
LONTAR KOMPUTER VOL. 12, NO. 2 AUGUST 2021 p-ISSN 2088-1541 
DOI : 10.24843/LKJITI.2021.v12.i02.p01 e-ISSN 2541-5832 
Accredited Sinta 2 by RISTEKDIKTI Decree No. 30/E/KPT/2018 

62 

 

QSAR Study for Prediction of HIV-1 Protease Inhibitor 
Using the Gravitational Search Algorithm–Neural 

Network (GSA-NN) Methods    
 

Isman Kurniawana1,b1, Reina Wardhania2, Maya Rosalindab2, Nurul Ikhsana3 

 
aSchool of Computing, Telkom University 

Terusan Buah Batu, Bandung, 40257, Indonesia 
1ismankrn@telkomuniversity.ac.id (Corresponding author) 

2wardhanireina@student.telkomuniversity.ac.id 
3ikhsan@telkomuniversity.ac.id  

 
bResearch Center of Human Centric Engineering, Telkom University 

Terusan Buah Batu, Bandung, 40257, Indonesia 
1ismankrn@telkomuniversity.ac.id 

2mayarosalinda@student.telkomuniversity.ac.id 
 
 

Abstract 
 

Human immunodeficiency virus (HIV) is a virus that infects an immune cell and makes the patient 
more susceptible to infections and other diseases. HIV is also a factor that leads to acquired 
immune deficiency syndrome (AIDS) disease. The active target that is usually used in the 
treatment of HIV is HIV-1 protease. Combining HIV-1 protease inhibitors and reverse-
transcriptase inhibitors in highly active antiretroviral therapy (HAART) is typically used to treat this 
virus. However, this treatment can only reduce the viral load, restore some parts of the immune 
system, and failed to overcome the drug resistance. This study aimed to build a QSAR model for 
predicting HIV-1 protease inhibitor activity using the gravitational search algorithm-neural network 
(GSA-NN) method. The GSA method is used to select molecular descriptors, while NN was used 
to develop the prediction model. The improvement of model performance was found after 
performing the hyperparameter tuning procedure. The validation results show that model 3, 
containing seven descriptors, shows the best performance indicated by the coefficient of 
determination (r2) and cross-validation coefficient of determination (Q2) values. We found that the 
value of r2 for train and test data are 0.84 and 0.82, respectively, and the value of Q2 is 0.81. 

  
Keywords: HIV-1 Protease Inhibitors, AIDS, Quantitative Structure-Activity Relationship (QSAR), 
Gravitational Search Algorithm (GSA), Neural Network (NN). 
 
 
1. Introduction 

Human immunodeficiency virus (HIV) is a virus that infects cells and causes the patient to be 
more susceptible to infections and other diseases [1]. HIV is also a factor that leads to acquired 
immune deficiency syndrome (AIDS). This virus has two main species, i.e., HIV-1 and HIV-2. The 
HIV-1 was first found in chimpanzees and gorillas that lived in West Africa, while the HIV-2 was 
first found in mangabey primates that also lived in West Africa [2]. WHO reported around 770 
thousand deaths by HIV happened in 2018 [3]. HIV spreads through direct contact with people 
via fluid media, such as sharing injecting drug equipment. 

Regarding the spread of HIV, several efforts have been made to develop therapies by using HIV-
1 antiretrovirals as the target. The knowledge about the role of various components in the HIV-1 
life cycle can assist the development of new drug candidates. One of the active targets usually 
used in the development is the HIV-1 protease enzyme [4]. This enzyme is essential in the 
assembly and maturation of virions [5]. Therefore, aspartic proteinase from HIV-1 is commonly 
used as a target for AIDS treatment. Many drug candidates are derived by use aspartic proteases 
as the target. Several available licensed drugs have been used as HIV-1 protease inhibitors, such 
as ritonavir, indinavir, and saquinavir [4]. 
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The main problem in HIV-1 drug development is the virus's resistance against the drugs due to 
the mutation process [6]. Therefore, researchers are still trying to design new drugs with an 
excellent ability to interact with the primary chain residues of the virus. Thus the effects of 
mutations can be avoided. The current effective antiretroviral therapy is highly active antiretroviral 
therapy (HAART) extensively applied for HIV treatment [4]. This therapy combines the utilization 
of reverse-transcriptase inhibitors and protease inhibitors to overcome drug resistance. 

