
LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

1

Classification of Mobile Application Reviews using
Word Embedding and Convolutional Neural Network

I Made Mika Parwita
1
, Daniel Siahaan

2

Informatics Department, Institut Teknologi Sepuluh Nopember

Surabaya, Indonesia
1
 mika.parwita@gmail.com

2
 daniel@if.its.ac.id

Abstract

The app reviews are useful for app developers because they contain valuable information, e.g.
bug, feature request, user experience, and rating. This information can be used to better
understand user needs and application defects during software maintenance and evolution
phase. The increasing number of reviews causes problems in the analysis process for
developers. Reviews in textual form are difficult to understand, this is due to the difficulty of
considering semantic between sentences. Moreover, manual checking is time-consuming,
requires a lot of effort, and costly for manual analysis. Previous research shows that the
collection of the review contains non-informative reviews because they do not have valuable
information. Non-informative reviews considered as noise and should be eliminated especially
for classification process. Moreover, semantic problems between sentences are not considered
for the reviews classification. The purpose of this research is to classify user reviews into three
classes, i.e. bug, feature request, and non-informative reviews automatically. User reviews are
converted into vectors using word embedding to handle the semantic problem. The vectors are
used as input into the first classifier that classifies informative and non-informative reviews. The
results from the first classifier, that is informative reviews, then reclassified using the second
classifier to determine its category, e.g. bug report or feature request. The experiment using
306,849 sentences of reviews crawled from Google Play and F-Droid. The experiment result
shows that the proposed model is able to classify mobile application review by produces best
accuracy of 0.79, precision of 0.77, recall of 0.87, and F-Measure of 0.81.

Keywords: Convolutional Neural Network, mobile applications, Natural Language Processing,
review classification, word embedding.

1. Introduction

Mobile application store like Google Play, IOS AppStore, and Windows Phone Store provides
features for users to search, download, and give a rating in text form [1], [2]. The developer
uses reviews as information to maintain application development [3], [4]. The reviews can also
be used as a reference for allocating development efforts, maintenance, and application quality
improvement [5]–[7].

The rapid development of mobile application increases the number of reviews. For example, the
facebook app receives more than 4275 reviews per day [3]. This challenging task for developers
in analyzing and classifying app reviews regularly. The number of reviews is simply too large for
manual checking and extremely consume a lot of cost, time, and effort [5]. Moreover, user
reviews tend contains unstructured and informal sentences [6], [7]. User reviews might contain
semantic sentence structure, i.e. synonym, homonym, and polysemy words contained in the
review sentences. There are also useless reviews for developers, known as non-informative
reviews [8], [9]. In other cases, non-informative reviews are also called spam reviews. These
type of reviews tend not to be related to the content being discussed [10].

Research on the software reviews classification from application store has been done by many
researchers, especially for mobile application. Maalej & Nabil use probability techniques based

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

2

on the features of review metadata, keyword frequencies, linguistic rules, and sentiment
analysis [1]. Review data is converted into Bag-of-word (BOW) then classified using three
classification methods, Naive Bayes, Decision Tree, and MaxEnt. Other studies use a
combination of Natural Language Processing (NLP), Sentiment Analysis (SA) and Text Analysis
(TA) which are classified using five machine learning classification methods, namely Naive
Bayes, Support Vector Machine, Logistic Regression, J48 and ADTree [5]. Puspaningrum et.al
uses lexical similarity by utilizing term list to classifying the mobile application review. Three
categories are used, i.e. bug report, feature request, and non-informative. This is the basis of
this study to use these three categories. However, previous research did not consider semantic
sentences for the classification. The Convolutional Neural Network (CNN) which is combined
with word vector as the input, produces higher accuracy than linear classification methods [11].
In addition, CNN does not require term list to classify data in textual form. Another advantage of
CNN is it can determine features automatically [11], [12]. The use of word embedding can
handle semantic problems because each word is converted into vector based on the word
relation in the sentence [13].

This research proposes a framework to classify reviews automatically using word embedding
and binary classifier. Review data in sentences are converted into vectors using word
embedding to handle semantic problem. The sentence vector is used as input for classification
using CNN. The classification process is conducted twice, where the first classifier uses to
classify the informative reviews and the second classifier to classify bug and feature request
categories. The output of the first classifier is a collection of informative and non-informative
reviews. Furthermore, informative reviews are reclassified using the second classifier to
determine the category of review (bug report or feature request). As shown in the experiment
result, the proposed model is able to classify mobile application review.

