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Abstract
We formulate the Lagrangian of the Newtonian cosmology where the cosmological constant is also in-
troduced. Following the affine quantization procedure, the Hamiltonian operator is derived. The wave
functions of the Newtonian universe and the corresponding eigenvalues for the case of matter dominated
by a negative cosmological constant are given.
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1. INTRODUCTION
Defining the universe as all of space and time and their con-
tents, including planets, stars, galaxies, and all other forms of
matter and energy, some natural questions arise about the be-
ginning, the existence of the universe, its present constituents,
and how the life will be in the future. The field of cosmology is
the best candidate to respond to those questions as cosmology
seeks to answer these questions that are the oldest of mankind.
The study of the cosmos is as old as humanity and has always
been fascinating. Physical cosmology is the scientific study of
the universe as a whole based on the laws of physics, to which
Einstein’s equations are very likely to give a correct description.
General relativity describes the observed universe very well.
However, it is a complicated theory, and often, it is difficult to
find solutions. The Newtonian theory, on the other hand, is in
many ways far simpler and is very often able to satisfactorily
model the universe.

The Newtonian cosmology began with the work of McCrea
and Milne in 1934 in which simple isotropic and homogeneous
universes were studied [1, 2]. The two assumptions fit well
with the observable universe, namely, the expanding universe
free of rotation and shear. There are two approaches to New-
tonian cosmology: the first one deals with potential function
worked out by McCrea and Milne [1, 2], Gödel [3], Herkmann
and Schücking [4, 5], and Raychaudhury [6]. The second ap-
proach uses gravitational force given by Narlikar [7]. A sum-
mary of Newton’s cosmology is given by Bondi [8], North [9],
and Ellis [10].

The application of quantum theory to the description of the
universe as a whole is called quantum cosmology. Quantum
Newtonian cosmology was proposed by Freedman et al. [11].
It is possible to construct a wave function for Newtonian cos-
mology in the framework of nonrelativistic quantum mechan-
ics [12, 13, 14, 15]. We are interested in quantum cosmology and
a good way to start is to revisit quantum Newtonian cosmology
in the sense of [14]. The motivation in revisiting [14] is that the
variable “a”, that is the scale factor is positive and the config-
uration space for our discussions is the positive half line; the
wave function in that case is defined only in the positive axis.
This leads one to require appropriate boundary conditions or

to consider the appropriate quantization procedure that is the
affine quantization.

Our work is presented as follows. In Section 2, we present
the classical model, where we start by recalling the cosmologi-
cal principle and then formulate the Lagrangian like in [16]. In
Section 3, we perform the affine quantization procedures and
formulate the quantum Hamiltonian operator. In Section 4, the
wave functions of the Newtonian universe and the energy lev-
els are given. Section 5 is about some concluding remarks. An
appendix about the Biconfluent Heun equation and its polyno-
mial form of solution is added after the concluding remarks.

2. THE CLASSICAL MODEL
2.1. Cosmological Principle
In modern physics, cosmology begins with the application of
Einstein’s theory of gravity, or general relativity, to the uni-
verse. This is a difficult task and would probably not be pos-
sible without a basic assumption about the universe called the
cosmological principle that says that “On large (but not too
large) scales, the universe is homogeneous and isotropic.” The
statement of isotropy means that the universe is the same in all
directions (the universe looks the same whether you are look-
ing directly outward from the North Pole or the South Pole).
The homogeneity means that the universe is the same at all
points. The statements of homogeneity and isotropy are dis-
tinct but closely related: for example, a universe that is isotropic
around multiple points will be homogeneous while a universe
that is homogeneous may not be isotropic. A universe that is
only isotropic around one point is not homogeneous. Without
the cosmological principle, much of our presumed understand-
ing of the workings of the universe would be invalid.

2.2. Lagrangian Formulation
We consider a cosmological model based on Newtonian dy-
namics. It uses an approach worked out by Milne and McCrea
in which it has no sense to associate the gravitational phenom-
ena with the effects of spacetime curvature [1, 2]. In this con-
text, it was shown that the universe’s behavior could be un-
derstood on the basis of classical physics, which does not use
the mathematical complexity in the study of the universe as in
the Einsteinian cosmology. The simplest model of the universe
one can think of is that of a universe filled with dust (nonrel-
ativistic pressureless matter, p = 0). We can think of this dust
as a collection of point particles and on the cosmological scales
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of approximation 10–1000 Mpc [17]. These point particles are
a sufficiently good approximation for galaxies or even galaxy
clusters. Consider the evolution of a small spherical portion of
the universe, where Newton’s theory applies: then the behavior
of this portion will reflect the evolution of the universe.