Regarding the resistance problem, further laboratory investigation of the activity of HIV-1 protease 
inhibitors is necessary. However, the examination of the drug activity takes a long time and high 
cost [7]. To overcome this problem, an alternative method is required to predict the drug activity 
before laboratory testing. The alternative method to predict the activity is the quantitative 
structure-activity relationship (QSAR) method. The QSAR method establishes a correlation 
between the molecular structure and its activity [8]. Using a set of molecular descriptors as an 
input, QSAR can predict HIV-1 protease inhibitor's activity. QSAR study has been utilized to 
predict the activity of the inhibitor in several cases of the disease [9]–[13]. 

Several QSAR studies have been conducted in predicting HIV-1 protease inhibitor activity. In 
2011, Ravichandran and coworkers performed a QSAR study in predicting the activity of HIV-1 
protease inhibitors of 6-dihydropyran-2-1 and 4-hydroxy-5 using multiple linear regression (MLR). 
As a result, they obtain a model with the values of correlation coefficient (R), and cross-validated 
squared correlation coefficient (Q2) are 0.875 and 0.707, respectively [9]. In 2012, Nallusamy and 
coworkers conducted a QSAR study to predict 99 HIV-1 protease inhibitors using a non-linearly 
transformed descriptors method. These studies concluded that descriptors' transformation could 
make the QSAR model's performance better [15]. 

In 2015, Mohammad and coworkers conducted a study on applying the hybrid of QSAR-docking 
using MLR and the least-square support vector machine (LS-SVM) to predict the activity of HIV-
1 protease inhibitors. The validation parameters show that LS-SVM gives a better performance 
compare to MLR, with the value of root mean square error (RMSE) and correlation coefficient (R) 
of LS-SVM are 0.988 and 0.207, respectively [16]. In 2017, Darnag and coworkers used SVM, 
neural network, and MLR in predicting the activity of HIV-1 protease inhibitors. They found that 
the SVM performs better than other methods according to the correlation coefficient (Q2) and 
RMSE [17]. In terms of the specific compound, the Monte Carlo optimized QSAR study was 
performed by Bhargavaa and coworkers to investigate the activity of hydroxyethylamines as HIV-
1 protease inhibitors with the result of r2 score of 0.774 [18]. 

This study aims to develop a QSAR model to predict hydroxyethylamines activity as HIV-1 
protease inhibitors better. The development of the QSAR model is started by selecting features 
and followed by developing a prediction model. The feature selection was conducted using 
statistical analysis and gravitational search algorithm (GSA), while the prediction model was 
developed by utilizing an artificial neural network (ANN). The ANN method, commonly used in 
QSAR studies, was utilized due to its ability to recognize a complex relationship between 
descriptor and activity [19]–[21]. The GSA was chosen because of the ability of the method to 
select a set of appropriate descriptors [22]. 
 
2. Material and Methods 

2.1. Data Preparation 

The compounds used in this study were 140 compounds of HIV1 Protease inhibitor [23], in which 
the structure and inhibitor activity were provided in Supporting Information. The 2D structure of 
those compounds was generated using the Marvin Sketch program and then modified to 3 
dimensions using the Open Babel program [24]. After that, 2904 molecular descriptors were 
computed using the Padel and Mordred programs [25], [26]. For the development of the model, 
the variable inhibition constant (Ki) is used as a target variable. The Ki value is converted to pKi 
to obtain a smaller range of the data. Finally, the data is randomly split into training data and test 
data with a ratio of 4:1. 

2.2. Statistical Analysis-based Descriptor Selection 

From 2904 descriptors, molecular descriptors were selected using two methods, i.e., statistical 
analysis and gravitational search algorithm (GSA). Each descriptor represents the electrostatic 
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properties, topology, and molecular structure of each compound. The selection of the descriptors 
begins by removing the descriptors which zero variance. Furthermore, Pearson correlation 
analysis is conducted to calculate the correlation coefficient between descriptor and target. The 
descriptors that have a weak correlation (correlation coefficient < 0.2) to the target and have a 
strong correlation (correlation coefficient > 0.8) to other descriptors were deleted. The selected 
descriptor will be further reduced by using GSA. 