2. Review Categorization

Previous research describes reviews into four categories, i.e. bug report, feature request, user
experience, and rating [1], [14], [15]. Other research describes five categories, i.e. Feature
Request (FR), Problem Discovery (PD), Information Seeking (IS), Information Giving (IG), and
Other (OT) [5], [7], [16]. User experience and rating categories are considered as non-
informative reviews because they do not provide significant benefits for developers in
maintenance and software evolution. Moreover, reviews in the experience category sometimes
still overlapping to rating [8]. Therefore, reviews included in IG, IS, and OT categories are
considered as non-informative reviews.

This study uses three categories, i.e. bug report, feature request, and non-informative. Bug
report describes problems related to applications that must be corrected such as errors in
functional or application performance issues. Feature request describes functionality or missing
application content. Users may give ideas to improve application performance by adding or
replacing application features. Non-informative describes reviews that do not provide
significant benefits for developers in maintenance and software evolution process.

3. Research Methods

Proposed model consists of three modules, i.e. pre-processing, word embedding, and
classification as shown in the figure 1. The pre-processing module processes review document
using NLP technique so that ready to be used for the classification process. The word
embedding module maps each word into vector. The classification module categorizes review
sentences into informative and non-informative documents. The collection of informative
sentences is classified into bug report or feature request categories using CNN.

3.1. Pre-processing

Pre-processing includes extraction process for textual data so that it can be used for
classification [17]. In this research, there are five steps for the pre-process stage, i.e. lowercase,
tokenization, stop-words removal, and spelling correction. Lowercase step changes reviews
into standard form by converting all letters in review sentences into lowercase. Tokenization
step aims to split sentences into words called token. Sentences are separated into tokens
based on the space character. After that, tokens that are considered less relevant for the

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

3

classification process will be removed during stopwords removal step. The list of stopwords
used in this research is Google standard stopwords list.

Pre-processing

Tokenization Stopwords Removal

Embedding

Model

Word

Vector

 Word Embedding

Classification

Informative

Classifier
Results

Filter

Category

Classifier

Document

of reviews
Lowercase Spelling Correction

Figure 1. Proposed Model.

The final step is spelling correction, which aims to throw and change the abbreviation words
into proper words. The habit of people in writing a review is to abbreviate the words, e.g. “don't”
means “do not”, “isn’t” means “is not”, “can’t” means “cannot”, etc. This can affect the results of
the classification if not corrected. The spelling correction words used in this research follow the
spelling correction list used in [8].

3.2. Word Embedding

Word embedding is a language modeling technique on Natural Language Processing (NLP)
where each word or phrase in vocabulary will be mapped into real number vector. The
advantages of word embedding are being able to reduce dimensions of words vector and
increase computing performance [11], [18]. Furthermore, word embedding can handle semantic
sentence problems. This is because the process of forming words into vectors is based on the
closeness of the word used in the sentence. The vector formed is a real number.

The most popular word vector is GloVe because it provides vectors in various dimensions, i.e.
50, 100, 200, and 300 dimensions. GloVe was developed by Pennington at Stanford University.
This word vector is based on an unsupervised algorithm for tracing the representations of the
word in vectors. GloVe is basically a log-bilinear method by giving values to the least squares
that are generated from 6 billion corpus tokens from the Wikipedia data 2014 and English
Gigaword Fifth Edition. The result of this process is vectors that represent the information of
words. These word vector can produce high probability for words that are contexts of sentences
and low probability for words that are not context. Furthermore, this vector becomes input for
the classifier. The position of tokens that do not exist in the vocabulary model (out of
vocabulary) is determined as a random vector. This research uses GloVe that has been trained
and can be accessed publicly in the study [19].

3.3. Classification

The classification process consists of two modules, i.e. (1) informative review classification,
detecting informative and non-informative reviews and (2) classification of review categories,
specifying categories (bug reports or feature requests) from each review sentence. This study
uses CNN as classifier. CNN is a type of neural network development that can be used for text
classification. CNN consists of neurons that have weight, bias and activation functions. The
architecture of CNN is divided into three parts, i.e. the convolutional layer, pooling layer, and
Fully-Connected layer (FC-layer).

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

4

Convolutional layer produces filters with length and height (pixels). The initialized filters are
shifted to all parts of reviews word vector. Each shift will be performed with a dot operation
between word vector and value of filters. The output is called an activation map or feature map.
The filter is shifted based on stride and padding that was previously determined as a parameter
[20].

Pooling layer consists of filters with certain size and stride that will shift across the feature map.
This research uses max pooling as pooling layer. Max pooling collects maximum value to
generate a new matrix from feature maps. The main purpose of pooling layer is to reduce the
dimensions of the feature map without losing important information from the matrix. This
process is able to accelerate computation because the parameters that are processed further
are smaller and can overcome overfitting [21].

