
Letters in High Energy Physics LHEP 2, 15, 2019

Can the symmetry breaking in the SM be determined
by the “second minimum” of the Higgs potential?

Alejandro Cabo,1Jose Carlos Suarez,2 Denys Arrebato,3 Fernando Guzman,3 and Jorge Luis Acosta 3
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Abstract
The possibility that the spontaneous symmetry breaking in the Standard Model (SM) may be generated
by the Top-Higgs Yukawa interaction (which determines the so called “second minimum” in the SM) is
investigated. A former analysis about a QCD action only including the Yukawa interaction of a single
quark with a scalar field is here extended. We repeat the calculation done in that study of the two loop
effective action for the scalar field of the mentioned model. A correction of the former evaluation allowed
to select a strong coupling α(µ, ΛQCD) = 0.2254 GeV at an intermediate scale µ = 11.63 GeV, in order to
fix the minimum of the potential at a scalar mean field determining 175 GeV for the single quark mass.
Further, a scalar field mass m = 44 GeV is evaluated, which is also of the order of the experimental Higgs
mass. The work is also considering the effects of employing a running with momenta strong coupling.
For this purpose, the finite part of the two loop potential contribution determined by the strong coupling,
was represented as a momentum integral. Next, substituting in this integral the experimental values of
the running coupling, the minimum of the potential curve as a function of the mean field was again fixed
to the top quark mass by reducing the scale to the value µ = 4.95 GeV. The consideration of the running
coupling also deepened the potential value at the minimum and slightly increased the mass of the scalar
field up to 53.58 GeV. These results rested in assuming that the low momentum dependence of the coupling
is “saturated” to a constant value being close to its experimental value at the lowest momentum measured.
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1. INTRODUCTION
The so called “second minimum” of the Higgs field potential
in the Standard Model is the result of the Yukawa interaction of
the Higgs field with the Top quark. The presence of that mini-
mum had been intrinsically related with the same construction
of the model along the years. Special procedures of fixing the
various parameters of the theory had to be designed in order to
assure that the minimum is separated from the usual Higgs ex-
tremum by a potential barrier, being impossible to be tunneled
by the standard physical vacuum [1, 2, 3]. In addition, propos-
als had been advanced that determine the Higgs mass from the
condition for the two minima to coincide in values of the po-
tential [3]. In Ref. [4] a simple massless QCD model including
only one quark type (modeling the Top quark) and a scalar field
(modeling the Higgs field) with a Yukawa interaction between
them, was investigated. The aim of the study was to explore a
suspicion about that the so called “second minimum” could in
fact be responsible for the symmetry breaking in the SM. The
idea was to evaluate the two loop effective potential for the
scalar field, which in the SM is responsible for the generation
of the “second minimum” and to study the possibility of choos-
ing the renormalization conditions to fix the value of the single
fermion mass as equal to the top quark one 175 GeV. An idea
strongly motivating this previous work, came after noting that
this additional minimum was identified only after the SM cal-

culations arrived up to the two loop order. Then, the question
emerges about what could had been the result of an attempt to
construct the SM around this new radiative corrections deter-
mined minimum, if it would had been known from the start in
the SM construction. Up to our knowledge, there had not been
attempts to answer this question in the past literature. The re-
sults in Ref. [4] were inconclusive, in spite of the fact that the
correct experimental values of the Higgs and the Top quark
masses were able to be fixed by choosing a definite value of
the strong coupling parameter. However, it happened that the

calculated value of this parameter was a high one: α =
g2

4π close
to 1, which assuming the one loop formula for the relation be-
tween the coupling and the scale corresponded to a low mo-
mentum scale µ = 0.49 GeV, being outside the region of mea-
sured experimental values of the couplings.

In the present work we extend the study done in reference
[4]. The discussion starts by considering a new evaluation of
the two loop effective potential for the mean value of the scalar
field modeling the Higgs. The discussion will proceed in two
main directions. 1) The first one is to reconsider the two loop
evaluation done in [4] in order to search for possible faults in
those calculations, which could had altered the obtained nu-
merical values of the couplings and the scale required for fixing
the Top quark mass to its observed value.
2) In second place we will also consider to employ the running
values of the coupling with the momentum in the evaluation, in
order to check if the decreasing values of the coupling with mo-
mentum, also allows to justify the fixing of the potential mini-
mum to reproduce the Top quark mass, which was attained at
constant coupling.
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In connection with the new evaluation of the potential, we
present the results of the calculation of the three relevant loop
integrals determining the effective potential for the scalar field.
The revision allowed to detect a numerical error which slightly
affected the calculated coupling and scale values for fixing the
Top mass. The corrected results were employed to calculate the
new values of the coupling and the scale. The change resulted
a positive one: the new scale and coupling values (which were
assumed to be related by the one loop formula for the coupling)
resulted in values being larger for the scale: µ = 11.63 GeV with
respect to the value µ = 0.49 GeV evaluated in [4]. For coupling

values the new result was α =
g2

4π = 0.225445, a smaller result
than the high outcome of nearly α ' 1 following in the former
work. Then, this first conclusion supports the suspected possi-
bility that the spontaneous symmetry breaking in the SM could
be generated only by the Top quark-Higgs Yukawa interaction.

In order to consider the use of the running coupling with
the momentum in evaluating the potential, we first reformu-
lated the finite integral defining the quark-gluon effective po-
tential contribution, which is directly determined by the strong
coupling (the quark loop with a contracted gluon propagator).
After substracting specially designed divergent parts of the rel-
evant Feynman integral, it was possible to identically trans-
form its finite part in the Minimal Substraction scheme in an in-
tegral over the momenta. This technical result directly allowed
to substitute the constant strong coupling by running with the
momentum one in the integral.

The results assumed that the coupling dependence on the
momentum is “saturated” to a constant value for momentum
smaller than the smallest of the momenta at which the running
coupling is experimentally measured. The calculated effective
potential modifies the one evaluated at the initial constant cou-
pling g(µ, ΛQCD) at µ = 11.63 GeV. However, after slightly di-
minishing the scale to the value µ = 4.95 GeV the minimum of
the potential was reinstalled at the top quark mass 175 GeV. Af-
ter this, the value of the potential at the minimum as a function
of the mean field is deepened. This result indicates that the di-
minishing of the coupling with momentum does not drastically
alter the behavior of the effective potential, which can be fixed
also to retain a minimum at a scalar field mean value imposing
a Top quark mass of 175 GeV.

Another outcome, is that the new evaluation for the effec-
tive potential at constant coupling shows a second derivative
at its minimum which predicts a scalar field mass of nearly
m = 44 GeV. This result is smaller but yet close to the observed
Higgs mass of 126 GeV. The new value corrects the one calcu-
lated in Ref. [4]. The consideration of the running coupling only
increases the scalar field mass up to a close value of 53.58 GeV.

We estimate this conclusion as one interesting outcome of
the analysis. It means that once the Top quark mass is fixed, the
spontaneous symmetry breaking pattern associated to the Top-
Higgs Yukawa interaction (that is to the “second minimum”) is
able to determine a mass value of the scalar field being close to
the experimentally measured mass of the Higgs particle. There-
fore, it might be expected that the many new contributions to
the curvature of the Higgs potential that will exist in a more
realistic SM type of calculation make feasible to fix the experi-
mental value of 126 GeV for the Higgs mass. A first possibility
for it is offered by the required presence of a squared in the
Higgs field Lagrangian term. This term may be independently
needed by renormalization and the smallness of the evaluated

contribution to the Higgs mass may allow to fix a positive
sign for the mass squared factor multiplying the squared Higgs
field.

Therefore, the discussion in the work still sustain the expec-
tation about the possibility of describing the full SM after con-
sidering an initial Lagrangian in which the classical Mexican
hat potential may be absent. The exploration of this possibility
will be considered elsewhere.

