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Abstract
A 4D-brane realization of q-theory has been proposed a few years ago. The present paper studies the
corresponding late-time cosmology and establishes the dynamic cancellation of an initial cosmological
constant and an attractor behavior toward Minkowski spacetime.
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1. INTRODUCTION
The cosmological constant problem is perhaps the most im-
portant problem of modern physics [1]. A condensed-matter-
inspired approach has been proposed and goes under the name
of q-theory [2, 3, 4]. A particular realization of q-theory takes its
cue from the physics of a freely suspended two-dimensional
material film [5] and uses a generalization to four-dimensional
“films” or 4D branes [6].

This 4D-brane realization of q-theory has a dimensionless
chemical potential µ (details will be given shortly) and may be
of relevance to a recent suggestion to replace the big bang by a
quantum phase transition [7].

The goal of the present paper is to discuss the correspond-
ing late-time cosmology, where the asymptotic vacuum energy
density may or may not vanish. In particular, we would like
to establish a possible attractor behavior toward Minkowski
spacetime with a vanishing vacuum energy density. Through-
out, we use natural units with h̄ = 1 and c = 1.

2. ACTION AND FIELD EQUATIONS
The following 4D-brane action has been proposed in [6]:

S = −
∫

d4x
√
−g

[
R

16πGN
+ ϵ

(
n√−g

)
+ LM[ψ]

]
+ µ

∫
d4x n,

(1)

with a Lorentzian signature (−,+,+,+) of the metric gαβ, so
that its determinant g ≡ det(gαβ) is negative. In (1), the term
LM(ψ) is the matter Lagrange density for a generic matter field
ψ and the potential ϵ(x) is an essentially arbitrary function of
x (the stability of the equilibrium state gives some conditions
on the potential [2]). The crucial new ingredient of the above
action is n as the 4D analog of the particle density of a 2D mem-
brane. This 4D density n may refer to “spacetime atoms,” with
the corresponding nonzero chemical potential µ (further dis-
cussion will be given in Section 4).

At this moment, it may be helpful to explain the terminol-
ogy “spacetime atoms.” The physics of the freely suspended
two-dimensional material film has been reviewed in the first
two paragraphs of Section 3 in [6], with mention of the origi-
nal reference [5]. The film there is made out of atoms, whose
basic structure is known to be described by the Schrödinger
equation. The Hamiltonian of this two-dimensional material

film has been generalized to a four-dimensional action and,
for this reason, we can perhaps speak of a system describing
“spacetime atoms,” whose structure is, of course, completely
unknown at the present moment. What matters, for the follow-
ing, is the structure of the action (1) with an unknown (con-
served) quantity n having mass dimension 4.

The resulting n-field equation from (1) reads

dϵ

dq
= µ, (2a)

q ≡ n√−g
. (2b)

Here, we have identified a scalar q-field with mass dimension
4, so that µ has mass dimension 0, and this q-field realization
may be relevant to the big-bang discussion of [7].

The resulting gravitational equation from (1) is the stan-
dard Einstein equation,

1
8πGN

(
Rαβ −

1
2

Rgαβ

)
= ρV(q)gαβ + TM

αβ, (3)

with the following gravitating vacuum energy density:

ρV(q) = ϵ(q)− q
dϵ(q)

dq
= ϵ(q)− µq, (4)

where (2a) has been used to get the final expression for ρV(q).
Note that the constant µ here traces back to the 4D-brane action
(1). This situation is different from the one for the q-field in the
4-form realization, where µ appears as an integration constant
of the solution [2, 3].

In terms of the gravitating vacuum energy density (4), we
can rewrite the n-field equation (2a) as

dρV(q)
dq

= 0. (5)

Remark that for a homogeneous q-field (i.e., q = q(t) in a suit-
able coordinate system), we can multiply (5) by dq/dt to get

dρV(t)
dt

= 0, (6)

which carries over to cosmology, as will be discussed in the
next section.

3. COSMOLOGY: MINKOWSKI
ATTRACTOR

3.1. Setup
For cosmology, we take the standard spatially flat Robertson–
Walker (RW) metric with cosmic scale factor a(t) and Hubble
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parameter H ≡ [da/dt]/a. We also add a homogeneous per-
fect fluid for the matter component with a constant equation-
of-state parameter wM ≡ PM/ρM.