The cosmological principle states that there is no preferred
place or direction in the universe on large scale, so we can pick
any coordinate system with respect to which we can measure
the positions and velocities of these test particles.

Let us consider a galaxy that we consider as a particle of
mass m for our Newtonian system located at a radius a(t) from
an arbitrarily defined origin, where a(t) is a distance we refer
to as the scale factor. This scale factor acts to simply scale up or
scale down our Newtonian universe. We assume that the mo-
tion about the origin must be spherically symmetric. The force
of gravity on the particle (galaxy) at distance a(t) coming from
the mass of the homogeneous universe inside the sphere of ra-
dius a(t) is the same as if all the masses were at the center of
the sphere. There is no force arising from the region outside the
sphere.

In fixed rectangular coordinates (comoving), the kinetic en-
ergy for the motion of the particle (galaxy) is given by

T =
1
2

mȧ2. (1)

We assume that the particle (galaxy) moves in a conservative
force field, so the potential energy is given by

U = −GMm
a

. (2)

In both Newtonian cosmology and relativistic cosmology, the
universe is unstable to gravitational collapse. Both Newton and
Einstein believed the universe is static. In order to obtain this,
Einstein introduced a repulsive gravitational force:

FΛ =
Λ
3

ma, (3)

where the constant Λ is called the cosmological constant. When
Λ > 0, this force is pointed radially outward, repulsive relative
to the point origin. If Λ < 0, the force is attractive relative to
the point origin. We can also introduce in the Newtonian ap-
proach to cosmology a term containing the cosmological con-
stant, associated with a kind of cosmological force. We assume
then that there exists a global cosmological force that affects the
particle (galaxy). We take this force to be the repulsive gravita-
tional force that yields the potential

UΛ = −
∫ a

0
FΛda′ = −1

6
Λma2. (4)

In fixed rectangular coordinates (comoving), the Lagrangian of
the system is

L(a, ȧ) =
1
2

mȧ2 +
GMm

a
+

1
6

Λma2. (5)

The Lagrangian depends only on the scale factor and its deriva-
tive, and is independent of the time because the system is under
the action of a uniform force field.

3. AFFINE QUANTIZATION AND
HAMILTONIAN OPERATOR

The constant quantity of the motion is the classical Hamiltonian
of the system defined by

H =
∂L
∂ȧ

ȧ − L . (6)

Inserting equation (5) into equation (6), we got the Hamiltonian
at the classical level:

H(a, pa) =
1

2m
p2

a −
GMm

a
− 1

6
Λma2, (7)

where pa is considered as the corresponding momentum:

pa =
∂L
∂ȧ

= mȧ. (8)

We consider fixed rectangular comoving coordinates in
which we can define the phase space as (a, pa) with pa in equa-
tion (8) being the linear momentum. The associate Hamiltonian
in terms of the phase space coordinates is given by equation (7).
Since variable a is positive, we consider the positive axis. In that
sense, we choose to perform the affine quantization procedure
due to J. R. Klauder [18, 19, 20] that received some recent appli-
cations [21, 22, 23, 24, 25, 26, 27]. Why is there the choice of the
affine quantization procedure instead of the canonical quanti-
zation one? Our motivation is due to the fact that there is a
difficulty with canonical quantization when it comes to config-
uration spaces other than Rn. For example, here our variable a
is positive and then we consider the configuration space to be
R+. It seems reasonable to use a and pa as classical observables,
which satisfy the usual commutation relations. However, when
we try to represent these by operators â ≡ a and p̂a ≡ −ih̄ ∂

∂a , it
turns out that the momentum operator p̂a is not self-adjoint on
the Hilbert space H = L2(R+, da). Thus, a straightforward ap-
plication of Dirac’s canonical recipe is impossible. Affine quan-
tization involves a simple recombination of classical variables
expanding similar procedures of canonical quantization as it is
described here as follows.