The plan of the work is as follows. In Section 2, the model
and its Feynman expansion are reviewed. Section 3 continues
by presenting the new evaluation of the effective potential for
the mean scalar, and discussing the changes with respect to the
previous calculations in Ref. [4]. Section 4 exposes the determi-
nation of the new values of the scale parameter µ = 11.63 GeV
and its associated strong coupling value which allowed to fix
the Top mass as equal to the experimental value. Next, Section
5 describes the derivation of the transformation of the effec-
tive potential contribution depending on the strong coupling,
in a momentum integral. This allows to substitute the constant
value of the strong coupling by the running with the momen-
tum formula in Section 6. Finally, in Section 7 some physical
connections of the simple model considered here with the SM
are discussed. The results are reviewed at the Summary.

2. THE MODEL
Let us now start by reviewing the main elements of the model
discussed in [4]. The generating functional of the Feynamn ex-
pansion is based in an action including a singlet scalar field in-
teracting with only one type of quark. The functional was cho-
sen in the form

Z[j, η, η, ξ, ξ, ρ] =
1
N

∫
D[A, Ψ, Ψ, c, c, φ]×

× exp[i S[A, Ψ, Ψ, c, c, φ]]. (1)

The action was taken in the form written below, in which in
addition to the usual massless QCD Lagrangian, there were
only considered a Yukawa interaction term of a quark with a
one component scalar field and the corresponding action term
for the scalar. To simplify the discussion, the free action of the
scalar field was defined as a massless free term in the absence
of self-interaction. The action, after decomposed in its free and
interaction parts, is written below

S =
∫

dx(L0+L1), (2)

L0 = Lg + Lgh + Lq + Lφ, (3)

Lg = −1
4
(∂µ Aa

ν − ∂ν Aa
µ)(∂

µ Aa,ν − ∂ν Aa,µ)−

1
2α

(∂µ Aµ,a)(∂ν Aa
ν), (4)

Lgh = (∂µχ∗a)∂µχa, (5)

Lq = Ψ iγµ∂µ Ψ, (6)

Lφ =
1
2

∂µφ∂µφ, (7)
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L1 = − g
2

f abc(∂µ Aa
ν − ∂ν Aa

µ)Ab,µ Ac,ν−

g2 f abe f cde Aa
µ Ab

ν Ac,µ Ad,ν−

g f abc(∂µχ∗a)χb Ac
µ+

gΨTaγµΨAa
µ + y ΨΨ φ. (8)

The dimensionless Yukawa coupling y will be assumed to have
a value close to y = 1 as it had been estimated in the litera-
ture [6]. After constructing the Feynman expansion being as-
sociated to the above generating function and classical action,
the evaluation of the effective potential as a function of an ho-
mogeneous scalar (Higgs resembling) field was considered in
reference [4], up to the two loop approximation. All the nota-
tions for the quantum fields quantities, Minkowski metric, etc.
used in this work closely follow the ones employed in reference
[5] .

3. TWO LOOPS EFFECTIVE POTENTIAL
OF THE SCALAR FIELD

Let us consider again the evaluation of all the contributions to
the effective potential V(φ) for the scalar field φ, up to the two
loop order. This is the quantity determining the spontaneous
symmetry breaking effect in the considered model and check-
ing its calculation is central for to be sure about its physical pre-
dictions. We will see that numerical errors slightly affected the
results of the previous work. The corrections will then allow to
modify the results for the scale parameter µ and the coupling
g(µ, ΛQCD) values required for fixing the Top quark mass value
for the fermion in the model.

3.1. The one loop term
The analytic expression for the one loop contribution shown

in Fig. 1 which was evaluated in [4], was given by the classical
logarithm of the fermion quark determinant as:

Γ(1)[φ] = −V(D)N
∫ dpD

i (2π)D×

Log[Det (G(0)rr′
ii′ (φ, p))], (9)

D = 4− 2ε,

where D is the space dimension of dimensional regularization
and the free fermion propagator was written as before in the
conventions of Ref. [5], which, as mentioned before, will be
used also throughout this work. This propagator is defined as

G(0)rr′
ii′ (φ, p) = δii′ (

1
−pµγµ + φ

)rr′

= − δii′

p2 − φ2 (pµγµ + φ)rr′ . (10)

As before, assuming the case of QCD with SU(N) symmetry
for N = 3, and evaluating the spinor and color traces, the one
loop expression is simplified to become

Γ(1)[φ] = V(D) N
2

∫ dpD

i (2π)D Log[(φ2 − p2)4].

FIGURE 1: It shows the quark one loop correction. The result
depends on the scalar ”mass” field φ through the quark free
propagator which is the usual free Green function of QCD, in
which the mass is substituted by φ.

Taking the derivative over φ2 of Γ(1)[φ] allows to write the eas-
ily integrable expression

d
d φ2 Γ(1)[φ] = V(D)2N

∫ dpD

(2π)D
1

(p2 + φ2)
.

Making use of the identity

∫ dpD

(2π)D
1

(p2 + λ2)
=

Γ(1− D
2 )

(4π)
D
2

(λ2)
D
2 −1, (11)

and integrating the result back over φ2, gives the dimensionally
regularized expression

Γ(1)[φ] = V(D) 2NΓ(1− D
2 )

(D
2 )(4π)

D
2

(φ2)
D
2 −1

= V(D) 2N Γ(ε− 1)
(D

2 )(4π)2−ε
(φ2)2−ε, (12)

which coincides with the corresponding expression in [4]. Let
us divide Γ(1)[φ] by V(D)

µ2ε , in order to write the action density.
The quantity µ in the denominator is the dimensional regular-
ization scale parameter, and the divisor µ2ε, which tends to one
on removing the regularization, is introduced in order to avoid
results containing logarithms of quantities having dimension.
Then, the one loop Lagrangian density takes the form

γ(1)[φ] =
Γ(1)[φ]

V(D)
µ2ε

=
2N Γ(ε− 1)
(D

2 )(4π)2−ε
φ4(

φ

µ
)−2ε, (13)

also coinciding with former result in [4]. After deleting the pole
part of the above expression according to the Minimal Substrac-
tion rule, and taking the limit ε→ 0, gives the finite part of the
one loop action density as

[
γ(1)[φ]

]ε→0

f inite
=

3φ4

32π2 (−3 + 2γ− 4 log(2)−

2 log(π) + 2 log(
φ2

µ2 )), (14)

where γ = 0.57721.. is the Euler constant.
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Finally, the one loop potential energy density is given by
the negative of the above quantity

v(1)[φ] = − 3φ4

32π2 (−3 + 2γ− 4 log(2)−

2 log(π) + 2 log(
φ2

µ2 )),

= − 3φ4

32π2 (−3 + 2γ + 2 log(
φ2

4πµ2 )). (15)

It can be noticed that one loop potential density is un-
bounded from below for increasing values of the scalar field,
which is its main property determining the dynamical genera-
tion of the field φ in the model.

3.2. Quark-gluon two loop term
Let us start now evaluating the two loop quark-gluon term

which was calculated in reference [4] and is illustrated in Fig. 2.
Again, after evaluating the color and spinor traces the analytic
expression for this contribution was obtained in a coinciding
form as follows

Γ(2)
g [φ] = −V(D)g2(N2 − 1)

∫ dpDdqD

i2 (2π)2D×

Dφ2 − (D− 2)p.(p + q)
q2(p2 − φ2)((p + q)2 − φ2)

, (16)

where, as before g2 is the QCD coupling constant in the di-
mensional regularization scheme, which introduces the scale
parameter µ according to

g = g0 µ2− D
2 = g0 µε. (17)

FIGURE 2: The two loop contribution determined by the strong
interaction. As before, the φ dependence of the result is intro-
duced though the free quark propagator.

