
LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018

33

A Practical Analysis of the Fermat Factorization and
Pollard Rho Method for Factoring Integers

Aminudina1, Eko Budi Cahyonoa2

aDepartment of Informatic, University of Muhammadiyah Malang

Tlogomas Street 246 Malang, Indonesia
1aminudin2008@umm.ac.id (Corresponding author)

2ekobudi@umm.ac.id

Abstract

The development of public-key cryptography generation using the factoring method is very
important in practical cryptography applications. In cryptographic applications, the urgency of
factoring is very risky because factoring can crack public and private keys, even though the
strength in cryptographic algorithms is determined mainly by the key strength generated by the
algorithm. However, solving the composite number to find the prime factors is still very rarely done.
Therefore, this study will compare the Fermat factorization algorithm and Pollard rho by finding
the key generator public key algorithm's prime factor value. Based on the series of test and
analysis factoring integer algorithm using Fermat's Factorization and Pollards' Rho methods, it
could be concluded that both methods could be used to factorize the public key which specifically
aimed to identify the prime factors. During the public key factorizing process within 16 bytes – 64
bytes, Pollards' Rho's average duration was significantly faster than Fermat's Factorization.

Keywords: Factorization, Fermat's Factorization, Pollard's Rho.

1. Introduction

Information security is a major challenge in an era of information flood like today. The cryptology
method can be one of the solutions used to secure this information [1]. Cryptology consists of two
parts, namely cryptography and cryptanalysis. The main task of cryptography is to hide data using
specific algorithms, while cryptanalyst is a method for investigating the security of a cryptographic
system by finding weaknesses in codes, ciphers, protocols, or key management schemes.[2].
Usually, cryptanalysis refers to analyzing and solving the keys used to perform the encryption and
decryption processes. Therefore, cryptanalysts are needed to test the robustness of the
encryption algorithm. There are several mathematical approaches in testing the robustness of
cryptographic algorithms, including discrete logarithms and factorization. In this study, the
factorization method is used to break numbers into smaller numbers [3]. This factorization method
is used for the RSA algorithm to generate public and private keys

There are several methods that can be used to factor the composite number into prime numbers,
namely Fermat's factorization and Pollard rho. Fermat factorization looks for the factor of an odd
number by utilizing the property of an odd number which can be expressed as the difference of 2
squares from another number [4]. In contrast, the pollard rho method integrates a polynomial
function in a modulo 𝑛 (the number to be factored) and a seed (generator number) [5]. The
importance of the two algorithms is that if they can return two large prime factors of modulus
processing, it can be ascertained that the public and private keys can be found [6]. Thus, this
integer factorization problem has a significant impact on the security of the public-key
cryptography system. The research conducted by Chinniah et al. created a factorization method
that aims to find composite number factors resulting from two different prime numbers [7]. Then
Li et al. researched the implementation of algorithms with a mathematical model used for factoring
integers. The results of this study were a comparison between Pollard's Rho and SpSqAlgorithm
based on execution time. [8]. This study aimed to analyze Fermat's Factorization and Pollards'
Rho due to vulnerability by factorizing the prime factors. Furthermore, the purpose is to figure out
the receiving the factorization attack by comparing the factorization time between both methods.

mailto:1aminudin2008@umm.ac.id.com
mailto:2ekobudi@umm.ac.id.com

LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018

34

The ultimate goal of the proposed research is to discover an opportunity to extend the previous
study to contribute in the area of cryptanalysis and cryptography.

2. Research Methods

2.1. Fermat's Factorization

The following section is the attack method as the technique of factorization. p and q can be easily
found using Fermat's Factorization with the following steps [6]:

a. 𝑘 = √𝑛 (1)

b. 𝑘2 > 𝑛 𝑒𝑙𝑠𝑒 𝑛 + +. (2)

c. 𝑘2 − 𝑛 = ℎ2 that is, if (ℎ == 𝑠𝑞𝑢𝑎𝑟𝑒). (3)
d. 𝑝 = (𝑘 + ℎ) and 𝑞 = (𝑘 − ℎ) (4)

The variable of 𝑘 on equation (1) is the value of square root n. The variable of 𝑘2 on equation (2)

is the value of the perfect square. The variable of ℎ2 on equation (4) is the ultimate value of the
perfect square. The variable of 𝑝 and 𝑞 on equation (5) is the sought prime. Figure 1 shows the
pseudocode of Fermat's factorization.

