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Abstract 
 

The app reviews are useful for app developers because they contain valuable information, e.g. 
bug, feature request, user experience, and rating. This information can be used to better 
understand user needs and application defects during software maintenance and evolution 
phase. The increasing number of reviews causes problems in the analysis process for 
developers. Reviews in textual form are difficult to understand, this is due to the difficulty of 
considering semantic between sentences. Moreover, manual checking is time-consuming, 
requires a lot of effort, and costly for manual analysis. Previous research shows that the 
collection of the review contains non-informative reviews because they do not have valuable 
information. Non-informative reviews considered as noise and should be eliminated especially 
for classification process. Moreover, semantic problems between sentences are not considered 
for the reviews classification. The purpose of this research is to classify user reviews into three 
classes, i.e. bug, feature request, and non-informative reviews automatically. User reviews are 
converted into vectors using word embedding to handle the semantic problem. The vectors are 
used as input into the first classifier that classifies informative and non-informative reviews. The 
results from the first classifier, that is informative reviews, then reclassified using the second 
classifier to determine its category, e.g. bug report or feature request. The experiment using 
306,849 sentences of reviews crawled from Google Play and F-Droid. The experiment result 
shows that the proposed model is able to classify mobile application review by produces best 
accuracy of 0.79, precision of 0.77, recall of 0.87, and F-Measure of 0.81. 

  
Keywords: Convolutional Neural Network, mobile applications, Natural Language Processing, 
review classification, word embedding. 
  
 
1. Introduction 

Mobile application store like Google Play, IOS AppStore, and Windows Phone Store provides 
features for users to search, download, and give a rating in text form [1], [2]. The developer 
uses reviews as information to maintain application development [3], [4]. The reviews can also 
be used as a reference for allocating development efforts, maintenance, and application quality 
improvement [5]–[7]. 

The rapid development of mobile application increases the number of reviews. For example, the 
facebook app receives more than 4275 reviews per day [3]. This challenging task for developers 
in analyzing and classifying app reviews regularly. The number of reviews is simply too large for 
manual checking and extremely consume a lot of cost, time, and effort [5]. Moreover, user 
reviews tend contains unstructured and informal sentences [6], [7]. User reviews might contain 
semantic sentence structure, i.e. synonym, homonym, and polysemy words contained in the 
review sentences. There are also useless reviews for developers, known as non-informative 
reviews [8], [9]. In other cases, non-informative reviews are also called spam reviews. These 
type of reviews tend not to be related to the content being discussed [10]. 

Research on the software reviews classification from application store has been done by many 
researchers, especially for mobile application. Maalej & Nabil use probability techniques based 
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on the features of review metadata, keyword frequencies, linguistic rules, and sentiment 
analysis [1]. Review data is converted into Bag-of-word (BOW) then classified using three 
classification methods, Naive Bayes, Decision Tree, and MaxEnt. Other studies use a 
combination of Natural Language Processing (NLP), Sentiment Analysis (SA) and Text Analysis 
(TA) which are classified using five machine learning classification methods, namely Naive 
Bayes, Support Vector Machine, Logistic Regression, J48 and ADTree [5]. Puspaningrum et.al 
uses lexical similarity by utilizing term list to classifying the mobile application review. Three 
categories are used, i.e. bug report, feature request, and non-informative. This is the basis of 
this study to use these three categories. However, previous research did not consider semantic 
sentences for the classification. The Convolutional Neural Network (CNN) which is combined 
with word vector as the input, produces higher accuracy than linear classification methods [11]. 
In addition, CNN does not require term list to classify data in textual form. Another advantage of 
CNN is it can determine features automatically [11], [12]. The use of word embedding can 
handle semantic problems because each word is converted into vector based on the word 
relation in the sentence [13]. 

This research proposes a framework to classify reviews automatically using word embedding 
and binary classifier. Review data in sentences are converted into vectors using word 
embedding to handle semantic problem. The sentence vector is used as input for classification 
using CNN. The classification process is conducted twice, where the first classifier uses to 
classify the informative reviews and the second classifier to classify bug and feature request 
categories. The output of the first classifier is a collection of informative and non-informative 
reviews. Furthermore, informative reviews are reclassified using the second classifier to 
determine the category of review (bug report or feature request). As shown in the experiment 
result, the proposed model is able to classify mobile application review. 
 