After repeating the same steps followed in [4], that is, sym-

metrizing the expression of Γ(2)
g [φ] under the change of sign

in the momentum q, by means of the integration variable shift
p→ p− q

2 and the use of the identity

p2 = (p +
q
2
)2 − φ2 + φ2−

q2

4
− q.p, (18)

the quark-gluon term is written in the form

Γ(2)
g [φ] = Γ(2.1)

g [φ] + Γ(2,2)
g [φ], (19)

where Γ(2,1)
g [φ] and Γ(2,2)

g [φ] have the formulae

Γ(2,1)
g [φ] = −V(D)2φ2g2(N2 − 1)

∫ dkD
1 dkD

2
i2 (2π)2D×

1
k2

1(k
2
2 − φ2)((k1 + k2)2 − φ2)

= −V(D) 2φ2g2(N2 − 1)
i2 (2π)2D J111(0, φ, φ), (20)

Γ(2,2)
g [φ] = −V(D) (D− 2)g2(N2 − 1)

2i2(2π)2D × (21)

(
∫

dkD
1

1
k2

1 − φ2
)2,

in which, the master two loop integral J111(0, φ, φ) was evalu-
ated making use of the results in Ref. [7], and its explicit form
for the particular values of our arguments is:

J111(0, φ, φ) =
∫

dkD
1 dkD

2 ×

1
k2

1(k
2
2 − φ2)((k1 + k2)2 − φ2)

= −A(ε)π4−2ε

ε2 (φ2)1−2ε, (22)

A(ε) =
(Γ(1 + ε))2

(1− ε)(1− 2ε)
. (23)

Then, using the above definitions the following expression can

be written for Γ(2,1)
g

Γ(2,1)
g [φ] = −

V(D)2g2
0µ2ε(N2 − 1)

(2π)8−4ε
×

A(ε)π4−2ε

ε2 φ4(φ2)−2ε, (24)

and coincides with the former result.
However, for the case of Γ(2,2)

g , we found that the result in
[4] included an error after the square of the one loop integral
in equation (11) was substituted: a minus sign coming from the
Wick rotation of the squared momentum integral in (21) was
omitted. Thus, the correct expression for this term should be

Γ(2,2)
g [φ] = −V(D) g2

0µ2ε(N2 − 1)2(1− ε)

2(2π)8−4ε
×

π4−2ε(Γg(ε− 1))2φ4(φ2)−2ε. (25)

Again dividing by V(D)
µ2ε to evaluate the action densities gives

γ
(2,1)
g [φ] =

Γ(2,1)
g [φ]
V(D)

µ2ε

= −
2g2

0(N2 − 1)
(2π)2D × (26)

A(ε)π4−2ε

ε2 φ4(
φ2

µ2 )
−2ε,

4
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and for the corrected term

γ
(2,2)
g [φ] =

Γ(2,2)
g [φ]
V(D)

µ2ε

= −V(D) g2
0µ2ε(N2 − 1)2(1− ε)

2(2π)8−4ε
×

π4−2ε(Γ(ε− 1))2φ4(φ2)−2ε. (27)

Therefore, repeating the process of substracting the diver-
gent poles and taking the limit ε → 0, the total quark-gluon
two loop finite contribution to the action density takes the ex-
pression

[
γ
(2)
g [φ]

]ε→0

f inite
= −

g2
0

64π4 φ4(30− 28γ + 12γ2+

π2 + 56 log(2) − 48γ log(2)+

48 log(2)2 + 28 log(π)− 24γ log(π)+

48 log(2) log(π) + 12 log(π)2+

(24γ− 28− 48 log(2)− 48 log(π)) ×

log(
φ2

µ2 ) + 12 (log(
φ2

µ2 ))
2)

= −v(2)g [φ], (28)

in which v(2)g [φ] defines the quark-gluon contribution to the ef-
fective potential.

It should be remarked, that the leading logarithm squared
term in the action is negative, indicating that the contribution of
the usual quark-gluon diagram to the potential (equal to minus
the action) up to the two loop approximation remains being
bounded from below as a function of φ, after the corrections
are done.

The divergent contribution to the action follows in the form

γ
(2)
g,div[φ] = −

3g2φ4

32π4ε2 +
g2φ4

32 π4ε
×

(− 7 + 6 γ− 6 log(4π) + 12 log(
φ

µ
)), (29)

which defines the Minimal Substraction making finite the
quark-gluon two loops contribution.

3.3. Scalar-quark two loop term
Finally, let us repeat the evaluation of the two loop term being
associated to the quark-scalar loop illustrated in Fig. 3. Due to
the absence of spinor and color structures in the vertices, the
analytic expression for this term is again calculated to be

Γ(2)
Y [φ] = V(D)2N

∫ dpDdqD

i2 (2π)2D×

p2 − q2

4 + φ2

q2((p +
q
2 )

2 − φ2)((p− q
2 )

2 − φ2)
, (30)

which in a close way as it was done for the quark-gluon term,
was evaluated in the form

Γ(2)
Y [φ] = V(D) 4N

i2 (2π)2D J111(0, φ, φ)

−V(D)N(
∫ dkD

1
i(2π)D

1
k2

1 − φ2
)2

=
V(D)4N
(2π)8−4ε

A(ε)π4−2ε

ε2 φ4(φ2)−2ε

−V(D) N
(2π)8−4ε

π4−2ε×

(Γ(ε− 1))2φ4(φ2)−2ε. (31)

It can be noted that the imaginary number included in the
squared momentum integral, was now and before properly
considered, avoiding in this way the error done in the former
evaluation of the quark-gluon term. The division by the volume

FIGURE 3: The two loop contribution determined by the scalar-
quark interaction. The Yukawa coupling between the quark
and the scalar field was chosen as approximately equal to one.

V(D)
µ2ε again allows to write for the action density, the formula

γ
(2)
Y [φ] =

4N
(2π)8−4ε

A(ε)π4−2ε

ε2 φ4(
φ2

µ2 )
−2ε

− N
(2π)8−4ε

π4−2ε(Γ(ε− 1))2φ4(
φ2

µ2 )
−2ε. (32)

Substracting the divergent pole part in ε, passing to the
limit ε→ 0 gives for the potential density

v(2)Y [φ] = −
[
γ
(2)
Y [φ]

]ε→0

f inite

= − 3
512π4 φ4(50− 40γ + 12γ2 + π2 +

96 log(2) − 64γ log(2)+

64 log(2)2 + 48 log(π)− 32γ log(π)+

64 log(2) log(π) + 16 log(π)2−
8 log(4π) + 8 γ log(4π)− 4 log(4π)2+

(24γ− 40− 64 log(2)− 32 log(π)+ (33)

8 log(4π)) log(
φ2

µ2 ) + 12 (log(
φ2

µ2 ))
2).
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It can be noted that this contribution, being a two loop one,
also includes a squared logarithm term. However, its sign is
contrary to the one appearing in the quark gluon loop.

For the total two loop effective potential it follows

V[φ, µ] = v(1)[φ] + v(2)g [φ] + v(2)Y [φ]. (34)

4. FIXING THE POTENTIAL MINIMUM
FOR MTOP = 175 GEV

Let us consider the sum of all the just evaluated contributions
to the potential energy density V(φ). Its expression is a combi-
nation of terms of the form φ4, φ4 log( φ

µ ) and φ4(log( φ
µ ))

2, with
coefficients that only depend on the strong coupling g0 in the
present first analysis. Then, in order to approach the physical
situation, we evaluated the potential V(φ) at the values of g0
satisfying the one loop formula for the running coupling con-
stant [5]

g0(µ, ΛQCD) = 2

√
2
7

π

√
1

log( µ
ΛQCD

)
. (35)

The ΛQCD constant was chosen to be the estimated ΛQCD =
0.217 GeV. Here it should be remarked that for the determina-
tion of the one loop coupling we have assumed the number of
fermions as equal to six, in place of one, as it is proper for the
model under discussion. This criterion was adopted in order to
assume the strong coupling as more representative of the situa-
tion in the SM. In spite of this, we also had evaluated the results
for the case N f = 1 and the qualitative conclusions of the work
did not appreciably changed.

