + 1)

[ 2 f
(φ + 1)

− 3φ̈
′

φ
′ −

4µm

(φ + 1)
+

2
3

Θ2

+
4Θφ̇

(φ + 1)
− ∇̃2φ

(φ + 1)
− 7Θφ̇

′

φ
′

]
Φk = 0 ,

Φ̈k − φ̇
′

φ
′ Φ̇

k −
[ φ̈

′

φ
′ −

φ̇
′2

φ
′2 −

Θφ̇

6(φ + 1)
(68)

− φ̇φ̇
′

2φ
′ (φ + 1)

+
φ̇2

(φ + 1)2

]
Φk −

(Θφ̇

3

+
φ̇2

(φ + 1)
− φ̈

)
V̇k

m +
φ̇µm

2(φ + 1)
Vk

m = 0 .

In this section, we consider Rn model, one of the f (R) toy mod-
els that are considered to be the simplest and widely studied
form of higher order f (R) gravitational theories.
The Lagrangian density of such models is given as

f (R) = βRn , (69)

where β represents the coupling parameter and an arbitrary
constant n 6= 1 is considered for exploring cosmological mod-
els. In [15], it has been shown, using the cosmological dynami-
cal systems approach, that the scale factor a(t) admits an exact
solution of the form

a = a0t
2n

3(1+w) , (70)

with w = 0 and normalized coefficients β and a0. One can
obtain the following expressions for the expansion, the Ricci
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scalar and the effective matter energy density respectively:

Θ =
2n
t

, R =
4n(4n− 3)

3t2 , (71)

µm = n
(3

4

)1−n(4n2 − 3n
t2

)n−1(−16n2 + 26n− 6
3t2

)
. (72)

Therefore we have the perturbation equations 66, 67 and 68 as

V̈k
m +

( (6− 4n)
3t

)
V̇k

m −
(

8n2 − 13n + 3
3t2

)
Vk

m (73)

−
[

f rac4t2n−33
(

4n(4n− 3)
3

)n−1]
Φk = 0 ,

∆̈k
m +

[
2(1− n)

t

]
∆̇k

m +

(
3 + 13n− 8n2

t2

)
∆k

m (74)

−
(

2n
t

)
V̈k

m +
[ (62n2 − 127n + 27)

3t2 +
k2t

2(n−3)
3

n
(

4n(4n−3)
3

)n−1

+6n2 − 6n
]
V̇k

m −
[

2k2(3− n)

3t
(4n+3)

3

]
Vk

m +

 2t(2n−3)(
4n(4n−3)

3

)n−1

 Φ̇a

+
t2n

n
(

4n(4n−3)
3

)n−1

[ (28n2 − 8n)
3t4 − 6(2n2 − 7n + 6)

t3

+
k2

t
(4n+6)

3

− k2

nt
(12−2n)

3 n
(

4n(4n−3)
3

)n−1

]
Φk = 0 ,

Φ̈k −
(
(4− 2n)

t

)
Φ̇k −

(
(8n2 − 8n + 12)

3t2

)
Φk (75)

−(−2n + 2)
(

4n(4n− 3)
3

)n−1 ( 2n2

3t2 + 2n2 − 3n + 2
)

t−2nV̇k
m

+n(1− n)
(

4
3

)1−n ( 4n2 − 3n
t2

)n−1 ( 16n2 + 26n− 6
3t3

)
Vk

m = 0 .

In this subsection, we will solve the perturbations equations we ob-
tained so far. The exact solutions of the density and velocity perturba-
tion equations are found in the comoving frame, using the f (R) solu-
tions in [10] and a simple workaround. A simple alternative is then to
work in the comoving frame and apply the transformation from the co-
moving frame to the quasi-Newtonian frame using the following iden-
tity [2]

D̃a f = ∇̃a f + ḟ va . (76)

The comoving perturbation variables are defined as

∆̃m
a =

aD̃aµm

µm
, (77)

Z̃a = aD̃aΘ , (78)

Φ̃a = aD̃aφ , (79)

Ψ̃a = aD̃aφ̇ . (80)

By using the identity 76, the comoving perturbation variables can be
rewritten as

∆̃m
a = ∆m

a −ΘVm
a , (81)

Z̃a = Za −
[ 1

3
Θ2 +

1
2(φ + 1)

(
2µm − f − 2Θφ̇ (82)

+2∇̃2φ
)

Vm
a

]
,

Φ̃a = Φa + φ̇Vm
a , (83)

Ψ̃a = Ψa + φ̈Vm
a . (84)

The second-order evolution equation of the density perturbation in the
comoving frame admits a general solution of the form [10]

∆̃k
m = C1t−1 + C2tα+ + C3tα− − C4C0t

2−
4n
3 , (85)

where C1, C2, C3 and C4 are constants, α± is given as

α± = − 1
2
±
√
(n− 1)(256n3 − 608n2 + 417n− 81)

6(n− 1)
, (86)

and C0 is the conserved value for the gradient variable Ca, where

Ca = a3∇̃a R̃ , (87)

where R̃ is the three dimension Ricci scalar, is defined as

R̃ = 2µ− 2
3

Θ2 .