2. Review Categorization 

Previous research describes reviews into four categories, i.e. bug report, feature request, user 
experience, and rating [1], [14], [15]. Other research describes five categories, i.e. Feature 
Request (FR), Problem Discovery (PD), Information Seeking (IS), Information Giving (IG), and 
Other (OT) [5], [7], [16]. User experience and rating categories are considered as non-
informative reviews because they do not provide significant benefits for developers in 
maintenance and software evolution. Moreover, reviews in the experience category sometimes 
still overlapping to rating [8]. Therefore, reviews included in IG, IS, and OT categories are 
considered as non-informative reviews.  

This study uses three categories, i.e. bug report, feature request, and non-informative. Bug 
report describes problems related to applications that must be corrected such as errors in 
functional or application performance issues. Feature request describes functionality or missing 
application content. Users may give ideas to improve application performance by adding or 
replacing application features. Non-informative describes reviews that do not provide 
significant benefits for developers in maintenance and software evolution process. 
 
3. Research Methods 

Proposed model consists of three modules, i.e. pre-processing, word embedding, and 
classification as shown in the figure 1. The pre-processing module processes review document 
using NLP technique so that ready to be used for the classification process. The word 
embedding module maps each word into vector. The classification module categorizes review 
sentences into informative and non-informative documents. The collection of informative 
sentences is classified into bug report or feature request categories using CNN. 

3.1. Pre-processing 

Pre-processing includes extraction process for textual data so that it can be used for 
classification [17]. In this research, there are five steps for the pre-process stage, i.e. lowercase, 
tokenization, stop-words removal, and spelling correction. Lowercase step changes reviews 
into standard form by converting all letters in review sentences into lowercase. Tokenization 
step aims to split sentences into words called token. Sentences are separated into tokens 
based on the space character. After that, tokens that are considered less relevant for the 
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classification process will be removed during stopwords removal step. The list of stopwords 
used in this research is Google standard stopwords list. 
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Figure 1. Proposed Model. 

The final step is spelling correction, which aims to throw and change the abbreviation words 
into proper words. The habit of people in writing a review is to abbreviate the words, e.g. “don't” 
means “do not”, “isn’t” means “is not”, “can’t” means “cannot”, etc. This can affect the results of 
the classification if not corrected. The spelling correction words used in this research follow the 
spelling correction list used in [8]. 

3.2. Word Embedding 

Word embedding is a language modeling technique on Natural Language Processing (NLP) 
where each word or phrase in vocabulary will be mapped into real number vector. The 
advantages of word embedding are being able to reduce dimensions of words vector and 
increase computing performance [11], [18]. Furthermore, word embedding can handle semantic 
sentence problems. This is because the process of forming words into vectors is based on the 
closeness of the word used in the sentence. The vector formed is a real number. 

The most popular word vector is GloVe because it provides vectors in various dimensions, i.e. 
50, 100, 200, and 300 dimensions. GloVe was developed by Pennington at Stanford University. 
This word vector is based on an unsupervised algorithm for tracing the representations of the 
word in vectors. GloVe is basically a log-bilinear method by giving values to the least squares 
that are generated from 6 billion corpus tokens from the Wikipedia data 2014 and English 
Gigaword Fifth Edition. The result of this process is vectors that represent the information of 
words. These word vector can produce high probability for words that are contexts of sentences 
and low probability for words that are not context. Furthermore, this vector becomes input for 
the classifier. The position of tokens that do not exist in the vocabulary model (out of 
vocabulary) is determined as a random vector. This research uses GloVe that has been trained 
and can be accessed publicly in the study [19]. 

3.3. Classification 

The classification process consists of two modules, i.e. (1) informative review classification, 
detecting informative and non-informative reviews and (2) classification of review categories, 
specifying categories (bug reports or feature requests) from each review sentence. This study 
uses CNN as classifier. CNN is a type of neural network development that can be used for text 
classification. CNN consists of neurons that have weight, bias and activation functions. The 
architecture of CNN is divided into three parts, i.e. the convolutional layer, pooling layer, and 
Fully-Connected layer (FC-layer). 
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Convolutional layer produces filters with length and height (pixels). The initialized filters are 
shifted to all parts of reviews word vector. Each shift will be performed with a dot operation 
between word vector and value of filters. The output is called an activation map or feature map. 
The filter is shifted based on stride and padding that was previously determined as a parameter 
[20].  