Input : value public key (n)

Output: p and q

for k from ceil (sqrt (n)) to n

h square = k * k-n

if p > 1 and p < n do

h = sqrt (hSquared)

p = k + h

q = k – h

Figure 1. Flowchart Fermat's Factorization Algorithm

The input value of 𝑛 is used to get factorization from values 𝑝 and 𝑞. The 𝑛 value will be checked

to include square root or not. After knowing 𝑘 is the square root, it is processed again whether 𝑞

is greater than 𝑛. Subsequently, the calculations can be done if the value 𝑘 is greater than the
value 𝑛. If it has a greater value, it proceeds by calculating the result of 𝑘 by performing square
root.

Conversely, the calculation is continued by adding 1 to the value 𝑘. After obtaining the square

root value of 𝑛, we find 𝑝 and 𝑞 values depicted in equation (8) to get the 𝑝 and 𝑞 values. The
flowchart of Fermat's Factorization is shown in Figure 2.

Figure 2. Flowchart of Fermat's Factorization Algorithm

LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018

35

Figure 5 represents the factorization steps using Fermat's factorization method that have already
been explained through a flow chart.

2.2. Pollard's Rho

Pollard's Rho factorization method calculates the factorization 𝑛 with polynomial modulo 𝑛
iteration. This algorithm is based on several mathematical concepts, such as integer
factorization[9]. The following procedure explains the steps of Pollard's Rho algorithm as a
method of factorization [2]:

a. Input a value that are going to be factorized value 𝑛

b. 𝑎 = 2, 𝑏 = 2. (5)

c. 𝑎 = 𝑎2 + 1 (𝑚𝑜𝑑 𝑛), 𝑏 = 𝑏2 + 1 (𝑚𝑜𝑑 𝑛) (6)
d. 𝑝 = gcd(𝑎 − 𝑏, 𝑛). (7)

e. 𝑝 ≠ 1 and 𝑝 ≠ 𝑛. (8)

f. 1 < 𝑝 < 𝑛, 𝑞 = 𝑛/𝑝 (9)

The 𝑎 and 𝑏 variable on equation (5) is the first step of factorization. The a2 and b2 variable on

equation (6) is the value that has been square root from the previous result. The 𝑝 variable on

equation (7) is the prime produced by equation gcd (the greatest divisor), and the 𝑛 variable is
the prime of the public key. The 𝑞 variable on equation (8) is the prime generated from the division

of variable 𝑛 and variable 𝑞. Figure 3 shows pseudocode pollard's Rho in detail.

Input : value public key (n)

Output: p and q values

initialization a=2, b=2;

while (true)

a=(a2 + 1(mod n))

b=(b2 + 1(mod n))

count p = (a - b), gcd (n);

print (p) ;

loop (a,b);

false if (p = n);

if p > 1 and p < n than

count q = (n/p);

print (q);

Figure 3. Pollard's Rho Algorithm

The first step in the pollards' rho method gets the public key value 𝑛 to be factored into 𝑝 and 𝑞
values. The next step is calculating the 𝑝 value, which must fulfill the equation 𝑝 > 1 𝑑𝑎𝑛 𝑝 < 𝑛. If

it does not fulfill the equation, it is recalculated from the beginning. If the 𝑝 value has been found,

then the 𝑞 value can be calculated.

Figure 4. Flowchart of Pollard's Rho

LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018

36

Figure 7 represents the factorization steps using Pollard's Rho method that have already been
explained through a flow chart.

2.3. Scenario of Testing

The testing scenario was conducted by running the program and inserting the various number of
public keys that have been generated and compiled using 𝑛 = 𝑝 < 𝑞 < 2𝑝 which finally created
the public key n. Then the generated key was factorized by using Fermat's Factorization and
Pollard's Rho method for obtaining the p and q values and figuring out the duration of factorization.
The public key pairs were created within a range from 16 to 64 bytes complying with the equation
𝑛 = 𝑝 < 𝑞 < 2𝑝.