FC layer consists of the hidden layer, activation function, an output layer and a loss function.
The output from FC layer is processed using softmax function with the aim to specify the
category of input review. The output of softmax function represents a category distribution, i.e.
probability distribution of a number of possible K results. Given input vector , weight vector ,

and denotes the inner product of and , softmax function is defined in equation (1).

 (1)

 (2)

The difference between softmax output and ground truth H is calculated using cross entropy

objective function. Cross entropy is defined in equation (2). Parameter denotes ground truth
and denotes softmax output. The softmax function is used twice in this research, (i) function in
the first classifier indicates input review sentence into informative or non-informative. (ii) The
second function is used in the second classifier to indicates bug or feature request. The quality
of experiment is examined by using accuracy, precision, recall, and F-measure. The value of
performance is declared in decimal units.

4. Dataset and Experiment

4.1. Dataset

This research uses the dataset that was obtained from [16]. The dataset is obtained by crawling
on the Google Play mobile application store that is associated with Android F-Droid application
provider. The number of data is 288,065 reviews from 395 different applications. Reviews are
broken down into a collection of sentences. The total number of sentences is 451.293
sentences. The sentences classified into three categories, i.e. feature request, bug report, and
non-informative. The final number of sentences per category is shown in table 2.

4.2. Data Cleaning

This research applies data cleaning to minimize noise. The data cleaning process removes
non-latin characters, reviews that only consist of punctuation, reviews without the label, blank
reviews, and duplicate reviews. The removal of non-latin characters and punctuation uses
Regular Expression (ReGex). Punctuation marks to be removed i.e. comma (,), period (.),
exclamation point (!), question mark (?), quotation mark/inverted comma (“), colon (:), semicolon
(;), ellipsis (…), hyphen (-), n-dash (–), and m-dash (—). Furthermore, blank review, reviews
without the label, and duplicate reviews are removed by Weka application.

Table 1. Details of Data Cleaning Process.

Cleaning Process
Number of

Initial Sentences

Number of

Final Sentences

Removed

Sentences

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

5

Remove non-latin character 451,293 450,137 1,156

Remove full punctuation reviews 450,137 448,022 2,115

Remove reviews without labels 448,022 447,955 67

Delete blank reviews 447,955 435,484 12,471

Remove duplicate reviews 435,484 306,849 128,635

Total Removed Sentences 144,444

The number of initial data from [16] is 288,065 reviews that are consisted of 451,293 sentences.
Data cleaning process eliminates 144,444 sentences, so the number of final data is 306,849
sentences. Table 1 shows the number of data that were removed for each data cleaning
process. The number of clean sentences for each category is shown in table 2.

Table 2. Number of Sentences Each Category.

Category Number of Sentences

Feature Request 16,212

Problem Discovery 30,369

Non-informative 260,268

Total Sentences 306,849

In addition, the collected data is divided into two parts, i.e. training and testing data with a ratio
of 80:20. Data for training as much as 80% and testing data as much as 20%. The data
separation is determined randomly. Furthermore, the experiment uses cross validation to
increase the relevance of experiment data.

4.3. Experimental Setup

Conversion of reviews into vector uses four variants of GloVe as word embedding, i.e. 50, 100,
200, and 300 dimensions. This aims to determine the performance of different dimensions of
word embedding. The CNN parameters used for classification in this study based on [22]. Some
parameters are used for CNN application for text classification, i.e. zero padding (set to 0), the
stride of 1, mini-batch size of 128, and one epoch. ReLU refers to Rectified Linear Unit and 1-
max pooling as commonly used in CNN also used in this experiment. Region value of 1 with 100
feature maps each. Some parameters are tuned based on the number of words per sentence in
dataset. In Giovanni's dataset, the average number of words per sentence is 15 words. Tuning
process is carried out with a variant of certain values to obtain values for regularization and
kernel parameters based on [22]. The basis for determining the best parameters is the value of
parameter that produces the highest F-measure for classification. So that the best kernel for
Giovanni’s dataset is 1 and best regularization parameters include dropout rate 0.5 and l2
constraint 1x10

-1
.

5. Result and Discussion

The experiment result is shown in table 3. It can be seen that the use of 200-dimension of
GloVe word vector produces the highest F-measure compared to other dimensions for
informative and category classifier. F-measure by 0.671 for the informative and non-informative
classifier (Informative classifier) and 0.819 for bugs and feature requests classifier (Category
classifier). This is because of the number of vector dimensions is correspond to the used
parameters.

Table 3. Classifier performance.