Pooling layer consists of filters with certain size and stride that will shift across the feature map. 
This research uses max pooling as pooling layer. Max pooling collects maximum value to 
generate a new matrix from feature maps. The main purpose of pooling layer is to reduce the 
dimensions of the feature map without losing important information from the matrix. This 
process is able to accelerate computation because the parameters that are processed further 
are smaller and can overcome overfitting [21]. 

FC layer consists of the hidden layer, activation function, an output layer and a loss function. 
The output from FC layer is processed using softmax function with the aim to specify the 
category of input review. The output of softmax function represents a category distribution, i.e. 
probability distribution of a number of possible K results. Given input vector  , weight vector  , 

and     denotes the inner product of   and  , softmax function is defined in equation (1). 

          
 
    

       
   

 (1) 

                
 

   
                 (2) 

The difference between softmax output and ground truth H is calculated using cross entropy 

objective function. Cross entropy is defined in equation (2). Parameter   denotes ground truth 
and    denotes softmax output. The softmax function is used twice in this research, (i) function in 
the first classifier indicates input review sentence into informative or non-informative. (ii) The 
second function is used in the second classifier to indicates bug or feature request. The quality 
of experiment is examined by using accuracy, precision, recall, and F-measure. The value of 
performance is declared in decimal units. 
 
4. Dataset and Experiment 

4.1. Dataset 

This research uses the dataset that was obtained from [16]. The dataset is obtained by crawling 
on the Google Play mobile application store that is associated with Android F-Droid application 
provider. The number of data is 288,065 reviews from 395 different applications. Reviews are 
broken down into a collection of sentences. The total number of sentences is 451.293 
sentences. The sentences classified into three categories, i.e. feature request, bug report, and 
non-informative. The final number of sentences per category is shown in table 2. 

4.2. Data Cleaning 

This research applies data cleaning to minimize noise.  The data cleaning process removes 
non-latin characters, reviews that only consist of punctuation, reviews without the label, blank 
reviews, and duplicate reviews. The removal of non-latin characters and punctuation uses 
Regular Expression (ReGex). Punctuation marks to be removed i.e. comma (,), period (.), 
exclamation point (!), question mark (?), quotation mark/inverted comma (“), colon (:), semicolon 
(;), ellipsis (…), hyphen (-), n-dash (–), and m-dash (—). Furthermore, blank review, reviews 
without the label, and duplicate reviews are removed by Weka application. 
 
 

Table 1. Details of Data Cleaning Process. 

Cleaning Process 
Number of  

Initial Sentences 

Number of  

Final Sentences 

Removed  

Sentences 
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Remove non-latin character  451,293 450,137 1,156 

Remove full punctuation reviews  450,137 448,022 2,115 

Remove reviews without labels 448,022 447,955 67 

Delete blank reviews 447,955 435,484 12,471 

Remove duplicate reviews 435,484 306,849 128,635 

Total Removed Sentences   144,444 

 
The number of initial data from [16] is 288,065 reviews that are consisted of 451,293 sentences. 
Data cleaning process eliminates 144,444 sentences, so the number of final data is 306,849 
sentences. Table 1 shows the number of data that were removed for each data cleaning 
process. The number of clean sentences for each category is shown in table 2.  
 

Table 2. Number of Sentences Each Category. 

Category  Number of Sentences 

Feature Request 16,212 

Problem Discovery 30,369 

Non-informative 260,268 

Total Sentences 306,849 

 
In addition, the collected data is divided into two parts, i.e. training and testing data with a ratio 
of 80:20. Data for training as much as 80% and testing data as much as 20%. The data 
separation is determined randomly. Furthermore, the experiment uses cross validation to 
increase the relevance of experiment data. 

4.3. Experimental Setup 

Conversion of reviews into vector uses four variants of GloVe as word embedding, i.e. 50, 100, 
200, and 300 dimensions. This aims to determine the performance of different dimensions of 
word embedding. The CNN parameters used for classification in this study based on [22]. Some 
parameters are used for CNN application for text classification, i.e. zero padding (set to 0), the 
stride of 1, mini-batch size of 128, and one epoch. ReLU refers to Rectified Linear Unit and 1-
max pooling as commonly used in CNN also used in this experiment. Region value of 1 with 100 
feature maps each. Some parameters are tuned based on the number of words per sentence in 
dataset. In Giovanni's dataset, the average number of words per sentence is 15 words. Tuning 
process is carried out with a variant of certain values to obtain values for regularization and 
kernel parameters based on [22]. The basis for determining the best parameters is the value of 
parameter that produces the highest F-measure for classification. So that the best kernel for 
Giovanni’s dataset is 1 and best regularization parameters include dropout rate 0.5 and l2 
constraint 1x10

-1
. 