Therefore, by using Eqs. 81 and 85, the general solution of the density
perturbation Eq. 67 in the quasi-Newtonian frame can be written as

∆k
m = C1t−1 + C2tα+ + C3tα− − C4C0t

2−
4n
3 +

2n
t

Vk
m . (88)

The gradient variable Φa is equivalent toRa defined in f (R) theory [6],
such that

Φa = φ
′Ra . (89)

The solution of R has been obtained in the comoving frame [10] and it
has the form

R = C5t−3 + C6tβ+ + C7tβ− − C8C0t
−

4n
3 . (90)

Therefore, the solution of the second-order perturbation Eq. 75 in the
comoving frame can be written as

Φ̃k = n(n− 1)
(

4n(4n− 3)
3t2

)n−2
C5t−3 + C6tβ+ + C7tβ− − C8C0t

−
4n
3

 ,

(91)

Therefore, by using Eq. 83, the general solution of the perturbation Eq.
75 in the quasi-Newtonian frame is given as

Φk = n(n− 1)
(

4n(4n− 3)
3t2

)n−2 (
C5t−3 + C6tβ+ + C7tβ− (92)

−C8C0t
−

4n
3 +

(
8n(4n− 3)

3t3

)
Vk

m

)
.

Using Eq. 92, the general solution of the perturbation Eq. 66 in the
quasi-Newtonian frame is given as

Vk
m = (K2 + K3(B1 − B2)) t

2n
3

+γ−
+ (K1 + K3(B3 + B4)) t

2n
3

+γ+
, (93)

where K1, K2 are two arbitrary constants and

K3 =

3(n− 1)
(

16n2

3
− 4n

)n

(4n− 3)
√
−8n2 − 48n(2n + 2) + 132n− 27

, (94)

γ± = − 1
2
±
√
−80n2 − 48n(2n + 2) + 132n− 27

6
, (95)

B1 = C1

∫
t

(
−

2n
3
−

3
2

)
+γ+

dt , (96)

B3 = C1

∫
t

(
−

2n
3
−

3
2

)
+γ−

dt , (97)
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where B2 and B4 are all functions of time and their expressions are
rather complicated.
Thus, we get the full set of exact solutions for the density and velocity
perturbation equations in the quasi-Newtonian frame.

In this subsection, we apply a quasi-static approximation to the
evolution equations 67 and 66. In this approximation, terms involv-
ing time derivatives for gravitational potential are neglected and only
those terms involving density perturbation are kept [16, 17, 6]. In [6],
a quasi-static approximation for the matter perturbation has been in-
troduced for both radiation and dust dominated epochs. A quasi-static
approximation was taken such that the time evolutions of Ra are ne-
glected, Ṙa ' 0 and R̈a ' 0.

According to Eq. 89, the time variations in Φa are neglected, i.e.
Φ̇a ' 0 and Φ̈a ' 0.
Hence, one can get

V̈k
m +

(
48n2 − 108n + 7n

(36− 18n)t

)
V̇k

m +

(
(8n2 − 13n + 3)

3t2

)
Vk

m = 0 . (98)

This second-order equation admits a general solution of the form

Vk
m(t) = C9tD+E+ + C10tD+E− , (99)

where

D =

√
−32n4 + 300n3 − 723n2 + 588n− 108

6(n− 2)
,

and

E± = ± (8n2 − 15n + 6)
6(n− 2)

.

Based on this solution in Eq. 99 and its first and second time derivative,
the general solution of Eq. 74 is

∆(t) = C11t
−

1
2
+n+L+

+ C12t
−

1
2
+n+L−

, (100)

where C11 and C12 are arbitrary constants and

L± = ±
√

36n2 − 56n− 11
2

.

There are some other solutions to Eq. 74 which are rather too compli-
cated to be presented here.

Conclusion :
Our main goal has been the study of the cosmological perturbation in
the context of one of the modified theories of gravity. We reviewed
two of these alternative theories of gravity, namely f (R) and scalar-
tensor theories. We investigated classes of shear-free cosmological dust
models with irrotational fluid flows in the context of scalar-tensor the-
ories. We presented the integrability conditions that describe a con-
sistent evolution of the linearised field equations of quasi-Newtonian
universes. We defined the gradient variables that characterize the cos-
mological perturbations and derived the second-order evolution equa-
tions of these variables. The harmonic decomposition approach is ap-
plied to these equations in order to solve this complicated system of
differential equations. After getting a complete set of the perturbation
equations, we solved these equations by considering Rn models to get
the exact solutions for the density and velocity perturbations. We intro-
duced the so-called quasi-static approximation to admit the approxi-
mated solutions on small scales. Solving the whole system numerically
has been left for future work.
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