The nonvanishing Poisson bracket of the canonical coordi-
nates is given by

{a, pa} = 1. (9)

Multiplying the equation (9) by a, we have

a {a, pa} = a, (10)

and setting da = apa, we have

{a, da} = a, (11)

H (a, da) =
1

2m
daa−2da −

GMm
a

− Λ
6

ma2. (12)

The variables a, da are not canonical variables but form a Lie
algebra and then worthy to be considered as a new pair of clas-
sical variables. The canonical quantization involves â and p̂a
which are self-adjoint operators that satisfies the commutation
relations

[â, p̂a] = ih̄, (13)

and from the canonical quantization, it follows that[
â, d̂a

]
= ih̄â, (14)
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where
d̂a =

1
2
(â p̂a + p̂a â) (15)

is called the dilation operator because it dilates â rather than
translates â as p̂a does. The operators â and d̂a are realized as
follows:

âψ(a) = aψ(a); d̂aψ(a) = −ih̄
(

a
d
da

+
1
2

)
ψ(a), (16)

where ψ(a) is the wave function of the Newtonian universe.
The Hamiltonian operator for a particle (galaxy) moving in the
Newtonian universe is then given by

Ĥ = − h̄2

2m
d2

da2 +
h̄2

2m
3
4

1
a2 − G M m

a
− Λ

6
ma2 . (17)

By using the affine quantization procedure, we gain an extra
term in the Hamiltonian equation (17), that is, h̄2

2m
3
4

1
a2 , compare

the similar Hamiltonian in [14] where canonical quantization
and appropriate boundary conditions have been required. This
difference is due to affine quantization and thus some differ-
ences in the energy levels and wave functions should be also
expected.

4. THE WAVE FUNCTIONS OF THE
NEWTONIAN UNIVERSE AND
THE ENERGY LEVELS

Once we have the Hamiltonian operator of the system, it is
possible to find the wave functions of the Newtonian universe
[13, 14, 15], by solving the time-independent Schrödinger equa-
tion

Ĥψ(a) = Eψ(a), (18)

where ψ(a) corresponds to the eigenvalues E, with Ψ(a, t) =
ψ(a)e−iEt/h̄ being the general wave function solution of the
time-dependent Schrödinger equation.

Equation (18) is equivalent to

− h̄2

2m
d2ψ(a)

da2 +

(
h̄2

2m
3
4

1
a2 − GMm

1
a
− Λ

6
ma2

)
ψ(a) = Eψ(a).

(19)
Let us solve equation (19) that is equivalent by dividing by h̄2

2m
to

− d2ψ(a)
da2 +

2m
h̄2

(
h̄2

2m
3
4

1
a2 − GMm

1
a
− Λ

6
ma2

)
ψ(a)

=
2m
h̄2 Eψ(a).

(20)

Labeling the parameters as follows:

α =
3
4

; δ = −4GMm2

h̄2 ; ω2 =

(
−Λ

3

)
m2

h̄2 ; k2 =
2mE

h̄2 ,

(21)
we have

− d2ψ(a)
da2 +

(
α

a2 +
1
2

δ

a
+ ω2a2 − k2

)
ψ(a) = 0. (22)

The sign of the cosmological constant is for the moment left
arbitrary. In search of a solution of equation (22), we proceed

like the way we solved similar equations in [25] by setting the
following Antsatz:

ψ(a) = aβ+1e−
ω
2 a2

v(a), (23)

where β(β + 1) = α and the function v(a) is an auxiliary func-
tion satisfying the equation

v′′(a) +
(

2(β + 1)
1
a
− 2ωa

)
v′(a)

+

(
k2 − ω(2β + 3)− 1

2
δ

a

)
v(a) = 0.

(24)

Performing the change of variable x = w1/2a in equation (24),
we have

v′′(x) +
(

2(β + 1)
x

− 2x
)

v′(x)

+

(
k2

ω
− (2β + 3)− 1

2
δω−1/2

x

)
v(x) = 0.

(25)

Equation (25) is a particular case of the biconfluent Heun equa-
tion [28], and its solution is the biconfluent Heun function:

v(x) = HeunB
(

2β + 1; 0; k2ω−1; δω−1/2; x
)

. (26)

Some details about biconfluent Heun equation are given in the
appendix (see after Section 5). From the relation β(β + 1) =
α and α = 3/4, there are two possibilities β = 1/2 or β =
−3/4. For (2β+ 1) not a negative integer, the biconfluent Heun
functions v(x) can be written in series form as

v(x) = HeunB
(

2β + 1; 0; k2ω−1; δω−1/2; x
)

(27)