 
5. Result and Discussion 

The experiment result is shown in table 3. It can be seen that the use of 200-dimension of 
GloVe word vector produces the highest F-measure compared to other dimensions for 
informative and category classifier. F-measure by 0.671 for the informative and non-informative 
classifier (Informative classifier) and 0.819 for bugs and feature requests classifier (Category 
classifier). This is because of the number of vector dimensions is correspond to the used 
parameters.  
 

Table 3. Classifier performance.    

Word Vector Informative Classifier Category Classifier 
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Dimension Accuracy Precision Recall F1 Accuracy Precision Recall F1 

50 0.887 0.639 0.625 0.632 0.543 0.554 0.610 0.581 

100 0.885 0.734 0.596 0.658 0.732 0.733 0.803 0.766 

200 0.890 0.738 0.681 0.671 0.793 0.772 0.871 0.819 

300 0.888 0.754 0.605 0.671 0.815 0.831 0.607 0.556 

 

The 300-dimension results close to 200-dimension. The first classifier's precision in 300-
dimension produces a higher value, but not significant. The results of this experiment support 
research in [22] that discusses the number of words per input vector and the word vector 
dimension affecting the classification results. So, the selection of the dimensions of the word 
vector depends on the number of words in the review sentence. A sentence has 15 words on 
average in the dataset which used in this research. Moreover, experiment using 100-dimension 
always produces the lowest value when implemented for category classifier. This may be 
affected by the amount of test data for the classification. The number of test data for category 
classifier is around 15,016 sentences and dropout rate by 0.5. The dropout rate affects the final 
results depending on the dataset [12], [22]. 

Figure 2 shows the performance of final accuracy for informative and category classifier. The 
final accuracy is obtained by calculating the results of informative classifier followed by category 
classifier. The informative reviews that are predicted as informative (true positive) on informative 
classifier are classified using category classifier to determine the category (bug report or feature 
request). In this way, performance informative classifier combined with category classifier can 
be obtained. The final accuracy It can be seen 200-dimension produces a higher accuracy 
compared to other dimensions which produces best accuracy value by 0.53. This is due to 
result of informative and category classifier where 200-dimension always produces the best 
performance for recall and accuracy. However, the performance accuracy of each classifier 
(shown in table 3) decreases compared to the accuracy of the combined two classifiers. This is 
due to the high false positives obtained from the informative classifier. False positives from 
informative classifier are non-informative reviews that are predicted as informative reviews by 
the system. The number of false positives is added as a divider to calculate the final accuracy. 

 

 

Figure 2. Final Accuracy Performance. 

 

Based on the experiment result, the proposed model is able to classify mobile application 
review. Compared to the LSTM as classifier in Puspaningrum et al. [8], the proposed model 
produces higher precision, recall, and F-measure. The precision, recall, and F-measure 
produced by Puspaningrum et al. are 0.564, 0.507, and 0.491 respectively. The proposed 
model produces 0.772, 0.871, and 0.819. One possible factor that may affect the different result 
is that the number of sentences in the dataset is different. The experiment of the proposed 
model used more data than Puspaningrum et al. It means more vocabulary are captured by 
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word vector. From the comparison result, the CNN combined to word embedding as input is 
able to handle the review classification. 

 
6. Conclusion 

This research proposed CNN which was built on top of GloVe word vector to handle mobile 
application review classification. The classification model classifies review into three categories, 
i.e. bug report, feature request, and non-informative. The experiment uses 306,849 sentences 
of mobile application reviews. The best performance is produced by using GloVe 200-dimension 
as word vectors in word embedding process. Two classifiers were used to classify reviews, (i) 
classifier to classify informative and non-informative sentences and (ii) classifier to detect the 
category of informative sentences (bug report or feature request). The result shows that the 
proposed model is able to classify reviews by F-measure values 0.671 for the informative and 
non-informative classifier. Furthermore, the category classifier produces F-measure by 0.819 
and the best final accuracy by 0.53.  

However, we found an issue that may affect the overall performance. The issue is the effect of 
the number of words per sentences on the word vector dimension. To solve this problem, tuning 
parameters for CNN may be needed for different types of datasets. For the future work, word 
position in a vector can be improved by using other word vectors, e.g. Word2Vec, Senna, or 
non-static word vector.   
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