3. Result and Discussion

To increase the security in public key so that it can be concluded afterward the characteristic of
the strong public key that can withstand the attacks of factorization mainly by using the Fermat's
Factorization and Pollard's Rho. The test results of Fermat's factorization method are presented
in Table 1 and Table 2, while Pollard's Rho's test results are shown in Tables 3 and 4. The second
column shows the public key 𝑛 factorized to obtain the value of 𝑝 and 𝑞. The following columns

present the digit length of 𝑛, the found value of 𝑝 and 𝑞, duration of factorization, and success
rate of key public factorization.

3.1. Testing Using Fermat's Factorization

The experiment of Fermat's Factorization algorithm used the public key 𝑛 that was normally

widely distributed. However, this test used the generated public key 𝑛 with the equation 𝑛 = 𝑝 <
𝑞 < 2𝑝 to make it difficult to find the value of 𝑝 and 𝑞. Fermat's factorization was used to factorize
the public key 𝑛 to find the value of 𝑝 and 𝑞. The test results are illustrated in Table 1 and Table
2 below:

Table 1. Testing Result Fermat's Factorization on 16 Untuk 32 Bytes Key Generation

No Public Key 𝒏
Length of
Public Key

𝒏
𝒑 𝒒

Execution Time
(ms)

Succes
s Rate

(%)

1. 2916425411
10 /16
bytes

65357 44623 561 ms 100 %

2.
1175270081425
9

14
343051

7
3425927 2 ms 100 %

3.
1341849068550
433

16
393584

47
3409303

9
18497 ms /
18,497 d

100 %

4.
4172366223726
2923

17
209763

919
1989077

17
13207 ms /
13,207 d

100 %

5.
4325011719545
94013

18
779594

677
5547769

69
1640872 ms /

27,34786667 m
100 %

6.
8763301721976
902561

19
344668

3453
2542531

637

6688088 ms
/1,857802222

jam
100 %

7.
4980853165476
5413631

20/ 32
bytes

707853
7649

7036556
719

6162 ms / 6,162
d

100 %

In Table 1, Fermat's Factorization method succeeded in finding the value of 𝑝 and 𝑞. This showed
the attack's susceptibility caused by Fermat's Factorization method, proven by a 100% success
rate. The prime factors of public key 𝑛 were still easily obtained through the test. The test used
Fermat's Factorization within 32-64 bytes key generation.

LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018

37

Table 2. Testing Result Fermat's Factorization on 32 Untuk 64 Bytes Key Generation

N
o.

Public Key 𝒏
Length

of Public
Key of 𝒏

𝒑 𝒒
Execution Time

(ms)

Succes
s Rate

(%)

1. 2936653455160738453027 22 - -
469 m 4 s /
7,81667 h

0 %

2. 52891073208710727120157 23 - -
383 m 34 s /
6,38333 h

0 %

3.
147307994954025982922977
1

25 - -
385 m 40 s /
6,41667 h

0 %

4.
123693524037686594532150
77

26 - - 517 m / 8,61667 h 0 %

5.
268889892902937863375973
328747

30 - - 540 m 5 s / 9 h 0 %

6.
568396900241882051501949
76305169

32 - -
967 m 38 s /
16,1167 h

0 %

7.
205777995053692340932379
163614957396549

38/ 64
bytes

- - 30357 s / 5,05 h 0%

In Table 2, Fermat's factorization method did not find the value of p and q. This was considered
secure from Fermat's Factorization attack, proven by a 0% success rate in which the prime factors
of public key 𝑛 were not found.

3.2. Factorization Using Fermat's Factorization

Fermat's factorization is used to identify the factors of public key 𝑛 (the value of 𝑝 and 𝑞) by
factorizing the value of the public key. The test of Fermat's Factorization algorithm showed a
100% success rate in finding the value of 𝑝 and 𝑞 at 16 – 32 bytes key generation, even though

the key public generation has fulfilled the equation 𝑛 = 𝑝 < 𝑞 < 2𝑝 used to complicate the
identification of the prime factors through Fermat's Factorization. Meanwhile, the key generation
on variant above 32 – 64 bytes showed a 0% success rate.