2.3. Gravitational Search Algorithm 

Gravity is known as one of the fundamental interactions of nature, together with the strong force, 
electromagnetism, and the weak force. The notion that regulating gravity is related to mass 
objects attracts each other [27]. Newton's law of gravitation point out the attraction among 
particles with a force where the magnitude is inversely proportional to the distance and directly 
proportional to the masses [28]. 

Based on the definition, Rashedi and coworkers introduced GSA [29]. The single agent in the 
GSA is treated as an object with mass. Each agent has four properties, i.e., position, the mass of 
inertia, passive gravitational mass, and active gravitational mass. The mass position corresponds 
to the problem solution. The values of gravity and inertia are defined by using the fitness function 
[30]. The basic principle of GSA is summarized as follows [29]. 

First, the initial position of the agent is determined randomly and expressed as: 
 

𝑋𝑖 = (𝑋𝑖
1, … , 𝑋𝑖

𝑑, … , 𝑋𝑖
𝑛)   ,   𝑖 = 1,2, … , N      (1) 

 

where 𝑋𝑖
𝑑 Represents the position of agent of 𝑖 on the dimension 𝑑, while 𝑛 represents the search 

space dimension, and N represents the number of agents.  

Second, the gravitational force at a particular time (t), working on mass 𝑖 of mass 𝑗 is formulated 
as: 
 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡)

𝑀𝑝𝑖(𝑡) .  𝑀𝑎𝑗(𝑡)

𝑅𝑖𝑗(𝑡) + 𝜀
 (𝑋𝑗

𝑑(𝑡) − 𝑋𝑖
𝑑(𝑡))         (2) 

 

where 𝐹𝑖𝑗
𝑑(𝑡) Means the gravitational force of agent𝑖 against agent 𝑗, Maj represents the active 

gravitational mass of agent 𝑗, and Mpi represents the passive gravitational mass of agent 𝑖. 
Meanwhile, G(t) represents the gravitational constant at time 𝑡, ε is a small constant, and Rij(t) is 

the Euclidian distance between the agents 𝑖 and 𝑗. 

Third, the acceleration of each agent is calculated by using the total force working on the agent. 
The formulation of the total force is expressed as: 
 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗

𝑁
𝑗=1,𝑗≠𝑖  𝐹𝑖𝑗

𝑑(𝑡)          (3) 

 

where 𝐹𝑖
𝑑 Represents the total force of agent 𝑖 on dimension 𝑑, while randj represents a random 

number with the value lies between 0 and 1. Then, the agent acceleration is calculated as: 
 

𝑎𝑖
𝑑 =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖𝑖(𝑡)
             (4) 

 

where 𝑎𝑖
𝑑  Represents the acceleration of agent 𝑖 on dimension 𝑑, while 𝑀𝑖𝑖 means the inertia 

mass from agent 𝑖. 

Fourth, the agent velocity is calculated as a function of the previous velocity and acceleration. 
Finally, the velocity is used to calculate the agent's new position. Thus, the new velocity and the 
new position is formulated as: 
 

𝑉𝑖
𝑑(𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖  ×  𝑉𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡)         (5) 

𝑋𝑖
𝑑(𝑡 + 1) = 𝑋𝑖

𝑑(𝑡) +  𝑉𝑖
𝑑(𝑡 + 1)          (6) 
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where 𝑉𝑖
𝑑(𝑡) and 𝑋𝑖

𝑑(𝑡) Represent velocity and position of 𝑖-th agent on the 𝑑-th dimension at a 

time 𝑡, while rand𝑖 represents a uniform random number with the interval of [0,1]. The gravitational 
constant, G, is defined before the iteration and decreases over time to lead the searching of 
accuracy. The G constant is formulated as an initial value function of gravitational constant (G0) 
and the total iterations (T): 
 

𝐺(𝑡) = 𝐺0𝑒−𝛼
𝑡

𝑇            (7) 
 