Next, introduce dimensionless variables: the cosmic time
coordinate τ, the Hubble parameter h ≡ a−1 da/dτ, the matter
energy density rM, and the vacuum energy density rV . Then,
the dimensionless ordinary differential equations (ODEs) are
as follows:

ṙM + 3h (1 + wM) rM = +Γ, (7a)

ṙV = −Γ, (7b)

3h2 = 8π (rM + rV) , (7c)

2ḣ + 3h2 = −8π (wMrM − rV) , (7d)

where the overdot stands for differentiation with respect to the
dimensionless cosmic time coordinate τ and the source term Γ
models vacuum-matter energy exchange, as discussed by [8] in
general terms.

3.2. General ρV : Analytic Solution
An explicit calculation of Γ entering the ODEs (7) was pre-
sented in [9] and gave a Zeldovich-Starobinsky-type [10] source
term:

Γparticle-production =
1

36
γ|h|R2 = γ|h|

(
ḣ + 2h2

)2
, (8)

with R being the Ricci curvature scalar in terms of dimension-
less variables. Observe that equations (7a) and (7b) are time-
reversal noninvariant for the source term as given by (8). This
time-reversal noninvariance corresponds to a dissipative effect,
actually a quantum-dissipative effect as particle creation is a
true quantum phenomenon.

The ODEs (7), for the source term (8) and wM = 1/3, are
exactly the same as those in [9], which were derived with the
4-form realization of the q-field.1 Hence, there is the same at-
tractor behavior toward Minkowski spacetime; see, in [9], the
numerical results of Figure 3 and the analytic solution of Ap-
pendix B.

It may be instructive to recall the main steps for getting
this exact solution. For the special case of relativistic matter,
wM = 1/3, we can add the two Friedmann equations (7c) and
(7d), in order to eliminate rM. The resulting equation relates the
combination ḣ + 2h2 to rV . The special choice (8) for Γ involves
the very same combination ḣ + 2h2 and (7b) reduces to a single
ODE for rV(τ):

1
|h|

drV
dτ

= −γ
[
(16π/3)rV

]2. (9)

Changing the τ coordinate to

χ = ln
∣∣a(τ)∣∣, (10)

we obtain the following ODE:

drV
dχ

= −(16π/3)2γ
[
rV

]2. (11)

1The 4-form theory considered in [2, 3, 4, 9] is purely four-dimensional, so that
the values of q are continuous and not quantized as happens for other types of
4-form theories [11].

The solution (denoted by a bar) is

rV(χ) =
1

(16π/3)2γ (χ − χ0)
, (12)

with an integration constant χ0. The corresponding solution
h(χ) involves the exponential integral function “Ei(χ)” and is
given in Appendix B of [9]. As a(τ) goes to infinity with τ → ∞,
so does χ and the vacuum energy density rV from the exact so-
lution (12) is seen to drop to zero.

3.3. Specific ρV(q): ODEs
There is, however, an important caveat for the general dis-
cussion in Section 3.2: the dimensionless vacuum energy den-
sity rV corresponding to the dimensional quantity ρV from (4)
should be able to reach the value zero.

Denote the dimensionless version of the cosmological con-
stant by λ and the dimensionless version of the q-variable from
(2b) by ξ (the chemical potential µ is already dimensionless).
Then, we can split the dimensionless version of the energy den-
sity ϵ from the action (1) into a constant part λ and a noncon-
stant part ϵ̃,

ϵ[ξ] ≡ λ + ϵ̃[ξ], (13)

and require for the existence of a Minkowski attractor:

∃ξ ∈ R+ : rV
[
ξ
]
= λ + ϵ̃

[
ξ
]
− µξ = 0. (14)

The issue, now, is whether or not there exists such a ξ and, if
there exists such a ξ, whether or not it can be reached in the
late-time cosmology.

For a specific realization of the vacuum energy density rV
as a function of ξ and with the Hubble parameter h ≡ ȧ/a, the
ODEs (7) take the following form:

ṙM + 3h (1 + wM) rM = +Γ, (15a)

ξ̇
drV [ξ]

dξ
= −Γ, (15b)

3h2 = 8π (rM + rV [ξ]) , (15c)

2ḣ + 3h2 = −8π (wMrM − rV [ξ]) , (15d)

rV [ξ] = λ + ϵ̃[ξ]− µξ, (15e)

where the dependence of rV on the vacuum variable ξ has been
made explicit.

