
LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541 
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832 
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018 
 

33 

 

A Practical Analysis of the Fermat Factorization and 
Pollard Rho Method for Factoring Integers    

 
Aminudina1, Eko Budi Cahyonoa2 

 
aDepartment of Informatic, University of Muhammadiyah Malang 

Tlogomas Street 246 Malang, Indonesia 
1aminudin2008@umm.ac.id (Corresponding author) 

2ekobudi@umm.ac.id 
 
 

Abstract 
 
The development of public-key cryptography generation using the factoring method is very 
important in practical cryptography applications. In cryptographic applications, the urgency of 
factoring is very risky because factoring can crack public and private keys, even though the 
strength in cryptographic algorithms is determined mainly by the key strength generated by the 
algorithm. However, solving the composite number to find the prime factors is still very rarely done. 
Therefore, this study will compare the Fermat factorization algorithm and Pollard rho by finding 
the key generator public key algorithm's prime factor value.  Based on the series of test and 
analysis factoring integer algorithm using Fermat's Factorization and Pollards' Rho methods, it 
could be concluded that both methods could be used to factorize the public key which specifically 
aimed to identify the prime factors. During the public key factorizing process within 16 bytes – 64 
bytes, Pollards' Rho's average duration was significantly faster than Fermat's Factorization. 
  
Keywords: Factorization, Fermat's Factorization, Pollard's Rho. 
  
 
1. Introduction 

Information security is a major challenge in an era of information flood like today. The cryptology 
method can be one of the solutions used to secure this information [1]. Cryptology consists of two 
parts, namely cryptography and cryptanalysis. The main task of cryptography is to hide data using 
specific algorithms, while cryptanalyst is a method for investigating the security of a cryptographic 
system by finding weaknesses in codes, ciphers, protocols, or key management schemes.[2]. 
Usually, cryptanalysis refers to analyzing and solving the keys used to perform the encryption and 
decryption processes. Therefore, cryptanalysts are needed to test the robustness of the 
encryption algorithm. There are several mathematical approaches in testing the robustness of 
cryptographic algorithms, including discrete logarithms and factorization. In this study, the 
factorization method is used to break numbers into smaller numbers [3]. This factorization method 
is used for the RSA algorithm to generate public and private keys 

There are several methods that can be used to factor the composite number into prime numbers, 
namely Fermat's factorization and Pollard rho. Fermat factorization looks for the factor of an odd 
number by utilizing the property of an odd number which can be expressed as the difference of 2 
squares from another number [4]. In contrast, the pollard rho method integrates a polynomial 
function in a modulo 𝑛 (the number to be factored) and a seed (generator number) [5]. The 
importance of the two algorithms is that if they can return two large prime factors of modulus 
processing, it can be ascertained that the public and private keys can be found [6]. Thus, this 
integer factorization problem has a significant impact on the security of the public-key 
cryptography system. The research conducted by Chinniah et al. created a factorization method 
that aims to find composite number factors resulting from two different prime numbers [7]. Then 
Li et al. researched the implementation of algorithms with a mathematical model used for factoring 
integers. The results of this study were a comparison between Pollard's Rho and SpSqAlgorithm 
based on execution time. [8]. This study aimed to analyze Fermat's Factorization and Pollards' 
Rho due to vulnerability by factorizing the prime factors. Furthermore, the purpose is to figure out 
the receiving the factorization attack by comparing the factorization time between both methods. 
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The ultimate goal of the proposed research is to discover an opportunity to extend the previous 
study to contribute in the area of cryptanalysis and cryptography. 
 
2. Research Methods 

2.1. Fermat's Factorization 

The following section is the attack method as the technique of factorization. p and q can be easily 
found using Fermat's Factorization with the following steps [6]: 
 

a. 𝑘 = √𝑛      (1) 

b. 𝑘2 > 𝑛 𝑒𝑙𝑠𝑒 𝑛 + +.     (2) 

c. 𝑘2 − 𝑛 = ℎ2  that is, if (ℎ == 𝑠𝑞𝑢𝑎𝑟𝑒).  (3) 
d. 𝑝 = (𝑘 + ℎ) and 𝑞 = (𝑘 − ℎ)    (4) 

 

The variable of 𝑘 on equation (1) is the value of square root n. The variable of 𝑘2 on equation (2) 

is the value of the perfect square. The variable of  ℎ2 on equation (4) is the ultimate value of the 
perfect square. The variable of 𝑝 and 𝑞 on equation (5) is the sought prime. Figure 1 shows the 
pseudocode of Fermat's factorization. 
 