Gravitational mass and inertia are computed according to the fitness values. The heavier the 
mass means, the more efficient the agents. This implies that the better agent will more attract 
against other agents and run slower. By using the assumption of the gravitational mass and inertia 
equivalence, the mass values are computed by using a fitness map. Then the  gravitational mass 
and inertia updated as follow: 
 

𝑀𝑎𝑖 = 𝑀𝑝𝑖 = 𝑀𝑖𝑖 = 𝑀𝑖,   𝑖 = 1,2, … , N      (8) 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖(𝑡)− 𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑓𝑖𝑡𝑏𝑒𝑠𝑡(𝑡)−𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡)
          (9) 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑗(𝑡)𝑁
𝑗=1

            (10) 

𝑓𝑖𝑡𝑏𝑒𝑠𝑡(𝑡) = max (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗(𝑡)) , 𝑗𝜀{1,2,3, … 𝑁}         (11) 

𝑓𝑖𝑡𝑤𝑜𝑟𝑠𝑡(𝑡) = 𝑚𝑖𝑛 (𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗(𝑡)) , 𝑗𝜀{1,2,3, … 𝑁}        (12) 

 
To improve the performance of GSA, a kbest agent parameter is used. kbest values is a time 
function in which the value will decrease over time. Thus, the value of kbest determine the number 
of agents that will be considered to have an impact when the total force of an agent is updated as 
follow: 
 

𝐹𝑖
𝑑(𝑡) = ∑ 𝑟𝑎𝑛𝑑𝑗

𝑁
𝑗є𝐾𝑏𝑒𝑠𝑡,𝑗≠𝑖  𝐹𝑖𝑗

𝑑(𝑡)          (13) 

 
Generally, the workflow of the GSA is provided in Figure 1. Firstly, we defined the initial population 
and generated a series of solutions represented by an agent. Then, the fitness value for each 
agent is calculated according to a particular fitness function. The parameter value of gravitational 
constant (G), best and worst agent are updated according to the fitness value. Then, we calculate 
the value of gravitational mass (M) and acceleration (a) by using Equations (10) and (4). Finally, 
we updated the value of velocity (v) and position (x) according to Equations (5) and (6). The 
process will be iterated until the end criteria have been reached. To perform GSA in feature 
selection, we defined the default parameter of GSA to acquire descriptors with satisfying results. 
The parameters of the GSA used in this study are provided in Table 1. We used the initial value 
of α constant and gravitational constant (G0) as 0.5 and 100, respectively. Those values will be 
used to calculate the gravitational constant (G). Meanwhile, the number population is 25, and the 
process is iterated 400 times.  
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Figure 1. The Workflow of the Gravitational Search Algorithm 
 

             Table 1. GSA Parameters [31] 

Parameters Values 

𝐺0 100 

α 0.5 

Iteration 500 

Population 25 

 

2.4. Artificial Neural Networks 

An artificial neural network (ANN) is a kind of machine learning algorithm in which the workflow is 
inspired by the work of the nervous system. The smallest unit of the neural network is nerve cells 
(neurons). There are three basic sets of rules from the neuron model: multiplication, summation, 
and implementation of the activation function. The ANN process started from the input received 
by the neuron and the weight value of each available information. After entering the neuron, the 
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input values will be added by a summing function. Finally, the results will be converted by the 
activation function in each neuron. Then, the output will be sent to all neurons associated with it 
through the output weights. This process will be repeated on subsequent inputs. 

Mathematically, ANN can be associated as a graph with neurons or nodes and synapses (edges). 
Hence, ANN operations are easily explained in linear algebraic notation. ANN architectures, such 
as single-layer feedforward networks (FFN), multi-layer FFN, lattice structures, and recurrent 
networks. The depth of ANN refers to the number of layers, while the width of ANN refers to the 
number of units in the layer. For example, a single-layer ANN is depicted in Figure 2. 