As a simple example, take

ϵ̃[ξ] = ξ2, (16a)

which turns condition (14) into a quadratic for ξ. For a given
positive value of µ, there is now a suitable value ξ for any value
of the dimensionless cosmological constant in the following
range:

λ ≤ µ2/4, (16b)

where one possible value of ξ is given by

ξ =
1
2

(
µ +

√
µ2 − 4λ

)
. (16c)
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FIGURE 1: Numerical solution of the ODEs (15) with source term (17) and energy density (16a), for parameters wM = 1/3, µ = 4,
λ = 1, and γ̃ = 10−3. The boundary conditions at τ = τbcs = 1 are {h, ξ, rM} = {9, 4.55, 6.16616}, where the rM value has been
obtained from the first Friedman equation (15c). The top row shows the three basic variables: the Hubble parameter h = ȧ/a,
the dimensionless vacuum variable ξ, and the matter energy density rM. The bottom row shows their asymptotic behavior: h(τ) ∼
τ−1/3, ξ(τ)− ξ ∼ τ−2/3, rM(τ) ∼ τ−4/3, and rV(τ) ∼ τ−2/3, where ξ is given by (16c). Both rows show the corresponding vacuum
energy density rV from (15e) and (16a).
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FIGURE 2: Numerical solution of the ODEs (15) with source term (17) and energy density (16a), for parameters wM = 1/3, µ = 4,
λ = −1, and γ̃ = 10−3. The boundary conditions at τ = τbcs = 1 are {h, ξ, rM} = {9, 4.55, 8.16616}, where the rM value has been
obtained from the first Friedman equation (15c). The variables shown are explained in the caption of Figure 1.

For 0 < λ < µ2/4, the other possible value of ξ has a minus
sign in front of the square root on the right-hand side of (16c).

A further point is the choice of Γ so that the numerics works
in the simplest way. A suitable ad hoc choice is

Γad-hoc = γ̃|h|h4. (17)

This basically has the structure of expression (8), but the
squared Ricci factor has been simplified to the fourth power
of the Hubble parameter h. Observe, again, that the ODE (15b)
with source term (17) is time-reversal noninvariant.

3.4. Specific ρV(q): Numerical Results
Numerical results from the ODEs (15), with (16) and (17), are
presented in Figures 1 and 2 for µ = 4 and λ = ±1 (similar re-
sults have been obtained for µ = 4 and λ = 0). The asymptotic
behavior in both figures is essentially the same,

h(τ) ∼ (γ̃τ)−1/3 , rV(τ) ∼ (γ̃τ)−2/3 . (18)

This asymptotic behavior also follows directly from the ODEs
(7b) and (7c), for the source term Γ from (17) and assuming that
rM is negligible compared to rV . The asymptotic values of ξ(τ)
in Figures 1 and 2 are numerically close to the analytic results
from (16c).

The asymptotic behavior (18) illustrates the Minkowski at-
tractor behavior (rV → 0). Indeed, we find numerically the
same attractor behavior at the following four corners of the
rectangle ∆ of initial conditions:

{h(τbcs), ξ(τbcs)} = {9 ± 1/10, 455/100 ± 1/100}, (19)

equally for λ = 1 and λ = −1, at µ = 4. We have also es-
tablished numerically the same attractor behavior for several
random points over the rectangle ∆.

These numerical results suggest that, for µ = 4 and |λ| ≤ 1,
the attractor domain D in the plane R2 of initial conditions is
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FIGURE 3: Numerical solution of the ODEs (15) with source term (17) and energy density (16a), for parameters wM = 1/3, µ = 4,
λ = 4, and γ̃ = 10−3. The boundary conditions at τ = τbcs = 1 are {h, ξ, rM} = {9, 4.55, 3.16616}, where the rM value has been
obtained from the first Friedman equation (15c). The variables shown are explained in the caption of Figure 1, but the asymptotic
behavior of the dimensionless vacuum variable is now different: ξ(τ)− ξ ∼ τ−1/3.

finite and includes the above-mentioned rectangle,

D(µ=4,|λ|≤1)

⊇ ∆ =
{{

h (τbcs) , ξ (τbcs)
}
|

8.9 ≤ h (τbcs) ≤ 9.1 ∧ 4.54 ≤ ξ (τbcs) ≤ 4.56
}

.

(20)

The actual attractor domain D can be expected to be larger than
the rectangle indicated.

In addition, we have similar numerical results for µ = 4
and λ = 4 (shown in Figure 3 and Table 1), which will be dis-
cussed further in Section 3.5.