Input : value public key (n) 

Output: p and q 

for k from ceil (sqrt (n)) to n 

h square = k * k-n 

if p > 1 and p < n do 

h = sqrt (hSquared) 

p = k + h 

q = k – h 

 
Figure 1. Flowchart Fermat's Factorization Algorithm 

 
The input value of 𝑛 is used to get factorization from values 𝑝 and 𝑞. The 𝑛 value will be checked 

to include square root or not. After knowing 𝑘 is the square root, it is processed again whether 𝑞 

is greater than 𝑛. Subsequently, the calculations can be done if the value 𝑘 is greater than the 
value 𝑛. If it has a greater value, it proceeds by calculating the result of 𝑘 by performing square 
root. 

Conversely, the calculation is continued by adding 1 to the value 𝑘. After obtaining the square 

root value of 𝑛, we find 𝑝 and 𝑞 values depicted in equation (8) to get the 𝑝 and 𝑞 values. The 
flowchart of Fermat's Factorization is shown in Figure 2. 
 

 
 

Figure 2. Flowchart of Fermat's Factorization Algorithm 
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Figure 5 represents the factorization steps using Fermat's factorization method that have already 
been explained through a flow chart. 

2.2. Pollard's Rho 

Pollard's Rho factorization method calculates the factorization 𝑛  with polynomial modulo 𝑛 
iteration. This algorithm is based on several mathematical concepts, such as integer 
factorization[9]. The following procedure explains the steps of Pollard's Rho algorithm as a 
method of factorization [2]: 
 

a. Input a value that are going to be factorized value 𝑛 

b. 𝑎 = 2, 𝑏 = 2.      (5) 

c. 𝑎 = 𝑎2 + 1 (𝑚𝑜𝑑 𝑛), 𝑏 = 𝑏2 + 1 (𝑚𝑜𝑑 𝑛)  (6) 
d. 𝑝 = gcd(𝑎 − 𝑏, 𝑛).     (7) 

e. 𝑝 ≠ 1 and  𝑝 ≠ 𝑛.      (8) 

f. 1 < 𝑝 < 𝑛, 𝑞 = 𝑛/𝑝      (9) 
 

The 𝑎 and 𝑏 variable on equation (5) is the first step of factorization. The a2 and b2 variable on 

equation (6) is the value that has been square root from the previous result. The 𝑝 variable on 

equation (7) is the prime produced by equation gcd (the greatest divisor), and the 𝑛 variable is 
the prime of the public key. The 𝑞 variable on equation (8) is the prime generated from the division 

of variable 𝑛 and variable 𝑞. Figure 3 shows pseudocode pollard's Rho in detail. 
 

Input : value public key (n) 

Output: p and q values 

initialization a=2, b=2; 

while (true)  

a=(a2 + 1(mod n)) 

b=(b2 + 1(mod n)) 

count p = (a - b), gcd (n); 

print (p) ; 

loop (a,b); 

false if (p = n); 

if p > 1 and p < n than 

count q = (n/p); 

print (q); 

 
Figure 3. Pollard's Rho Algorithm 

 
The first step in the pollards' rho method gets the public key value 𝑛 to be factored into 𝑝 and 𝑞 
values. The next step is calculating the 𝑝 value, which must fulfill the equation 𝑝 > 1 𝑑𝑎𝑛 𝑝 < 𝑛. If 

it does not fulfill the equation, it is recalculated from the beginning. If the 𝑝 value has been found, 

then the 𝑞 value can be calculated.  
 

 
 

Figure 4. Flowchart of Pollard's Rho 
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Figure 7 represents the factorization steps using Pollard's Rho method that have already been 
explained through a flow chart.  

2.3. Scenario of Testing 

The testing scenario was conducted by running the program and inserting the various number of 
public keys that have been generated and compiled using 𝑛 = 𝑝 < 𝑞 < 2𝑝 which finally created 
the public key n. Then the generated key was factorized by using Fermat's Factorization and 
Pollard's Rho method for obtaining the p and q values and figuring out the duration of factorization. 
The public key pairs were created within a range from 16 to 64 bytes complying with the equation 
𝑛 = 𝑝 < 𝑞 < 2𝑝. 
  
3. Result and Discussion 

To increase the security in public key so that it can be concluded afterward the characteristic of 
the strong public key that can withstand the attacks of factorization mainly by using the Fermat's 
Factorization and Pollard's Rho. The test results of Fermat's factorization method are presented 
in Table 1 and Table 2, while Pollard's Rho's test results are shown in Tables 3 and 4. The second 
column shows the public key 𝑛 factorized to obtain the value of 𝑝 and 𝑞. The following columns 

present the digit length of 𝑛, the found value of 𝑝 and 𝑞, duration of factorization, and success 
rate of key public factorization.  