2.5. Model Development 

Four ANN models were constructed by utilizing a different number of descriptors. We defined 
model 1, model 2, model 3, and model 4 comprised of 5, 6, 7, and 8 molecular descriptors. GSA 
performed the selection of the descriptor for each model. To improve the model's performance, 
the neural network parameter was optimized using a hyperparameter tuning procedure. The 
tuning procedure was performed by using grid search 5-fold cross-validation. The ANN 
parameters that are improved by the tuning scheme consist of hidden nodes, learning rates, 
momentum, and dropout rate. The range of the parameter values used in the turning scheme is 
provided in Table 2. We consider finding the optimal hidden node from the range values of 5 to 
10 since the hidden node number is less than the input size. The learning rate and momentum 
utilized by the optimization algorithm are tuned with the range of values are 0.001 to 0.1 for the 
learning rate and 0.0 to 0.1 for momentum. To reduce the architecture complexity, we adjusted 
the dropout rate by using the range values from 0.0 to 0.2. 
 

 
 

Figure 2. Single-layer Neural Network 
  

     Table 2. Parameters for Hyperparameter Tuning 

Parameters Range 

Hidden node [5, 6, 7, 8, 9, 10] 

Learning rate [0.001, 0.01, 0.1] 

Dropout rate [0.0, 0.1, 0.2] 

Momentum [0.0, 0.1, 0.2] 

 

2.6. Model Validation 

The performance of the models was determined by calculating several statistical parameters by 
using predicted values and the actual values. Several statistical parameters that represent the 
quality of the models are formulated as [32]: 
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𝑟2 = 1 −
[∑(𝑦𝑖− 𝑦𝑖)(ŷ𝑖 − ŷ̅)]

2

∑(𝑦𝑖− �̅�)2 × ∑(ŷ𝑖 − ŷ̅)2           (14) 

𝑄2 = 1 −  
∑ (ŷ𝑖− 𝑦𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖− �̅�)2𝑛
𝑖=1

           (15) 

𝑟0
2 = 1 −  

∑(𝑦𝑖−𝑘 ×ŷ𝑖)2

∑(𝑦𝑖− �̅�)2            (16) 

𝑘 =  
∑(𝑦𝑖 × ŷ𝑖)

∑(ŷ𝑖)2             (17) 

𝑘′ =  
∑(𝑦𝑖 × ŷ𝑖)

∑(𝑦𝑖)2          (18) 

𝑟′0
2

=  1 −  
∑(ŷ𝑖−𝑘′ ×𝑦𝑖)2

∑(ŷ𝑖− ŷ̅)
2            (19) 

𝑟𝑚
2 =  𝑟2  × (1 −  √|𝑟2 −  𝑟0

2|)          (20) 

𝑟′𝑚
2 =  𝑟2  × (1 −  √𝑟2 − 𝑟′0

2)          (21) 

𝑟𝑚
2̅̅ ̅ =  

(𝑟𝑚
2+ 𝑟′𝑚

2 )

2
            (22) 

𝑟𝑚
2 =  𝑟2  (1 −  √𝑟2 −  𝑟0

2)           (23) 

𝛥𝑟𝑚
2 =  |𝑟𝑚

2 −  𝑟′𝑚
2 |            (24) 

 

Where ŷ and 𝑦 represent the predicted  and observed values of pKi, respectively, while ŷ̅ and �̅� 
Represent the average predicted and observed values, respectively. The validity of a model is 
determined using the following threshold values [33]: 
 

𝑟2 > 0.6 

𝑄2 > 0.5 

𝑟2−𝑟0
2

𝑟2  < 0.1 

0.85 ≤ 𝑘 ≤ 1.15 or 0.85 ≤ 𝑘′ ≤ 1.15 

|𝑟0
2 − 𝑟′0

2
| < 0.3 

𝑟𝑚
2̅̅ ̅ > 0.5 

𝛥𝑟𝑚
2  < 0.2 

 
The applicability of the model against the train and test data was investigated by performing the 
applicability domain (AD) analysis. This analysis helps to interpret the model regarding the 
influence of descriptors in the prediction [34] and investigate the model's applicability against 
compounds in the data set. The AD definition is dependent on the model's descriptors and the 
experimental property [35]. AD is represented as a square region that determines the acceptability 
of data set prediction using the model [36]. In this study, AD was determined by using leverage 
approach, as formulated as: 
 

𝐻 = 𝑋(𝑋𝑇𝑋)−1𝑋𝑇            (25) 
 
Where X represents a descriptor matrix, the score matrix is constructed using the values of 
selected descriptors. 