3.3. Testing Using Pollard's Rho

The second test applied Pollards' Rho method to factorize the public key n to identify the prime
factors' values on variant above 32 – 64 bytes. The duration of factorization was also investigated.
The test results are presented in Table 3 and Table 4 below :

Table 3. Testing Result Pollard's Rho on 16 Until 32 Bytes Key Generation

No Public Key n
Length of

Public
Key 𝒏

𝒑 𝒒
Executio
n Time
(ms)

Success Rate
(%)

1. 2916425411
10/16
bytes

44623 65357
8892 ms /
8,892 d

100 %

2.
1175270081425
9

14 3425927 3430517
7394 ms /
7,394 d

100 %

3.
1341849068550
433

16
3935844

7
3409303

9
9843 ms /
9,843 d

100 %

4.
4172366223726
2923

17
1989077

17
2097639

19
8564 ms /
8,564 d

100 %

5.
4325011719545
94013

18
5547769

69
7795946

77
5148 ms /
5,148 d

100 %

6.
8763301721976
902561

19
2542531

637
3446683

453
8440 ms /

8,44 d
100 %

7.
4980853165476
5413631

20/ 32
bytes

7078537
649

7036556
719

28704 ms
/ 28,704

100 %

In Table 3, the Pollards' Rho method succeeded in solving the public key 𝑛 so that the prime

factors (𝑝 and 𝑛) were still identifiable. This proved by the 100% of prime factors from the

LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018

38

established public key 𝑛 using a variant of 16 – 32 bytes. This happened since the method easily

factorized the key. If a prime n is the product of two contiguous numbers (𝑝, 𝑞), then 𝑛 = 𝑝. 𝑞 with

𝑝 ≥ 𝑝 > 0, 𝑝 𝑞 is not really big, and both of 𝑝 and 𝑞) are even, then 𝑝 and 𝑞 are easily identified by
Pollard's Rho method and eventually accelerate the factorization process.

Table 4. Testing Result Pollard's Rho on 32 Until 64 Bytes Key Generation

No. Public Key 𝒏
Public

Key
𝒑 𝒒

Execution
Time (ms)

Success
Rate
(%)

1.
29366534551607384530
27

22
49865
64726

7

58891313
281

27737 ms /
27,737 d

100%

2.
14730799495402598292
29771

25
11043
88782
851

13338418
24921

108280 ms /
1,80466667 m

100%

3.
12369352403768659453
215077

26
34822
18272
409

35521473
48653

224082 ms /
3,7347 m

100%

4.
26888989290293786337
5973328747

30
53122
50579
49433

50616944
5283459

6003859 ms /
1,667738611 h

100%

5.
56839690024188205150
194976305169

32

80319
78041
99680

9

70766739
80804041

24835270 ms /
6,8986861111

h
100%

6.
20577799505369234093
2379163614957396549

38 - -
1,194 m 34 s /

19,9 h
0%

In Table 4, the Pollards' Rho method was still able to solve the factors of public key 𝑛 on variants

below 64 bytes. Meanwhile, the method could not identify the factors of key public 𝑛 on variant at

above 64 bytes. It was proved by the 0% success rate indicating that the value of 𝑝 and 𝑞 of the
public key prime factors were not found. These test results proved that the success of public key
generation fulfilling the equation 𝑛 = 𝑝 < 𝑞 < 2𝑝 used above 64 bytes variant was still secured.

3.4. Analysis on Duration Comparison of Fermat's Factorization and Pollard's Rho

The analysis on the comparison of public key n factorization duration during the attack using
Fermat's Factorization and Pollard's Rho showed varieties of durations and key length. The two
methods with the fastest rate in the factorizing public key under 64 bytes can be depicted from
the results. The duration comparison using 16 – 64 bytes prime length parameter on each test is
presented in Figure 8. Figure 8 shows that along with the public key's growth, the factorization
process from both methods spending more time and resources. The highest point for the length
of public-key n in Fermat's Factorization reached 32 digits, while the highest point in Pollards' Rho
reached 38 digits. In terms of the factorizing the public key n within 16 – 64 bytes, Pollard's Rho
generated faster duration (7129203,29 milliseconds or 118,82005483332 minutes or
1,980334247222 hours) than Fermat's Factorization (15871956,36 milliseconds or 264,532606
minutes or 4,4088767666667 hours. More information can be obtained if a higher specification is
provided.

LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018

39

Figure 8. Comparison Duration on the Factorization

4. Conclusion

Based on the series of test and analysis factoring integer algorithm using Fermat's Factorization
and Pollards' Rho methods, it could be concluded that both methods could be used to factorize
the public key which specifically aimed to identify the prime factors (p and q). During the public
key n factorizing process within 16 bytes – 64 bytes, Pollards' Rho's average duration was
significantly faster than Fermat's Factorization. Pollard's Rho performed factorization only in
7129203,29 milliseconds or 118,82005483332 minutes or 1,980334247222 hours, while Fermat's
Factorization was accomplished in 15871956,36 milliseconds or 264,532606 minutes or 4 hours.

References

[1] A. Aminudin, A. F. Helmi, and S. Arifianto, “Analisa Kombinasi Algoritma Merkle-Hellman

Knapscak dan Logaritma Diskrit pada Aplikasi Chat,” Jurnal Teknologi Informasi dan Ilmu
Komputer, vol. 5, no. 3, pp. 325–334, 2018.

[2] P. P. Thwe, M. Htet, Y. C. City, and I. Technology, "Extended Pollard's Rho Factorization
Algorithm For Finding Factors In Composite Number," Journal of Science, Engineering and
Education, pp. 232–235, 2020. doi: 10.13140/RG.2.2.34889.16485

[3] A. Aminudin, G. P. Aditya, and S. Arifianto, "RSA algorithm using key generator ESRKGS to
encrypt chat messages with TCP/IP protocol," Jurnal Teknologi dan Sistem Komputer, vol.
8, no. 2, pp. 113–120, 2020, doi: 10.14710/jtsiskom.8.2.2020.113-120.

[4] K. Chiewchanchairat, P. Bumroongsri, and S. Kheawhom, "Improving Fermat factorization
algorithm by dividing modulus into three forms," KKU Engineering Journal, vol. 40, no.
March, pp. 131–138, 2016, doi: 10.14456/kkuenj.2016.127.

[5] C. L. Duta, L. Gheorghe, and N. Tapus, "Framework for evaluation and comparison of integer
factorization algorithms," Proceeding 2016 SAI Computing Conference, pp. 1047–1053,
2016, doi: 10.1109/SAI.2016.7556107.

[6] K. Somsuk, "The new integer factorization algorithm based on Fermat's Factorization
Algorithm and Euler's theorem," International Journal of Electrical and Computer
Engineering, vol. 10, no. 2, pp. 1469–1476, 2020, doi: 10.11591/ijece.v10i2.pp1469-1476.

[7] P. Chinniah and A. Ramalingam, "An Integer Factorization Method Equivalent to Fermat
Factorization," International Journal of Mathematics And its Applications, vol. 6, no. 2, pp.
107–111, 2018.

[8] J. LI, "Algorithm Design and Implementation for a Mathematical Model of Factoring Integers,"
IOSR Journal of Mathematics, vol. 13, no. 01, pp. 37–41, 2017, doi: 10.9790/5728-

0

10000000

20000000

30000000

40000000

50000000

60000000

70000000

80000000

1
0

 b
y
te

s

1
4

 b
y
te

s

1
6

 b
y
te

s

1
7

 b
y
te

s

1
8

 b
y
te

s

1
9

 b
y
te

s

2
0

 b
y
te

s

2
2

 b
y
te

s

2
3

 b
y
te

s

2
5

 b
y
te

s

2
6

 b
y
te

s

3
0

 b
y
te

s

3
2

 d
ig

it
s

3
8

 d
ig

it
s

T
im

e
 (

m
s
)

Length of Public Key n

Comparison of Algorithm Duration

Fermat's Factorization

Pollards' Rho

LONTAR KOMPUTER VOL. 12, NO. 1 APRIL 2021 p-ISSN 2088-1541
DOI : 10.24843/LKJITI.2021.v12.i01.p04 e-ISSN 2541-5832
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018

40

1301063741.
[9] S. Sarnaik, R. Bhakkad, and C. Desai, "Comparative study on Integer Factorization

algorithm-Pollard's RHO and Pollard's P-1," in 2015 2nd International Conference on
Computing for Sustainable Global Development (INDIACom), 2015, pp. 677–679.