3.1. Testing Using Fermat's Factorization 

The experiment of Fermat's Factorization algorithm used the public key 𝑛 that was normally 

widely distributed. However, this test used the generated public key 𝑛 with the equation 𝑛 = 𝑝 <
𝑞 < 2𝑝 to make it difficult to find the value of 𝑝 and 𝑞. Fermat's factorization was used to factorize 
the public key 𝑛 to find the value of 𝑝 and 𝑞. The test results are illustrated in Table 1 and Table 
2 below: 
 
Table 1. Testing Result Fermat's Factorization on 16 Untuk 32 Bytes Key Generation 

No Public Key 𝒏  
Length of 
Public Key 

𝒏 
𝒑 𝒒 

Execution Time 
(ms) 

Succes
s Rate 

(%) 

1. 2916425411 
10 /16 
bytes 

65357 44623 561 ms 100 % 

2. 
1175270081425
9 

14 
343051

7 
3425927 2 ms 100 % 

3. 
1341849068550
433 

16 
393584

47 
3409303

9 
18497 ms / 
18,497 d 

100 % 

4. 
4172366223726
2923 

17 
209763

919 
1989077

17 
13207 ms / 
13,207 d 

100 % 

5. 
4325011719545
94013 

18 
779594

677 
5547769

69 
1640872 ms / 

27,34786667 m 
100 % 

6. 
8763301721976
902561 

19 
344668

3453 
2542531

637 

6688088 ms 
/1,857802222 

jam 
100 % 

7. 
4980853165476
5413631 

20/ 32 
bytes 

707853
7649 

7036556
719 

6162 ms / 6,162 
d 

100 % 

 
In Table 1, Fermat's Factorization method succeeded in finding the value of 𝑝 and 𝑞. This showed 
the attack's susceptibility caused by Fermat's Factorization method, proven by a 100% success 
rate. The prime factors of public key 𝑛 were still easily obtained through the test. The test used 
Fermat's Factorization within 32-64 bytes key generation. 
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Table 2. Testing Result Fermat's Factorization on 32 Untuk 64 Bytes Key Generation 

N
o. 

Public Key 𝒏  
Length 

of Public 
Key of 𝒏  

𝒑  𝒒 
Execution Time 

(ms) 

Succes
s Rate 

(%) 

1. 2936653455160738453027 22 - - 
469 m 4 s / 
7,81667 h 

0 % 

2. 52891073208710727120157 23 - - 
383 m 34 s / 
6,38333 h 

0 % 

3. 
147307994954025982922977
1 

25 - - 
385 m 40 s / 
6,41667 h 

0 % 

4. 
123693524037686594532150
77 

26 - - 517 m / 8,61667 h 0 % 

5. 
268889892902937863375973
328747 

30 - - 540 m 5 s / 9 h 0 % 

6. 
568396900241882051501949
76305169 

32 - - 
967 m 38 s / 
16,1167 h 

0 % 

7. 
205777995053692340932379
163614957396549 

38/ 64 
bytes 

- - 30357 s / 5,05 h 0% 

 
In Table 2, Fermat's factorization method did not find the value of p and q. This was considered 
secure from Fermat's Factorization attack, proven by a 0% success rate in which the prime factors 
of public key 𝑛 were not found. 

3.2. Factorization Using Fermat's Factorization 

Fermat's factorization is used to identify the factors of public key 𝑛 (the value of 𝑝 and 𝑞) by 
factorizing the value of the public key. The test of Fermat's Factorization algorithm showed a 
100% success rate in finding the value of 𝑝 and 𝑞 at 16 – 32 bytes key generation, even though 

the key public generation has fulfilled the equation 𝑛 = 𝑝 < 𝑞 < 2𝑝  used to complicate the 
identification of the prime factors through Fermat's Factorization. Meanwhile, the key generation 
on variant above 32 – 64 bytes showed a 0% success rate.  

3.3. Testing Using Pollard's Rho 

The second test applied Pollards' Rho method to factorize the public key n to identify the prime 
factors' values on variant above 32 – 64 bytes. The duration of factorization was also investigated. 
The test results are presented in Table 3 and Table 4 below : 
 
Table 3. Testing Result Pollard's Rho on 16 Until 32 Bytes Key Generation 

No Public Key n 
Length of 

Public 
Key 𝒏 

𝒑 𝒒 
Executio
n Time 
(ms) 

Success Rate 
(%)  