  
3. Results and Discussions 

3.1. Molecular Descriptor Selection 

From 2904 descriptors, a set of molecular descriptors are selected by analyzing statistical 
parameter and performing GSA. In the first stage, the removal of descriptors with zero variance 
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decreased the descriptors numbers to 949. Then, the descriptor selection by using Pearson 
correlation analysis decreased to 61 of descriptors number. 

The selected molecular descriptors obtained from the statistical analysis are then further reduced 
by using GSA. In this stage, we performed four rounds of independent GSA to produce sets of 
the molecular descriptor with the number of the descriptors 5, 6, 7, and 8 used in four models, 
namely models 1, 2, 3, and 4, respectively. In the GSA process, the set of descriptors, or defined 
as a solution, was refined to obtain the solution with the lowest mean square error (MSE) value. 
The profile of MSE fluctuation during the iteration for four sets of descriptors was provided in 
Figure 3. 

 
 

Figure 3. The Plot of MSE during the Iteration of GSA 
 

According to Figure 3, we found that the MSE of all models gradually decreases during the 
iteration. This indicates that the GSA scheme can solve with the lower MSE in the following 
iteration. Also, we found that the MSE for model 4, which comprised 8 descriptors, decreases 
faster than others. The order of model descriptors with respect to the decrease level of MSE is 
model 4, 3, 2, and 1, respectively. This points out that the descriptors number corresponds to the 
decreasing of MSE value during the GSA process. We summarized the molecular descriptor 
obtained from GSA for each model in Table 3, while the description of all selected descriptors is 
presented in Supporting Information [37], [38]. 
 
Table 3. Prediction Models and Their Molecular Descriptors 

Model Total 
Features 

Selected Molecular Descriptors 

1 5 ATSC1dv, ATSC5d, SMR_VSA5, AATS6i.1, AATSC6m.1 

2 6 ATSC1dv, ATSC1m.1, ATSC3i.1, AATSC7m.1,  AATSC8v.1, 
VR2_Dzs 

3 7 ATSC1dv, AATS6v.1, AATS8i.1, AATSC3m.1, AATSC7m.1, 
AATSC8v.1, VR2_Dzs 

4 8 ATSC1dv, ATSC1d, ATSC5pe, EState_VSA2, AATSC7m.1, 
AATSC8v.1, VE3_Dzm.1, VR2_Dzs 

 
The selected descriptor for all models found that the ATSC1dv  descriptor is chosen for all models. 
This implies that the correlation between the descriptors and target variables is quite strong. Also, 
there are several selected descriptors in models 2 and 3, i.e., AATSC7m.1, AATSC8v.1, and 
VR2_Dzs. Those descriptors were also considered to influence the activity. By considering the 
type of selected descriptors, we found that almost all descriptors belong to the autocorrelation of 
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the topology structure. Here, autocorrelation is interpreted as a descriptor topology that encodes 
the molecular structure and physicochemical properties. 

We analyzed the distribution of the selected descriptor by presenting the box plot of the 
normalized value of descriptors. The box plot of descriptors of models 1 and 2 is shown in Figure 
4, while models 3 and 4 are available in Supporting Information. As for model 1, the distribution 
of all descriptors is quite similar. ATSC1dv parameter is found as the only descriptor without 
outliers data. As for model 2, the distribution of descriptor values varies with the range of VR2_Dzs 
is the smallest one. Also, many outliers data were found in AATSC7m.1, AATSC8v.1, and 
VR2_Dzs. As for model 3, VR2_Dzs is also the smallest range of descriptor values amongst the 
selected descriptors. Also, there are several descriptors with outliers data. As for model 4, the 
distribution of descriptor values is quite similar to model 3 with one descriptor. 
 