Next, we studied the potential curves in order to examine
the behavior of their minimum as functions of φ, when the scale
µ is changed. It follows that when the strong coupling starts
to increase as the scale diminish down to one GeV, the value
of φ at the minima, which determines the quark mass also de-
creases. For the particular value of µ = 11.63 GeV, the potential
curve is shown in Fig. 4. The particular value of µ chosen, fixes
the position of the minimum at a field φ defining a quark mass
of 175 GeV. The set of parameters for this curve are

µ = 11.63 GeV, (36)

g0 = 1.68316 (α =
(g0)

2

4π
= 0.225445), (37)

ΛQCD = 0.217 GeV. (38)

4.1. The mass of the scalar field
Let us consider the mass of the scalar field to be defined in the
present calculation. For evaluating it, we write the following
approximate two loop action for the scalar field linear propaga-
tion modes around the minimum of the potential at the mean
field homogeneous value φ

Lφ =
1
2

∂µδφ∂µδφ− 1
2

δφV′′[φ]δφ, (39)

V′′[φ] =
∂2

∂φ2 V[φ + δφ]

∣∣∣∣
δφ=0

. (40)

The Lagrange equation for the propagating scalar field
waves δφ = exp(−i p.x) then writes

(∂µ∂µφ + V′′[φ])δφ = (−p2 + V′′[φ])δφ = 0. (41)

0 50 100 150 200

-1.5´106

-1.0´106

-500 000

0

Φ

V
HΦ
L

FIGURE 4: The effective potential of the mean field φ for the
value of the scale µ determining φ at the potential minimum
being equal to the top quark mass mtop = 175 GeV. The second
derivative at the minimum gives for the scalar field a low mass
mφ = 44 GeV, which is of the order the Higgs one 126 GeV.
In this calculation the scale µ allowing the top mass fixation is
within an intermediate energy region: µ = 11.63 GeV, which

gives a coupling value α =
g2

0
4π = 0.225445.

Therefore the mass of the scalar field waves is given by

mφ =
√

V′′[φ]. (42)

That is, the mass of the scalar field in a first approximation is
defined by the square root of the second derivative of the ef-
fective potential respect to the mean field. Therefore, the sec-
ond derivative of the potential curve in Fig. 4, estimates for the
mass of the scalar field mφ = 45 GeV. This value is smaller but
of the order of the observed Higgs mass of 126 GeV. Then, after
considering that by fixing the fermion mass to the top quark
experimental mass, had determined a mass for the scalar field
being close to the Higgs’s one, directly supports the possibil-
ity of generating the breaking of symmetry in the SM through
the Yukawa interaction between the Top quark and the Higgs
field. This possibility is also made plausible, by noticing that
upon considering a similar evaluation, but in a model showing
the same field content as the SM, there will exist a variety of
additional contributions to the Higgs mass. In particular it will
exist a squared in the Higgs field term required by renormal-
ization. Thus, their contribution to the Higgs potential could
correct the resulting scalar field mass value to become close to
the observed one.

As remarked before, the appeared single extremum of the
potential is related with the existence of so called “second min-
imum” of the Higgs potential in the SM, laying at large values
of the Higgs field. That minimum is recognized to be produced
precisely by the contributions of the top-quark Yukawa inter-
action term, which is of the same form that the one considered
here [1, 2, 3].

5. POTENTIAL EVALUATION USING THE
RUNNING COUPLING

In this section, we will investigate the stability of the previous
evaluation of the effective potential for the scalar mean field
by substituting the constant value of the coupling chosen at a

6
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given scale by the running coupling with momentum. The ob-
jective will be to check how robust can be the fixing of the Top
quark mass, under the replacement of the constant value of the
coupling by a momentum dependent one. For this purpose the
expression for the finite part of the effective potential (obtained
after employing the Minimal Substractions scheme) will be rep-
resented as a momentum integral, in which replacement of the
constant coupling can be further implemented.

In fact this had been the most demanding technical part of
the present work. The difficulty was determined by the em-
ployed dimensional regularization approach under the Min-
imal Substraction scheme. The obstacles were created by the
fact that normally, the full divergence structure of the evaluated
quantities near dimension equal to four, only appears after inte-
grating over the momenta. But, for approximately substituting
the constant coupling by the running one with momentum, it
requires an expression for the finite part being represented as a
momentum integral. To derive this expression is the main ob-
jective of most of the technical discussion to be presented below
in this section.

The plan of the section is as a follows. First, we will present
the formula for the effective potential as represented by a mo-
mentum integral in terms of Appell series as functions of the
momenta and ε = 4−D

2 . But, the Euclidean space integral has
a volume differential of the form dV=dq q3−2ε (determined by
the D dimensional integration over the momenta). Then, it was
noted that for making finite the integral, it is only needed to
substract a specially designed asymptotic form at large values
of q of the factor F(q) defining the full integrand as F(q)dV. The
complex form of these terms complicated the discussion, be-
cause the Appell functions appearing do not show a pure Tay-
lor expansion in powers of 1

q . In fact, the expansion becomes a

power series of 1
q with factors which are powers of qε. These

factors, although becoming equals to 1 for ε → 0, contribute to
the final result due to the appearance of divergent pole terms
in ε.

After substracting the appropriate divergent terms, a for-
mula for a momentum integral was obtained which became
convergent at large momentum and showed a single divergent
term at small momentum as 1

q . However, we noted that after
substituting few of these divergent factors as

1
q
→ 1√

q2 + δ2,
(43)

the integral became again convergent at large momentum, but
also at zero momentum. This led to the introduction of a new
parameter which afterwards played a helpful role. At this
point, it was possible to take the limit ε → 0 in the integral
due to its finite character. Then, we passed to study the diver-
gent contribution which was substracted to make the integral
finite at large as well as for zero momenta. Since the momen-
tum dependence of this substraction became simpler than the
original one, it was possible to exactly evaluate the momentum
integral, which allowed to determine its pole structure in ε as
well as its finite part.

As it should result to be the case, the pole part of the di-
vergent integral exactly reproduced the Minimal Substraction
required to make the two loop quark-gluon term finite. As for
its finite part, it resulted as a function of the scale parameter
µ, the mean field φ, the strong coupling constant, but also of
the new parameter δ introduced for making the substracted in-
tegral convergent at small momentum. At this point came the
helpful character of the regularization parameter δ: we selected
its value as a function of µ, φ and g for to impose that the fi-
nite part of the divergent integral vanishes for all values of µ, φ
and g. This fixation of δ became possible and a real and positive
solution exists for the variety of values of µ, φ and g.

Therefore, it followed that the defined finite integral over
the momenta exactly coincides with the effective potential
when the strong coupling is constant. Hence, the obtained for-
mula for effective potential can be used to explore the effects
of considering that the strong coupling of the gluons with
the quarks runs with the exchanged momenta. This will done
within the contribution associated to the quark self energy
loop, contracted with the gluon propagator.

5.1. The two loops quark-gluon contribution to the effective
potential as a momentum integral

As it was mentioned in the past subsection, we now investigate
the effects that could have on the results to assume that the
strong coupling varies with the magnitude of the exchanged
momentum q. The evaluation of the effective potential done in
the past section seems amenable of being influenced by assum-
ing the coupling to run with the momentum.

We followed a specific path in order to derive a momentum
integral for the finite part of the quark-gluon contribution to the
effective action. The outcome, in one hand coincides with the
result when the coupling is momentum independent and then
it was employed to investigate the effects of substituting the
strong coupling by a running with the momentum expression
in the following section.