=
∞

∑
p=0

Ap

(1 + (2β + 1))p

xp

p!
, (28)

where

Ap+2 =
1
2

δω−1/2 Ap+1 − (p + 1)(p + 1 + (2β + 1))

×
(

k2ω−1 − (2β + 1)− 2 − 2p
)

Ap.
(29)

We consider the value β = 1/2 that gives 2β + 1 = 2 and then

v(x) = HeunB
(

2; 0; k2ω−1; δω−1/2; x
)

(30)

=
∞

∑
p=0

Ap

(3)p

xp

p!
, (31)

where

Ap+2 =
1
2

δω−1/2 Ap+1 − (p + 1)(p + 3)
(

k2ω−1 − 4 − 2p
)

Ap.
(32)

From the recursion equation (32), the function v(x) becomes a
polynomial of degree n and the series terminate if and only if
the two following conditions are fulfilled:

(1) k2ω−1 − 4 = 2n,

(2) An+1 = 0,
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where An+1 is a polynomial of degree (n + 1) in δ̃ = δω−1/2.
There are at most (n + 1) suitable values of value δ̃ usually la-
beled as δ̃n

µ , 0 ≤ µ ≤ n. In that sense, we have

vn(x) = HeunB
(

2; 0; 2(n + 2); δ̃n
µ ; x
)

(33)

= Pn,µ(2, 0, x) =
n

∑
p=0

Ap

(3)p

xp

p!
, (34)

with

A0 = 1; A1 =
1
2

δ̃, (35)

Ap+2 =
1
2

δ̃Ap+1 − 2(p + 1)(p + 3)(n − p)Ap; An+1 = 0.

(36)

The eigenvalues are determined from the condition k2ω−1 −
4 = 2n as follows:

En = (n + 2)h̄
(
−Λ

3

) 1
2

. (37)

The associated physically acceptable wave functions ψn(a) are
given by

ψn(a) = Cna3/2e−
ω
2 a2

HeunB
(

2; 0; 2(n + 2); δ̃n
µ ; ω

1
2 a
)

. (38)

The constant Cn are arbitrary factors that can be determined
under the normalization condition∫ ∞

0
|ψn(a)|2 da = 1. (39)

We have

C2
n

∫ ∞

0
a3e−ωa2

n

∑
p=0

Ap

(3)p

ω
p
2 ap

p!

m

∑
s=0

As

(3)s

ω
s
2 as

s!
da = 1, (40)

C2
n

n

∑
p=0

m

∑
s=0

Apω
p
2

(3)p p!
Asω

s
2

(3)ss!

∫ ∞

0
a3+p+se−ωa2

da = 1. (41)

For p = s, µ = ν, and m = n, we get

C2
n

n

∑
p=0

A2
pωp[

(3)p p!
]2 ∫ ∞

0
a3+2pe−ωa2

da = 1. (42)

Let us use now the formula∫ ∞

0
yλ−1e−ηyu

dy =
1
u

η−λ/uΓ
(

λ

u

)
, (43)

so we have ∫ ∞

0
a3+2pe−ωa2

da =
1
2

ω−(2+p)Γ(2 + p), (44)

and inserting equation (44) into equation (42), we have

C2
n

n

∑
p=0

A2
pωp[

(3)p p!
]2 1

2
ω−(2+p)Γ(2 + p) = 1, (45)

that is,

C2
n

n

∑
p=0

A2
p[

(3)p p!
]2 1

2ω2 Γ(2 + p) = 1. (46)

Inserting the constant of integration Cn in equation (46) into
equation (38), we have

ψn(a) =

[
n

∑
p=0

A2
p[

(3)p p!
]2 1

2ω2 Γ(2 + p)

]− 1
2

× a
3
2 e−

ω
2 a2

HeunB
(

2; 0; 2(n + 2); δ̃n
µ ; ω

1
2 a
)

.

(47)

The eigenfunctions are biconfluent Heun functions, satisfying
the boundary conditions ψn(0) = 0 and ψn(∞) = 0, and con-
sistent on the interval [0 + ∞[. The polynomial condition (34)
provides Heun polynomials of the biconfluent case ensuring
that the eigenfunctions are well-behaved.