 
 

(a) 
 

 
 

(b) 

Figure 4. The Boxplot Analysis of Descriptors used in (a) Model 1 and (b) Model 2 

We also perform the correlation analysis to investigate the correlation between descriptors and 
target variables and amongst the descriptors. The correlation matrix of correlation is presented 
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as a correlation heatmap. For models 1 and 2, the heatmap is provided in Figure 5, while the 
heatmap for other models is available in Supporting Information. 

 
 

(a) 
 

 
 

(b) 
Figure 5. The Heatmap Analysis of Descriptors used in (a) Model 1 and (b) Model 2 

 
As for model 1, we found that ATSC1dv and AATSC6m.1 descriptors show a high correlation to 
the target with the correlations of 0.52 and 0.53, respectively. The high correlation of ATSC1dv to 
the target might be the reason for the appearance of the descriptor in all descriptor sets. 
Meanwhile, SMR_VSA5 shows the lowest correlation to the target with a correlation of 0.25. We 
also found a high correlation between ATSC1dv and AATS6i.1 descriptors with a correlation of 
0.63. The high correlation corresponds to the similar type of those descriptors. As for model 2, 
the AATSC8v.1 descriptor shows the highest correlation to the target with a correlation of 0.65. 
Meanwhile, ATSC1m.1 and ATSC3i.1 present the lowest correlation to the target with the of 0.24. 
A high correlation amongst the descriptor was found between ATSC1dv and AATSC8v.1 with a 
correlation of 0.37. 

As for model 3, the descriptor with the highest correlation to the target is also AATSC8v.1, as also 
found in model 2. This indicates that the parameters give a significant contribution to the model. 
Meanwhile, AATS8i.1 shows the lowest correlation to the target with a correlation of 0.35. The 
high correlation amongst the descriptor found between ATSC1dv and AATS8i.1 with a correlation 
of 0.59. As for model 4, AATSC8v.1 also shows the highest correlation to the target, while 
VE3_Dzm.1 shows the lowest correlation to the target with a correlation of -0.23. A high 
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correlation amongst the descriptors was found between ATSC1dv and Estate_VSA2, with a 
correlation of 0.41. 

We found that the correlation of ATSC1dv with other selected topological descriptors is relatively 
high from the selected descriptor. This indicates that ATSC1dv represents the characteristic of 
those topological descriptors. Also, we found that AATSC8v.1 and VE3_Dzm.1 show the highest 
and lowest correlation, respectively, to the target amongst the selected descriptor. 

3.2. Hyperparameter Tuning 

The improvement of model performance was acquired by adjusting ANN parameters through the 
hyperparameter tuning scheme. The best parameters for each model were obtained from the 
tuning process, in which the parameters are listed in Table 4. We found that the optimized learning 
rate and momentum for all models are similar. Meanwhile, the optimized value of the hidden node 
and dropout rate of model 1 and model 2 are similar. This indicates that the character of the ANN 
architecture of both models is quite similar. However, we do not found any tendency regarding 
the optimized value of ANN parameters. This is related to the random factor involved in the model 
development of ANN. 
 

   Table 4. The Best Parameters of ANN Obtained from Hyperparameter Tuning 

Parameters Model 1 Model 2 Model 3 Model 4 

Hidden Node 9 9 8 10 

Momentum 0.0 0.0 0.0 0.0 

Learning Rate 0.001 0.001 0.001 0.001 

Dropout Rate 0.1 0.1 0.0 0.0 

3.3. Model Validation 

We implemented the optimized parameter in developing the ANN models to predicted pKi values. 
The plot of predicted and experimental values of pKi obtained by models 1 and 2 are presented 
in Figure 6, while the plot of those obtained by models 3 and 4 are shown in Supporting 
Information. We found that most train and test data points of all models close to the straight 
reference line with low deviation. 

 

 
 

(a) 
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(b) 
Figure 6. The Plot of Experimental pKi vs. Predicted pKi Obtained from (a) Model 1 and (b) 

Model 2 
 

Several validation parameters were calculated to determine the quality of models. First, we 
presented the validation parameter for the train and test set in Tables 5 and 6, respectively. By 
comparing those values with the threshold, we found that all models are valid and acceptable. 
However, we also utilized the parameters to determine the best model. As for the validation of the 
train set, we found that model 3 gives the best performance with the r2 and Q2 values are 0.84 
and 0.81, respectively. Meanwhile, the worst performance was obtained from model 2, with the f 
r2 and Q2 values are 0.79 and 0.69, respectively. 