We start by considering that the effective action is given
by the contraction of the gluon polarization tensor and free
gluon propagator. Then, the polarization tensor was expressed
through the formula derived in the page 374 of reference [5]

Πab
µν(q) = −

4g2δab

(4π)2−ε
Γ(ε)(q2gµν − qµqν)×

∫ 1

0
dx x(1− x)(φ2 − x(1− x)q2)−ε. (44)

After contracting the tensor with the gluon propagator

Dab
µν(q) =

δab

q2 (gµν − (1− α)
qµqν

q2 ), (45)

the quark-gluon contribution to the effective action for the
scalar field (minus the effective potential), after evaluating the
integral over the variable x got the expression

7
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Γ(2)
g (ε, g, φ, µ) =

∫ ∞

0
dq
∫ 1

0
dx 2−3+4εg2q3−2επ−4+2ε(−3 + 2ε)×

Γ(ε)(1− x)x(1− q2(−1 + x)x)−εφ4(
φ
µ )
−4ε

Γ(2− ε)

=
∫ ∞

0
dq L(2)

g (q, ε, g, φ, µ). (46)

where the usual momentum integration variable, let say p, had been expressed in terms of a dimensionless variable q through the

change of variables p = φ q. In addition, it also was defined the momentum integrand L(2)
g (q, ε, g, φ, µ) having the explicit form

L(2)
g (q, ε, g, φ, µ) =

1
3Γ(2− ε)

g2q3−2ε×

4ε(2π)−4+2ε(3− 2ε) φ4 (
φ

µ
)−4ε Γ(ε)×

(−3AppelF1[2, ε, ε, 3, u(q), v(q)]+
− 2AppelF1[3, ε, ε, 4, u(q), v(q)], (47)

u(q) =
(−q2 +

√
q2(4 + q2))

2
, (48)

v(q) =
(−q2 −

√
q2(4 + q2))

2
, (49)

in terms of the Appell functions [8, 9]

AppelF1[a, b1, b2, c, x, y] =
∞

∑
m=0

∞

∑
n=0

(a)m+n(b1)m(b2)n

m!n!(c)m+n
×

xmyn, (50)

in which the Pochhammer symbols are defined as

(a)n =
Γ(a + n)

Γ(a)
. (51)

The L(2)
g function is not convergent at large momentum,

and the pole parts of its momentum integral as functions of
the ε parameter define the Minimal Substraction required to
make the result finite. However, as it was mentioned before,
by substracting the asymptotic behavior of the Appell func-
tions at large momentum the integral can be made finite. The
resulting integrand after this substraction can be written as

Lsub(q, ε, g, φ, µ, δ) =
1

3Γ(2− ε)
g2q3−2ε×

4ε(2π)−4+2ε(3− 2ε) φ4 (
φ

µ
)−4ε Γ(ε)×

(−3 (AppelF1[2, ε, ε, 3, u(q), v(q)]
−Appel23Sub[q, ε, δ])+

2 (AppelF1[3, ε, ε, 4, u(q), v(q)]−
Appel34Sub[q, ε, δ])] (52)

where the substractions done are defined by the large momentum asymptotic form of the two entering Appell functions given by
the fomulae

8
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Appel23Sub[q, ε, δ] =
2−1+2επ

3
2 q−2ε csc(π(1− ε))

Γ( 3
2 − ε)Γ(ε)

+

(
1
q2 )

1−εq−2ε(
21+2επ

3
2 q−2εε csc(π(1− ε))

Γ( 3
2 − ε)Γ(ε)

−

2π csc(π(1− ε))

Γ(2− ε)Γ(ε)
+

4επ
3
2 q−2εε csc(π(1− ε))

Γ( 3
2 − ε)Γ(1 + ε)

)+

(
1
q2 )
−ε q−2ε

(q2 + δ2)
(

41+επ
3
2 q−2εε csc(π(1− ε))

Γ( 3
2 − ε)Γ(ε)

+

41+επ
3
2 q−2εε2 csc(π(1− ε))

Γ( 3
2 − ε)Γ(ε)

+
8π csc(π(1− ε))

Γ(2− ε)Γ(ε)
−

12π csc(π(1− ε))

Γ(3− ε)Γ(ε)
+

8πε csc(π(1− ε))

Γ(3− ε)Γ(ε)
−

41+επ
3
2 q−2εε csc(π(1− ε))

Γ( 3
2 − ε)Γ(1 + ε)

−

41+επ
3
2 q−2εε2 csc(π(1− ε))

Γ( 3
2 − ε)Γ(1 + ε)

+

3× 4επ
3
2 q−2εε csc(π(1− ε))

Γ( 3
2 − ε)Γ(2 + ε)

+

3× 4επ
3
2 q−2εε2 csc(π(1− ε))

Γ( 3
2 − ε)Γ(2 + ε)

), (53)

and

Appel34Sub[q, ε, δ] =
3

2q2(1− ε)
+

3
4

Appel23Sub[q, ε, δ]−

3× 2−4+2επ
3
2 q−2εε2 csc(π(2− ε))

(−1 + ε)Γ( 5
2 − ε)Γ(−1 + ε)

+

2−2ε(
1
q2 )

1−ε(
3× 2−2+4επ

3
2 q−2ε csc(π(2− ε))

Γ( 5
2 − ε)Γ(−1 + ε)

−

3× 2−3+4επ
3
2 q−4ε csc(π(2− ε))

Γ( 5
2 − ε)Γ(ε)

)+

2−2εq2ε

(q2 + δ2)
(− 3× 2−1+4επ

3
2 q−4εε csc(π(2− ε))

Γ( 5
2 − ε)Γ(−1 + ε)

+

3× 22ε π q−2ε csc(π(2− ε))

(−1 + ε)Γ(3− ε)Γ(−1 + ε)
+

3× 2−1+4ε π
3
2 q−4εε csc(π(2− ε))

Γ( 5
2 − ε)Γ(ε)

−

+
9× 2−3+4επ

3
2 q−4εε csc(π(2− ε))

Γ( 5
2 − ε)Γ(1 + ε)

). (54)

9



Letters in High Energy Physics LHEP 2, 15, 2019

In the above two expressions, it should be noted that ear-
lier defined quantity δ is appearing in the denominators of the
form (q2 + δ2). They, appeared after making the substitution
q → 1√

q2+δ2
in a q4 denominator of the only term diverging

as 1
q at zero momentum. This procedure eliminates the men-

tioned zero momentum divergence, furnishes a simple momen-
tum dependence of the result and makes the result a function of
the quantity δ. The substitution, on another hand does not dis-
turbe the large momentum convergence of the considered in-
tegral. Therefore, the substracted divergent expression has the
form

Lcount(q, ε, g, φ, µ, δ) =
1

3Γ(2− ε)
g2q3−2ε×

4ε(2π)−4+2ε(3− 2ε)Γ(ε) φ4(
φ

µ
)−4ε×

(−3 Appel23Sub(q, ε, δ)+

2Appel34Sub(q, ε, δ)). (55)

Now, as remarked above, the relative simplicity of the obtained
momentum dependence of the substracted term, allows to ex-
actly perform the momentum integrals to obtain the result

Scount(ε, g, φ, µ, δ) =
∫ ∞

0
dq Lcount(q, ε, g, φ, µ, δ)

= 4−5+3εg2π−
3
2 +2ε(

1
δ2 )

ε×

(−3 + 2ε) φ4 (
φ

µ
)−4ε csc(πε)2×

(− 42+επ
3
2 (

1
δ2 )

ε(−2 + ε)(−1 + ε)2×

ε(−1 + 2ε) csc(2πε)Γ(2− 2ε)Γ(1 + ε)−

21+2επ
3
2 (

1
δ2 )

ε(−2 + ε)(−1 + 2ε)×

(−3 + 4ε) csc(2πε)Γ(3− 2ε)Γ(1 + ε)−

4επ
3
2 (

1
δ2 )

ε(−1 + 2ε)(1 + 4ε)×

csc(2πε)Γ(5− 2ε)Γ(1 + ε)−
64 (−2 + ε)(−1 + ε)2Γ(2− 2ε)×

Γ(
5
2
− ε)Γ(−1 + ε)Γ(1 + ε)+

64 (−1 + ε)3Γ(2− 2ε)Γ(
5
2
− ε)×

Γ(−1 + ε)Γ(1 + ε)+

41+επ
3
2 (

1
δ2 )