We consider now the case of matter dominated by a nega-
tive cosmological constant, so Λ = −|Λ|. The wave functions
for the Newtonian universe with negative cosmological con-
stant are given by

ψn(a) =

[
n

∑
p=0

A2
p

[(3)p p!]2
1

2ω2 Γ(2 + p)

]− 1
2

× a
3
2 e−

ω
2 a2

HeunB
(

2; 0; 2(n + 2); δ̃n
µ ; ω

1
2 a
)

,

(48)

En = (n + 2)h̄
(
|Λ|
3

) 1
2

, n = 0, 1, 2 . . . , (49)

with the parameters given by

ω2 =
|Λ|
3

m2

h̄2 ; ω =

(
|Λ|
3

) 1
2 m

h̄
; ω

1
2 =

(
|Λ|
3

) 1
4 (m

h̄

) 1
2 ,

(50)

δ̃ = −4GM
(
|Λ|
3

)− 1
4 (m

h̄

) 3
2 . (51)

The eigenvalues are nondegenerate since for each value of n
corresponds only one eigenfunction.

5. CONCLUDING REMARKS
We consider a small spherical portion of the universe, where
Newton’s theory applies and the behavior of this portion may
reflect the evolution of the universe. Since the variable a(t) that
is referred to as the scale factor is positive, we choose to pay
attention to the affine quantization procedures. The solution of
the time-independent Schrödinger equation is of type biconflu-
ent Heun function where the two first parameters are fixed to
2 and 0, respectively. Our results are quite similar to the ones
in [14] with the difference that performing affine quantization,
the Hamiltonian operator gains an extra term that is propor-
tial to 1/a2 and that extra term fixes the first parameter of the
biconfluent Heun function to the value of 2. In a case of mat-
ter dominated by a negative cosmological constant, Λ = −|Λ|,
the eigenvalues are positive equally spaced and nondegener-
ate. Regarding cosmic evolution, the presence of a negative
cosmological constant implies that our universe that is a small
spherical portion of the universe where Newton’s theory ap-
plies, has maximal size. The Newtonian approach is much sim-
ple from the conceptual and mathematical points of view; how-
ever, it met also problems and criticisms [29, 30, 31, 32, 33]. It
is interesting to work out under which conditions Newtonian
cosmology applies. Recent works in Newtonian cosmology in-
clude [34, 35].
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APPENDIX: BICONFLUENT HEUN
EQUATION
A biconfluent Heun equation, denoted by BHE(α, β, γ, δ), is the
equation of form

xu′′(x) +
[
1 + α − βx − 2x2

]
u′(x)

+

{
(γ − α − 2) x − 1

2
(δ + (α + 2)β)

}
u(x) = 0,

(52)

in which (α, β, γ, δ) ∈ C4. It has a regular singular point at
0 and an irregular singular point at ∞. The biconfluent Heun
equation is well known and studied from a mathematical point
of view (see [28, 36, 37, 38, 39]) and has some applications in
different areas of physics [40, 41, 42]. Referring to [28], pages
203–206, if the biconfluent Heun equation admits a polynomial
solution, then, it is necessary that γ − α − 2p = 2n, where n is
some nonnegative integer, holds. When α is not a negative in-
teger, one can denote by N(α, β, δ, x) a power series (analytic)
solution that can be written as

N(α, β, γ, δ, x) =
∞

∑
p=0

Ap

(1 + α)p

xp

p!
, (53)

with (α)p =
Γ(α+p)

Γ(α) , p ≥ 0, and satisfies the three -term recur-
sion formula

Ap+2 =

{
(p + 1)β +

1
2
[δ + β(1 + α)]

}
Ap+1

− (p + 1)(p + 1 + α)(γ − α − 2 − 2p)Ap = 0,
(54)

where A0 = 1, A1 = 1
2 [δ + β(1 + α)]. The three-recursion

term in equation (54) terminates if and only if γ − α − 2 = 2n,
and An+1 = 0 simultaneously where n is some non nega-
tive integer. Performing induction, An+1(δ) is a polynomial
of δ of degree n + 1 hence possessing at most n + 1 roots δn

µ ,
µ = 0, 1, 2, . . . When the series solution terminates, then we
write

Pn,µ(α, β; x)

= N
(

α, β, α + 2(n + 1), δn
µ ; x
)

, 0 ≤ µ ≤ n, n = 0, 1, 2, . . . .

(55)

When α + 1 > 0 and β ∈ R, then the (n + 1) roots are real.
When all the roots are simple, then the polynomial solutions
described are precisely orthogonal polynomials (see [28], Para-
graph 3.3).
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