Word Vector Informative Classifier Category Classifier

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

6

Dimension Accuracy Precision Recall F1 Accuracy Precision Recall F1

50 0.887 0.639 0.625 0.632 0.543 0.554 0.610 0.581

100 0.885 0.734 0.596 0.658 0.732 0.733 0.803 0.766

200 0.890 0.738 0.681 0.671 0.793 0.772 0.871 0.819

300 0.888 0.754 0.605 0.671 0.815 0.831 0.607 0.556

The 300-dimension results close to 200-dimension. The first classifier's precision in 300-
dimension produces a higher value, but not significant. The results of this experiment support
research in [22] that discusses the number of words per input vector and the word vector
dimension affecting the classification results. So, the selection of the dimensions of the word
vector depends on the number of words in the review sentence. A sentence has 15 words on
average in the dataset which used in this research. Moreover, experiment using 100-dimension
always produces the lowest value when implemented for category classifier. This may be
affected by the amount of test data for the classification. The number of test data for category
classifier is around 15,016 sentences and dropout rate by 0.5. The dropout rate affects the final
results depending on the dataset [12], [22].

Figure 2 shows the performance of final accuracy for informative and category classifier. The
final accuracy is obtained by calculating the results of informative classifier followed by category
classifier. The informative reviews that are predicted as informative (true positive) on informative
classifier are classified using category classifier to determine the category (bug report or feature
request). In this way, performance informative classifier combined with category classifier can
be obtained. The final accuracy It can be seen 200-dimension produces a higher accuracy
compared to other dimensions which produces best accuracy value by 0.53. This is due to
result of informative and category classifier where 200-dimension always produces the best
performance for recall and accuracy. However, the performance accuracy of each classifier
(shown in table 3) decreases compared to the accuracy of the combined two classifiers. This is
due to the high false positives obtained from the informative classifier. False positives from
informative classifier are non-informative reviews that are predicted as informative reviews by
the system. The number of false positives is added as a divider to calculate the final accuracy.

Figure 2. Final Accuracy Performance.

Based on the experiment result, the proposed model is able to classify mobile application
review. Compared to the LSTM as classifier in Puspaningrum et al. [8], the proposed model
produces higher precision, recall, and F-measure. The precision, recall, and F-measure
produced by Puspaningrum et al. are 0.564, 0.507, and 0.491 respectively. The proposed
model produces 0.772, 0.871, and 0.819. One possible factor that may affect the different result
is that the number of sentences in the dataset is different. The experiment of the proposed
model used more data than Puspaningrum et al. It means more vocabulary are captured by

0,514

0,478

0,530

0,515

0,440

0,460

0,480

0,500

0,520

0,540

50 100 200 300

A
c
c
u

ra
c
y
 S

c
o

re

Word Vector Dimension

Final Accuracy Performance

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

7

word vector. From the comparison result, the CNN combined to word embedding as input is
able to handle the review classification.

6. Conclusion

This research proposed CNN which was built on top of GloVe word vector to handle mobile
application review classification. The classification model classifies review into three categories,
i.e. bug report, feature request, and non-informative. The experiment uses 306,849 sentences
of mobile application reviews. The best performance is produced by using GloVe 200-dimension
as word vectors in word embedding process. Two classifiers were used to classify reviews, (i)
classifier to classify informative and non-informative sentences and (ii) classifier to detect the
category of informative sentences (bug report or feature request). The result shows that the
proposed model is able to classify reviews by F-measure values 0.671 for the informative and
non-informative classifier. Furthermore, the category classifier produces F-measure by 0.819
and the best final accuracy by 0.53.

However, we found an issue that may affect the overall performance. The issue is the effect of
the number of words per sentences on the word vector dimension. To solve this problem, tuning
parameters for CNN may be needed for different types of datasets. For the future work, word
position in a vector can be improved by using other word vectors, e.g. Word2Vec, Senna, or
non-static word vector.

References
[1] W. Maalej and H. Nabil, “Bug Report, Feature Request, or Simply Praise? On

Automatically Classifying App Reviews,” 2015 IEEE 23rd international requirements
engineering conference (RE), pp. 116–125, 2015.

[2] E. Guzman, M. El-halaby, and B. Bruegge, “Ensemble Methods for App Review
Classification : An Approach for Software Evolution,” 30th IEEE/ACM International
Conference on Automated Software Engineering, pp. 771–776, 2015.

[3] M. Lu and P. Liang, “Automatic Classification of Non-Functional Requirements from
Augmented App User Reviews,” Proceedings of the 21st International Conference on
Evaluation and Assessment in Software Engineering, pp. 344–353, 2017.