εε(−1 + 2ε) csc(2πε)×

Γ(5− 2ε)Γ(2 + ε))/

(Γ(
3
2
− ε)Γ(2− 2ε)2Γ(

5
2
− ε)×

Γ(3− ε)Γ(−1 + ε)Γ(1 + ε)). (56)

But, expanding this relation in series of the ε parameter
leads to the result

Scount(ε, g, φ, µ, δ) =
∞

∑
n=−∞

S(n)
count(g, φ, µ, δ) εn

= − 3g2φ4

32π4ε2 +
g2φ4

32 π4ε
×

(− 7 + 6 γ− 6 log(4π) + 12 log(
φ

µ
))+

g2φ4

64 π4 × (− 21 + π2 + 10γ−

48 log(2)2 − 28 log(4π)+

6(γ2 + γ(3− 2γ)− log(π) log(256π2)+

γ(−γ + log(256π4)))−

18 log(
1
δ2 ) + 6 log(

1
δ2 )

2+

8(7− 6γ + 6 log(4π)− 6 log(
φ

µ
)) log(

φ

µ
))

+ O(1)(ε), (57)

where O(1)(ε) is a function vanishing when ε→ 0.
In the above formula, it should be remarked that the pole

part, which defines the divergent contribution, exactly coin-
cides with the Minimal Substraction term (29) required to
make finite the quark-gluon cntribution to the effective ac-
tion. Now, it can be noticed that the expression for the integral
Scount(ε, g, φ, µ, δ) (which was substracted from the momentum
integral of the term L(q, ε, g, φ, µ) to obtain a finite remaining
integral) has a finite part when ε → 0. But, this finite part is
depending on the regularization parameter δ which was used
to make convergent the momentum integral around the zero
momentum. This circumstance opens the interesting possibil-
ity of choosing this value of δ precisely to force the finite part to
vanish for all the value of the scale µ and the mean field. Then,
imposing this condition for determining δ, we may write

0 =
g2φ4

64 π4 × (− 21 + π2 + 10γ−

48 log(2)2 − 28 log(4π)+

6(γ2 + γ(3− 2γ)− log(π) log(256π2)+

γ(−γ + log(256π4)))−

18 log(
1
δ2 ) + 6 log(

1
δ2 )

2+

8(7− 6γ + 6 log(4π)− 6 log(
φ

µ
)) log(

φ

µ
)). (58)

One helpful property of this equation is the fact that it does
not involve the values of the strong coupling. This means that
δ is only a function of the scale µ and the mean field φ. The
equation for δ has a real and positive solution defined for all
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the values of the ratio φ
µ which can be expressed as follows

δ(φ, µ) =
1√

exp( f1 (36 + 4 F (φ, µ)))
, (59)

F (φ, µ)=

√
f2 + f3 log(

φ

µ
) + f4 log(

φ

µ
)2, (60)

f1 = 0.041666, (61)

f2 = 750.872709, (62)

f3 = −898.696871, (63)

f4 = +288.00. (64)

The dependence of δ of the ratio φ
µ is depicted in Fig. 5.

FIGURE 5: It shows the plot of the real and positive solution for
δ(φ, µ) as a function of the ratio φ

µ .

Further, the function δ(φ, µ) was substituted in the in-
tegrand Lsub defined in equation (52) which upon integra-
tion furnishes the finite integral. The result for the inte-
grand of the finite integral can then be written in the form,

LMS (q, g, φ, µ) = Lsub(q, ε, g, φ, µ, δ)|δ→δ(φ,µ), ε→0

=
g2φ4

32π4q
(12.9266− 12 q2 + 2.1789 q4 − 12 γ + 2 γ q4+ (65)

+
0.643577− 0.597445γ− 0.597445 log( 1

q2 )

(0.22313 + exp (0.166667
√

750.873 + log( φ
µ )(− 898.697 + 288 log( φ

µ ))) q2)2
−

12 log(
1
q2 ) + 6 q2 log(

1
q2 )+

−5.76862 + 5.35512 γ + 5.35512 log( 1
q2 )

0.22313 + exp (0.166667
√

750.873 + log( φ
µ )(− 898.697 + 288 log( φ

µ ))) q2
+

12 q2 log(q)− 4 q4 log(q)+

q4 (− 6 AppellF(0,0,1,0,0,0)
1 (2, 0, 0, 3,

1
2
(− q2 +

√
q2(4 + q2)),

1
2
(− q2 −

√
q2(4 + q2)))+

4 AppellF(0,0,1,0,0,0)
1 (3, 0, 0, 4,

1
2
(− q2 +

√
q2(4 + q2)),

1
2
(− q2 −

√
q2(4 + q2)) )−

− 6 AppellF(0,1,0,0,0,0)
1 (2, 0, 0, 3,

1
2
(− q2 +

√
q2(4 + q2)),

1
2
(− q2 −

√
q2(4 + q2)))+

4 AppellF(0,,1,0,0,0,0)
1 (3, 0, 0, 4,

1
2
(− q2 +

√
q2(4 + q2)),

1
2
(− q2 −

√
q2(4 + q2)) ) ) ), (66)

where a superindex of the form (n1, n2, n3, n4, n5, n6) in the ap-
pearing Appell functions represents the numbers of ni, i =
1, ..., 6 of the derivatives over the corresponding six arguments
of such functions. It should be noticed that in writing this ex-
pression, the limit ε → 0 was also chosen, as allowed by the
finiteness of the integral. Therefore, we have arrived to an ex-
pression of the finite part of the effective action in the form

L(g, φ, µ) =
∫

dq LMS (q, g, φ, µ). (67)

Figure 6 shows the evaluations of the quark-gluon con-
tribution of the effective potential (minus the action) through
both formulae (28) and (67). The plots for constant coupling
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FIGURE 6: The plots illustrate the coincidence of the calcu-
lated momentum integral representation for the quark-gluon
two loop contribution to the effective action with the result of
the direct evaluation of the same quantity. The solid curve in-
dicates the values of the momentum integral representation in
(67) and the dotted one the evaluation of the two loop quark
gluon contribution in formula (28).
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through are done for values of the scale parameter µ = 11.63
GeV and of the coupling g = go(11.63, Λ). The solid curve
shows the values of −L(g, φ, µ) and the dotted one the values

of v(2)g [φ] in (28) as functions of the mean field.
In expression (67), it is possible now to replace the up to

now constant value of the strong coupling by its running ex-
pression with momentum. The following section will discuss
some properties of this substitution.

6. THE USE OF THE RUNNING COUPLING
WITH MOMENTUM

In this section, the discussion starts by defining the running
coupling to be considered. Since it is known that the values of
couplings are not well defined at low momenta of the order of 1
GeV, we defined values of the running coupling “saturated ” at
low momentum. That is, in a neighborhood of zero momentum
they were assumed to be constant.

For the purpose of substituting the constant coupling by its
running counterpart, we analyzed two variants of couplings.
The first of them was the expression for the one loop renormal-
ization coupling as a function of momentum

go(q) =
{√ 1

bo log( φ2q2

Λ2 )
, φ2q2

Λ2 > exp( 16π2

7 g2
sat
)

gsat , φ2q2

Λ2 < exp( 16π2

7 g2
sat
)

, (68)

gsat = 2.06. (69)

Note that the usual momentum argument of the running cou-
pling had been substituted in terms of the previously defined
dimensionless integration variable q. In this expression the
couplings for momenta smaller than the value at which they

become equal to the highest measured coupling gsat = 2.06,
are assumed to remain constant, and equal to their “satura-
tion” values [10]. Another form of the analyzed running cou-
pling was given by an interpolation of the set of experimental
values reported in reference [10]. The expression describing the
data was obtained in the form

gexp(q) =
{ 23.4193

log(32361.1672 (φq)2)
, φq > 1.604

gsat, φq < 1.604
, (70)

where gsat is the same saturation value defined before, that is,
the maximal value of the experimentally measured couplings
given in reference [10]. Note that the dimensional momentum
momentum p entering the defintion of the experimental values
of the couplings was expressed in terms of the before defined
dimensionaless integration variable q through p = φq.