3.5. Discussion
Following up on the attractor-domain discussion of the last
subsection with numerical results, we emphasize that the ana-
lytic solution [9] is clear about having a finite attractor domain.
Let us give the details (expanding on the statement from the
last paragraph of Appendix B in that reference): ξ(τbcs) must be
such as to make rV(τbcs) nonnegative and h(τbcs) must also be
nonnegative with a further condition that traces back to (15c).
These conditions can be summarized as follows:

h (τbcs) ≥
√

8π

3
rV (τbcs) ≥ 0. (21)

How the actual attractor domain looks in the {h(τbcs), ξ(τbcs)}
plane depends on the details of the Ansatz for ϵ̃ [ξ] and the nu-
merical values of µ and λ, possibly obeying a condition sim-
ilar to (16b). Incidentally, there is no such condition on λ, for
given µ, if the ϵ̃ Ansatz is changed to, for example, ϵ̃[ξ] =
(ξ2)1/4 + (ξ2)−1/4, which allows for the cancellation of any
value of λ ∈ R for arbitrary µ.

There is, however, a puzzle. Namely, the numerical results
for µ = 4 and λ = ±1 in Figures 1 and 2 show that Minkowski
spacetime is approached, but how can that be as µ = 4 differs
from the fine-tuned value µ0 for the Minkowski vacuum of [2]?
Incidentally, for the ϵ̃(ξ) Ansatz in (16a), the equilibrium value
of the chemical potential is given by µ0 = 2

√
λ, provided that

λ is nonnegative (all the more surprising that our numerical

τ h(τ) ξ(τ) rM(τ) rV(τ)

102 0.926 2.32 1.85 × 10−4 0.102
103 0.430 2.15 8.55 × 10−6 0.0221
104 0.200 2.07 3.97 × 10−7 0.00476
105 0.0927 2.03 1.84 × 10−8 0.00102
106 0.0430 2.01 8.56 × 10−10 0.000221

TABLE 1: Function values from the numerical solution of Fig-
ure 3, showing only 3 significant digits.

solution can approach Minkowski spacetime also for negative
λ!).

The answer is simply that the Minkowski vacuum of [2]
holds for static fields, whereas our numerical solution is non-
static, ξ = ξ(τ) with ξ̇ ̸= 0.

The numerical results for µ = 4 and λ = ±1 do not
appear to have a rigorous “limit” as τ → ∞ and the fields
are essentially time-dependent. This is reminiscent of Dolgov’s
model [12, 13] (see also Figure 2 in [4] and Appendix A in [14]),
even though the time dependence of h = h(τ) and ξ = ξ(τ)
in our 4D-brane model diminishes with time, whereas Dolgov’s
time dependence stays constant with time (specifically, a linear
time dependence of the massless vector field). Still, the final
state with q = q is, in general, not the static-equilibrium state
with q = q0 and the question remains whether or not such a
situation is acceptable (especially as concerns the gravitational
dynamics of a solar-system-type subsystem; see Section I of [14]
for further discussion and references).

For the special case µ = 4 and λ = 4, there may be a strict
limit, as we then reach the genuine Minkowski vacuum of [2]
at µ0 = 4, with ξ0 = 2 from (16c). The ξ(τ) values in Table 1
appear to approach the equilibrium value ξ0 = 2. The corre-
sponding dimensional vacuum variable q(t) then approaches
the equilibrium value q0, around which the vacuum energy
density has a quadratic behavior, ρV(q) ∼ c2(q − q0)

2 with a
positive constant c2 of mass dimension −4 (here, c2 ∝ E−4

Planck).
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4. OUTLOOK
The present paper has studied the cosmological behavior of a q-
field in the 4D-brane realization [6]. The physical interpretation
of this q-field scalar relates to a four-dimensional number den-
sity n of “spacetime atoms,” with a corresponding chemical po-
tential µ. This number density n is a new variable, as the action
(1) makes clear. It leads to an additional conservation equation
(5) of the corresponding vacuum energy density ρV(q).

A similar model has been presented recently [15], where
there is also a four-dimensional number density n with a cor-
responding chemical potential µ. But, in that case, there is no
need for a new variable as n is simply proportional to

√−g, in
terms of the already available metric determinant g ≡ det(gαβ).
[This identification implies the restriction of the allowed co-
ordinate transformations to those with unit Jacobian.] In that
case, there is no additional conservation equation for ρV . Yet,
in a cosmological context, the Friedmann equations do contain
the equation dρV/dt = 0; see the last paragraph of Section VI B
in [15]. Moreover, there appears an attractor behavior toward
Minkowski spacetime provided that there is vacuum-matter
energy exchange.

Both manifestations of n apparently involve some fine-scale
underlying structure of spacetime, called “atoms of spacetime”
for the 4D-brane realization [6] and a “spacetime crystal” for
the extended-unimodular-gravity approach [15]. The outstand-
ing question is what the actual substructure of spacetime re-
ally is. A partial answer can perhaps be obtained from nonper-
turbative superstring theory as formulated by the IIB matrix
model [16, 17, 18].
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