1. 2916425411 
10/16 
bytes 

44623 65357 
8892 ms / 
8,892 d 

100 % 

2. 
1175270081425
9 

14 3425927 3430517 
7394 ms / 
7,394 d 

100 % 

3. 
1341849068550
433 

16 
3935844

7 
3409303

9 
9843 ms / 
9,843 d 

100 % 

4. 
4172366223726
2923 

17 
1989077

17 
2097639

19 
8564 ms / 
8,564 d 

100 % 

5. 
4325011719545
94013 

18 
5547769

69 
7795946

77 
5148 ms / 
5,148 d 

100 % 

6. 
8763301721976
902561 

19 
2542531

637 
3446683

453 
8440 ms / 

8,44 d 
100 % 

7. 
4980853165476
5413631 

20/ 32 
bytes 

7078537
649 

7036556
719 

28704 ms 
/ 28,704 

100 % 

 
In Table 3, the Pollards' Rho method succeeded in solving the public key 𝑛 so that the prime 

factors (𝑝  and 𝑛 ) were still identifiable. This proved by the 100% of prime factors from the 
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established public key 𝑛 using a variant of 16 – 32 bytes. This happened since the method easily 

factorized the key. If a prime n is the product of two contiguous numbers (𝑝, 𝑞), then 𝑛 = 𝑝. 𝑞 with 

𝑝 ≥ 𝑝 > 0, 𝑝 𝑞 is not really big, and both of 𝑝 and 𝑞) are even, then 𝑝 and 𝑞 are easily identified by 
Pollard's Rho method and eventually accelerate the factorization process.   

 
Table 4. Testing Result Pollard's Rho on 32 Until 64 Bytes Key Generation 

No. Public Key 𝒏 
Public 

Key 
𝒑 𝒒 

Execution 
Time (ms) 

Success 
Rate 
(%) 

1. 
29366534551607384530
27 

22 
49865
64726

7 

58891313
281 

27737 ms / 
27,737 d 

100% 

2. 
14730799495402598292
29771 

25 
11043
88782
851 

13338418
24921 

108280 ms / 
1,80466667 m 

100% 

3. 
12369352403768659453
215077 

26 
34822
18272
409 

35521473
48653 

224082 ms / 
3,7347 m 

100% 

4. 
26888989290293786337
5973328747 

30 
53122
50579
49433 

50616944
5283459 

6003859 ms / 
1,667738611 h 

100% 

5. 
56839690024188205150
194976305169 

32 

80319
78041
99680

9 

70766739
80804041 

24835270 ms / 
6,8986861111 

h 
100% 

6. 
20577799505369234093
2379163614957396549 

38 - - 
1,194 m 34 s / 

19,9 h 
0% 

 
In Table 4, the Pollards' Rho method was still able to solve the factors of public key 𝑛 on variants 

below 64 bytes. Meanwhile, the method could not identify the factors of key public 𝑛 on variant at 

above 64 bytes. It was proved by the 0% success rate indicating that the value of 𝑝 and 𝑞 of the 
public key prime factors were not found. These test results proved that the success of public key 
generation fulfilling the equation 𝑛 = 𝑝 < 𝑞 < 2𝑝  used above 64 bytes variant was still secured.  

3.4. Analysis on Duration Comparison of Fermat's Factorization and Pollard's Rho 

The analysis on the comparison of public key n factorization duration during the attack using 
Fermat's Factorization and Pollard's Rho showed varieties of durations and key length. The two 
methods with the fastest rate in the factorizing public key under 64 bytes can be depicted from 
the results. The duration comparison using 16 – 64 bytes prime length parameter on each test is 
presented in Figure 8. Figure 8 shows that along with the public key's growth, the factorization 
process from both methods spending more time and resources. The highest point for the length 
of public-key n in Fermat's Factorization reached 32 digits, while the highest point in Pollards' Rho 
reached 38 digits. In terms of the factorizing the public key n within 16 – 64 bytes, Pollard's Rho 
generated faster duration (7129203,29 milliseconds or 118,82005483332 minutes or 
1,980334247222 hours) than Fermat's Factorization (15871956,36 milliseconds or 264,532606 
minutes or 4,4088767666667 hours. More information can be obtained if a higher specification is 
provided.  
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Figure 8. Comparison Duration on the Factorization 
 
4. Conclusion 

Based on the series of test and analysis factoring integer algorithm using Fermat's Factorization 
and Pollards' Rho methods, it could be concluded that both methods could be used to factorize 
the public key which specifically aimed to identify the prime factors (p and q). During the public 
key n factorizing process within 16 bytes – 64 bytes, Pollards' Rho's average duration was 
significantly faster than Fermat's Factorization. Pollard's Rho performed factorization only in 
7129203,29 milliseconds or 118,82005483332 minutes or 1,980334247222 hours, while Fermat's 
Factorization was accomplished in 15871956,36 milliseconds or 264,532606 minutes or 4 hours. 
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