[4] A. E. Hassan, S. Mcilroy, N. Ali, H. Khalid, and A. E. Hassan, “Analyzing and
automatically labelling the types of user issues that are raised in mobile app reviews
issues that are raised in mobile app reviews,” Empirical Software Engineering, no. July,
2016.

[5] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall, “How
Can I Improve My App ? Classifying User Reviews for Software Maintenance and
Evolution,” 2015 IEEE International Conference on Software Maintenance and Evolution
(ICSME), pp. 281–290, 2015.

[6] D. Galih, P. Putri, and D. O. Siahaan, “Software Feature Extraction using Infrequent
Feature Extraction,” 6th International Annual Engineering Seminar (InAES), pp. 165–169,
2016.

[7] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. Gall, “ARdoc :
App Reviews Development Oriented Classifier,” Proceedings of the 2016 24th ACM
SIGSOFT International Symposium on Foundations of Software Engineering, pp. 1023–
1027, 2016.

[8] A. Puspaningrum, D. Siahaan, and C. Fatichah, “Mobile App Review Labeling Using LDA
Similarity and Term Frequency-Inverse Cluster Frequency (TF-ICF),” 2018 10th
International Conference on Information Technology and Electrical Engineering (ICITEE).
IEEE, 2018.

[9] K. Giannakopoulos, “Informative vs . Non-informative Short Message Detection in Social
Networks,” International Conference on Big Data Computing and Communications
Informative, pp. 165–171, 2017.

[10] A. R. Chrismanto and Y. Lukito, “Identifikasi Komentar Spam Pada Instagram,” Lontar
Komputer : Jurnal Ilmiah Teknologi Informasi, vol. 8, no. 3, p. 219, 2017.

[11] Y. Goldberg, “A Primer on Neural Network Models for Natural Language Processing,”
Journal of Artificial Intelligence Research 57, vol. 57, pp. 345–420, 2016.

LONTAR KOMPUTER VOL. 10, NO. 1 APRIL 2019 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2019.v10.i01.p01 e-ISSN 2541-5832
Accredited B by RISTEKDIKTI Decree No. 51/E/KPT/2017

8

[12] Y. Kim, “Convolutional Neural Networks for Sentence Classification,” arXiv preprint
arXiv:1408.5882, 2014.

[13] P. Wang, J. Xu, B. Xu, C. Liu, H. Zhang, F. Wang, and H. Hao, “Semantic Clustering and
Convolutional Neural Network for Short Text Categorization,” Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference on
Natural Language Processing, pp. 352–357, 2015.

[14] W. Maalej, Z. Kurtanovic, H. Nabil, and C. Stanik, “On the Automatic Classification of App
Reviews,” Requirements Engineering, pp. 311–331, 2016.

[15] W. Maalej, M. Nayebi, T. Johann, and G. Ruhe, “Towards Data-Driven Requirements
Engineering,” IEEE Software SI - FUTURE OF SOFTWARE ENGINEERING, vol. 33, no.
1, pp. 48–54, 2015.

[16] G. Grano, A. Di Sorbo, F. Mercaldo, C. A. Visaggio, G. Canfora, and S. Panichella,
“Android Apps and User Feedback: A Dataset for Software Evolution and Quality
Improvement,” Proceedings of the 2nd ACM SIGSOFT International Workshop on App
Market Analytics, pp. 8–11, 2017.

[17] N. N. E. Smrti, “Otomatisasi Klasifikasi Buku Perpustakaan dengan Menggabungkan
Metode K-NN dengan K-Medoids,” Lontar Komputer : Jurnal Ilmiah Teknologi Informasi,
vol. 4, no. 1, pp. 201–214, 2013.

[18] A. Risteski, “RAND-WALK : A latent variable model approach to word embeddings,” ArXiv
preprint arXiv:1502.03520, pp. 1–33, 2015.

[19] J. Pennington, R. Socher, and C. D. Manning, “GloVe : Global Vectors for Word
Representation,” Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), 2014.

[20] B. Jan, H. Farman, M. Khan, M. Imran, I. Ul, A. Ahmad, S. Ali, and G. Jeon, “Deep
learning in big data Analytics : A comparative study,” Computers and Electrical
Engineering, pp. 1–13, 2017.

[21] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi, “A survey of deep neural
network architectures and their applications,” Neurocomputing, vol. 234, no. October
2016, pp. 11–26, 2017.

[22] B. C. Wallace and Y. Zhang, “A Sensitivity Analysis of (and Practitioners’ Guide to)
Convolutional Neural Networks for Sentence Classification,” arXiv preprint
arXiv:1510.03820, 2016.