Both couplings momentum behavior are plotted in Fig. 7 as
functions of the momentum φ q. As it can noticed the values of
the observations are systematically smaller than the one loop
determined values. Therefore, in what follows we decided to
employ the fitting curve of the experimental values for substi-
tuting the constant coupling in formula (67).

6.1. The quark-gluon effective potential evaluation using the
running coupling

It is possible now to substitute the expression for the experi-
mental value of the running coupling gexp(q) in (67) to define
the quark-gluon contribution to the effective potential as eval-
uated at the running coupling values, in the form

Vrun(φ, µ) = −
∫

dq LMS (q, g, φ, µ)|g→gexp(q) . (71)

The resulting formula for this contribution to the effective
potential takes the form

Vrun(φ, µ) =
∫ ∞

0
dq

gexp(q)2φ4

32π4q
(12.9266− 12 q2 + 2.1789 q4 − 12 γ + 2 γ q4+ (72)

+
0.643577− 0.597445γ− 0.597445 log( 1

q2 )

(0.22313 + exp (0.166667
√

750.873 + log( φ
µ )(− 898.697 + 288 log( φ

µ ))) q2)2
−

12 log(
1
q2 ) + 6 q2 log(

1
q2 )+

−5.76862 + 5.35512 γ + 5.35512 log( 1
q2 )

0.22313 + exp (0.166667
√

750.873 + log( φ
µ )(− 898.697 + 288 log( φ

µ ))) q2
+

12 q2 log(q)− 4 q4 log(q)+

q4 (− 6 AppellF(0,0,1,0,0,0)
1 (2, 0, 0, 3,

1
2
(− q2 +

√
q2(4 + q2)),

1
2
(− q2 −

√
q2(4 + q2)))+

4 AppellF(0,0,1,0,0,0)
1 (3, 0, 0, 4,

1
2
(− q2 +

√
q2(4 + q2)),

1
2
(− q2 −

√
q2(4 + q2)) )−

− 6 AppellF(0,1,0,0,0,0)
1 (2, 0, 0, 3,

1
2
(− q2 +

√
q2(4 + q2)),

1
2
(− q2 −

√
q2(4 + q2)))+

4 AppellF(0,,1,0,0,0,0)
1 (3, 0, 0, 4,

1
2
(− q2 +

√
q2(4 + q2)),

1
2
(− q2 −

√
q2(4 + q2)) ) ) ). (73)

Next, it was possible to evaluate the effects of the running
on the calculation of the effective potential. It can be recalled
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FIGURE 7: It shows the values of the fitting formula for a num-
ber of experimentally measured values of the strong coupling
according to reference [10]. This curve is the lower one and the
fitted experimental points are indicated by the dots. The higher
plot shows the values of the one loop renormalization group
running coupling.

that before, we have been able to fix the Top quark mass by fix-
ing the minimum of the potential (after calculated at constant
strong coupling) at the scale parameter value µ = 11.63 GeV.
We then firstly calculated Vrun(φ, µ) at this scale. The evalua-
tion of the total effective potential was done by using the for-
mula

Vtotal
run (φ, µ) = v(1)[φ, µ] + v(2)Y [φ, µ] + Vrun(φ, µ), (74)

in which the quark-gluon term is calculated using the above
formula for Vrun(φ, µ). The one loop and scalar two loop contri-
butions were defined by the same formulae (15) and (33) which
were used in calculating the potential for constant coupling,
since they do no depend on the running coupling. But, for the
original value of the scale µ = 11.63 GeV, the potential curve
was appreciably modified. By example, the minimum position
was changed with respect to the mean field determining a Top
mass value near 175 GeV.

However, through a reduction of the value of µ from 11.63
to 4.95 GeV, it was possible to maintain the minimum of the po-
tential at the 175 GeV value for the mass of the quark. The re-
sults are plotted in Fig. 8. The solid curve represents the values
of the potential evaluated by using the running coupling eval-
uated at a smaller value for the scale µ = 4.95 GeV. The dashed
one is the potential values previously calculated by employ-
ing constant coupling values, chosen at µ = 11.63 GeV. There-
fore, it resulted in the spontaneous symmetry braking pattern
obtained at constant coupling was not drastically affected by
the consideration that the coupling varies with the momentum
scale.

Next, after evaluating the mass of the scalar field the result
was close to the value associated to a constant coupling

mrun
φ =

√
Vtotal ′′

run [0]

= 53.58 GeV. (75)

It should be remarked that the scalar field mass values ob-
tained here are smaller than the observed Higgs particle mass
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FIGURE 8: It shows the plot of the values of the total two-loop
effective potential for the scalar field (solid curve) after the run-
ning coupling is employed for calculating the quark-gluon con-
tribution. The dashed curve shows the similar potential as eval-
uated for the constant values of the strong coupling. The re-
sults indicate that the momentum dependence of the coupling
affects the values of the effective potential. However, the run-
ning coupling does not drastically disturb the arising sponta-
neous symmetry breaking pattern, by allowing to again fix the
minimum of the potential at the scalar field value furnishing
the Top quark mass. For this purpose, it was only required to
reduce the scale from µ = 11.63 down to µ = 4.95 GeV.

of 126 GeV. After thinking about this outcome, we consider that
it does not represent a direct negative result in connection of the
studied possibility of basing the SM on a symmetry breaking
associated to the Yukawa Top-Higgs interaction. This conclu-
sion is determined by the following reasoning. If we consider
a similar calculation of the Higgs mass in the framework of the
more complex SM, then, there will be various new contribu-
tions to the Higgs mass. In particular, the action of the model
should include a quadratic in the Higgs field term, as required
by renormalization (as well also a quartic in the field term). This
term by itself can allow to fix the observed value of the Higgs.
Evenmore, the small result for the Higgs mass arising is helpful
in this sense, since it allows the new term to be a positive mass
squared one. Therefore, one important outcome of the present
work is to determine that the spontaneous symmetry break-
ing generated by a single quark and a scalar (upon fixing the
observed quark top mass) produces a mass for the scalar field
being smaller than the Higgs one. We estimate that the results
of the present work suggest the interest of attempting to con-
struct a modified SM upon the here investigated spontaneous
symmetry effect.

7. CONNECTIONS BETWEEN THE SIMPLE
MODEL AND THE SM

In this final section, we comment about the motivation to ex-
amining the simple theory discussed here. The model consid-
ers only two scalar and fermion fields lacking the SU(2) struc-
ture of the Higgs particle and the quarks. We have chosen this
simplification in an attempt to isolate the problematic of the
so called “second minimum” in the SM. This extremum of the
Higgs potential is known to be mainly determined by the inter-
actions between only two fields: the Higgs and the Top quark
ones. Therefore, we decided to include in the model only two
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simple scalar and fermion fields resembling the Higgs and the
Top modes. The fact that after the breaking of the SU(2)×U(1)
symmetry the three goldstone bosons become unphysical, sup-
ports this expectation.