As for the validation of the test set, we found that model 3 and model 4 give the best performance 
with the values of r2 is 0.82. Meanwhile, model 1 present the worst validation parameter with the 
value of r2 is 0.74. Here, we consider the values of r2 of the train and test set and Q2 of the train 
set to determine the best model. According to the consideration, we found that model 3 performs 
better than other models. This result indicates that the descriptors number used in model 3 is the 
most suitable for this case. Also, the performance of model 3 is related to the quality of the 
descriptor combination obtained from the GSA scheme of feature selection. 
 

       Table 5. The Validation Parameters of Train Set 

Parameter Model 1 Model 2 Model 3 Model 4 

𝑟2 0.80 0.79 0.84 0.81 

𝑄2 0.72 0.69 0.81 0.69 

𝑘 1.0026 1.0027 1.0017 1.0006 

(𝑟2 −  𝑟0
2)

𝑟2
 

0.005 0.004 0.0003 1.57e-5 

|𝑟0
2 − 𝑟′0

2| 0.08 0.08 0.04 0.039 

𝑟𝑚
2̅̅ ̅ 1.04 1.04 1.17 1.14 

𝛥𝑟𝑚
2  0.19 0.19 0.15 0.16 
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       Table 6. The Validation Parameters of Test Set 

Parameter Model 1 Model 2 Model 3 Model 4 

𝑟2 0.74 0.75 0.82 0.82 

𝑘 1.0029 1.0029 1.0018 1.0039 

(𝑟2 −  𝑟0
2)

𝑟2
 

0.034 0.017 0.002 0.004 

|𝑟0
2 − 𝑟′0

2| 0.24 0.17 0.56 0.071 

𝑟𝑚
2̅̅ ̅ 0.82 0.90 1.11 1.07 

𝛥𝑟𝑚
2  0.28 0.24 0.17 0.17 

 
Furthermore, we investigated the applicability domain (AD) of each model by using a Williams 
plot. The AD plot of models 1 and 2 are presented in Figure 7, while the plot of models 3 and 4 
are shown in Supporting Information. We found that h* values are different for each model. As for 
model 1, we found that only one train data lay outside the region with the standardized residual 
higher than the threshold. We also found that all of the test data lay inside the region. As for model 
2, we found six train data points outside the region with leverage values higher than the h* value. 
However, there is no test data that is located outside the region. 

As for model 3, three train data points outside the region with the leverage values are higher than 
h*, while all test data lie inside the region. As for model 4, we found two train data points and one 
test data point outside the region. Generally, even though several train data points are located 
outside the region, all models are still acceptable regarding the values of the validation parameter. 
Also, since all test data points are found inside the region, except model 4, we can point out that 
the prediction of the test set is reliable. The acceptability of this model highlight the ability of this 
model in predicting the activity of hydroxyethylamines compound outside the train data. By 
comparing the r2 score, we highlight that model 3 performs better than the previous study [18]. 
 

 
 

(a) 
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(b) 
Figure 7. The Williams Plot of Applicability Domain Obtained from (a) Model 1 and (b) Model 2 
 
4. Conclusion 

Based on the results, the descriptor selection used in the QSAR model for predicting HIV-1 
protease inhibitors activity was successfully performed by using the Gravitational Search 
Algorithm method. The development of four QSAR models was completed using the Neural 
Network method by varying the number of descriptors. In addition, a hyperparameter tuning 
scheme is used to improve the model performance. According to the results, all of the models are 
found to be valid and acceptable. We also found that model 3 that containing 7 descriptors give 
the most satisfying results with the values of r2 of the train and test set are 0.84 and 0.82, 
respectively, and the value of Q2 of the train set is 0.81. The analysis regarding the applicability 
domain indicates that the prediction of the test set by using model 3 is reliable. Since the validity 
of obtained QSAR model has been confirmed, we can use the model in virtual screening to filter 
HIV-1 protease inhibitors from the drug database. 
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