One important question consists in whether or not the ob-
tained results support that analogous conclusions could be at-
tained from a model being almost identical to the SM, but only
excluding the Mexican Hat Higgs potential. For analyzing this
point, let us review each of the basic contributions to the poten-
tial. A main one is the one loop quark term which is logarithmic
of the form

V1(φ)

φ4 = −v1 log(
φ

µ
), (76)

in which v1 is a positive number. This term is mainly responsi-
ble of the existence of the “second minimum” in the SM. This is
because it is unbounded from below, which can define a radia-
tive correction minimum, if larger than log( φ

µ ) positive com-
ponents of the potential for large mean fields exist. Such large
potentials as functions of φ in the model are furnished by the
two loops terms determined by the gluons and the scalar. The
main in this example, gluon potential has the leading behavior

V2(φ)

φ4 ∼ v2 g2
(

log(
φ

µ
)

)2
, (77)

in which v2 is positive. For constant coupling α = 0.225 the Top
quark mass for the fermion was possible to be fixed by choos-
ing µ = 11.63 GeV, which determined a coupling of α = 0.225.
Since the experimental values of the running coupling (as a
function of the momenta) are in general smaller than the one
loop ones (as a function of the scale µ chosen as equal to the
momentum) the two loop gluon contribution becomes smaller
when it is evaluated using the running coupling. Thus, since
the leading two loop terms are quadratic in log( φ

µ ), it is re-
quired to decrease the value of µ = 11.63 GeV, in order to retain
the minimum in the same position of the scalar field assuring
the Top quark mass for the fermion. Note that a change of µ by
a new value µ′ in the one loop term only adds a constant inde-
pendent of φ term log( µ

µ′ ) to the function V1(φ)
φ4 . Then, it does not

modify the minimum position because the extremum follows
from the vanishing of the derivative of the potential divided by
φ4.

Now, let us consider that a similar analysis will be done for
a modified SM in which the Higgs potential is chosen to have
the form

VHiggs(φ) =
m2

2
φ2 +

λ

4!
φ4, (78)

in which the mass squared term is positive in place of the usual
negative one generating the Mexican Hat potential. It can be
observed that the one loop fermion contribution will have a
similar form (with the sole expected modification of a factor
two due to the isotopic SU(2) components of the Top quark)

VSM
1 (φ) = −vSM

1 log(
φ

µ
)φ4. (79)

But, for the various two loops contributions associated to
this model (like the massive W, Z and the Higgs field) the lead-

ing high φ behavior can be expected to have a form of the type

VSM
2 (φ) ∼ (vg

2 g(µ)2 + ve
2 ge(µ)

2 +

vw
2 gw(µ)

2 + ...)×
(

log(
φ

µ
)

)2
φ4, (80)

in which the appearing couplings should be the strong, the
electromagnetic and the weak ones. Adding the three types of
contributions the total potential should take the generic form

VSM
T (φ) ∼ m2

2
φ2 +

λ

4!
φ4 − vSM

1 log(
φ

µ
)φ4+

(vg
2 g2(µ) + vW

2 g2
W(µ)+

vZ
2 g2

Z(µ) + ...)
(

log(
φ

µ
)

)2
φ4 (81)

Then, while the unbounded from below potential remains ap-
proximately the same, the coefficients of the bounding two
loop components are modified. However, the change in the
two loop coefficients in the general model can be expected to
be small because the weak and electromagnetic couplings are
much smaller than the strong coupling at the chosen µ = 11.63
GeV scale. This property indicates that the form of the one and
two loop terms of the simple model considered here should
approximately resemble the result in the modified full SM in
which the quadratic in the Higgs field terms is changed in sign
respect to the one in the usual SM. Then, at this point it can be
noticed that, since the one and two loop terms should be simi-
lar, the results for the Higgs mass in the model, which resulted
smaller than the experimental Higgs mass, becomes a positive
conclusion rather than a negative one. This comes from the fact
that if the evaluation of the mass contributions would result to
be larger than the Higgs mass, the added mass squared term
m2

2 φ2 in the modified SM will become negative in order for the
theory to reproduce the observed Higgs mass. Since the addi-
tion of a positive mass squared term is a natural choice for the
starting Lagrangian, the model allows to conclude that the con-
sideration of the “second minimum” to generate the sponta-
neous symmetry breaking in the modified SM to be considered,
opens the possibility of fixing the observed value of the Higgs
mass. In addition, since only one minimum can be expected to
appear, the proposed model have the chance of eliminating the
presence of instability in the SM.

Let us finally comment on the renormalization point cho-
sen. In order to fix the observed top mass, we selected the scale
at constant coupling of the value µ = 11.63 GeV. Then, it should
be checked that after implementing the renormalization group
invariance, the running values of the parameters evaluated in
the more standard renormalization point at µ = 90 GeV, can
reproduce the measured mass and coupling parameters at this
point. But, such a possibility seems to be allowed by the free-
dom in the parameters in the modified SM proposed. In this
sense, we note that we have chosen to fix the observed Top
quark mass value at the relatively small scale µ = 11.63 GeV.
This is simply an option that we employed, however, we could
also had considered that the Top quark mass could be increased
in reducing the scale µ and use the renormalization group evo-
lution to reproduce the observed parameters at µ = 90 GeV.
These possibilities are expected to be examined in the planned
extension of the work.
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8. SUMMARY
We have explored the possibility that the spontaneous symme-
try breaking effect in the SM could be implemented thanks to
the Yukawa interaction of the Top quark with the Higgs field.
For this purpose a formerly proposed simple model was recon-
sidered. The previous work although indicating in some sense
the possibility investigated, was inconclusive due to the arising
in it of a small value of the renormalization scale (smaller than 1
GeV ) in order to allow the Top quark to get the observed value
of its mass.

In the present work, we evaluated again the effective po-
tential created by the system for the scalar field, and found cal-
culation errors. Their correction then, led to a picture in which
it is also possible to fix the Top quark mass value, but at an in-
termediate value of the scale µ = 11.63 GeV. The value of the
scalar particle mass now emerging was of nearly 45 GV which
is close in order but smaller than the Higgs mass. However, be-
ing an amount smaller still allows for the possibility that in a
modified SM considering a positive mass squared term for the
Higgs field the observed Higgs mass of 126 GeV can be fixed.

The work also investigates the stability of the result for the
spontaneously symmetry pattern by considering the effect of
employing the running with momentum coupling in the cal-
culation. For this purpose, the finite expression in dimensional
regularization of the quark-gluon contribution two loop effec-
tive potential for the Higgs fields was expressed as a momen-
tum integral through a specially designed substraction proce-
dure. The difficulty in attaining this formula, was produced by
the use of dimensional regularization. In this scheme, the diver-
gences are normally substracted after integrating over the mo-
menta. However, we required to conserve the momentum inte-
gral in order to allow the substitution of the constant coupling
by the running one. Then a momentum integral was retained
by first substracting to the momentum integrand a relatively
simple expression, which makes the momentum integral finite.
Afterwards, the integral that was substracted, was exactly eval-
uated in dimensional regularization. This allowed to determine
the divergent pole part and also the finite part which is also
dependent of a parameter just introduced for eliminating a re-
maining zero momentum divergence. The divergent part just
reproduced the minimal substraction counterterm of the quark-
gluon contribution to the two loop effective action. Finally, the
mentioned additional parameter was fixed by imposing that
the finite part of the substracted integral vanishes for all values
of the scalar field and scale parameter.

Further, the obtained formula for the potential (influenced
by substituting the running coupling) was calculated for a close
value of the scale parameter for which the potential was earlier
evaluated at a constant coupling. The formula for the running
coupling employed was a fit to the available data for the mea-
sured couplings. The values of the coupling at small momenta
were assumed to be constant when the momentum value is
smaller than the one associated to the maximal value of the

measured coupling. The results for the potential became mod-
ified with respect to the ones evaluated for constant couplings
at the same scale. However, after step by step reduction of the
scale parameter µ, the minimum of the potential was again
fixed at the value defining the top quark mass for the fermion of
the model. The resulting value of the scale was 4.95 GeV which

determines coupling of α =
g2

4π = 0.216, which is still relatively
small and being included in the region of measured interaction
constants. This outcome allows to conclude that the reduction
of the coupling with momenta still suggests the possibility for
the occurrence of the examined spontaneous symmetry break-
ing pattern.

In a future extension of the work, we plan to start from a La-
grangian being practically equivalent to the SM’s one, in which
all the Higgs field terms associated to the usual scalar doublet
will be present, but in which only the negative mass squared
term creating the Mexican Hat potential will not be consid-
ered. The idea will be to attempt to use the various param-
eters in this slightly modified SM model, for implementing a
symmetry breaking patterns being similar to the one discussed
here.
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