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Abstrak. Pada artikel ini, Metode Elzaki homotopy perturbation 

(EHPM) diterapkan untuk menyelesaikan sistem fraksional stiff. 

Metode EHPM adalah kombinasi dari modifikasi transformasi 

integral Laplace yang disebut transformasi Elzaki dan metode 

gangguan homotopi. Metode yang diusulkan telah diterapkan pada 

beberapa contoh sistem fraksional stiff linier dan nonlinier. Hasil yang 

diperoleh dengan metode ini dibandingkan dengan hasil yang 

diperoleh dengan metode Kernel Hilbert space (KHSM) 

menunjukkan bahwa metode EHPM merupakan metode yang efektif 

dan akurat untuk menyelesaikan sistem persamaan diferensial orde 

fraksional. 
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Abstract. In this article, the Elzaki homotopy perturbation method is 

applied to solve fractional stiff systems. The Elzaki homotopy 

perturbation method (EHPM) is a combination of a modified Laplace 

integral transform called the Elzaki transform and the homotopy 

perturbation method. The proposed method is applied for some 

examples of linear and nonlinear fractional stiff systems. The results 

obtained by the current method were compared with the results 

obtained by the kernel Hilbert space KHSM method. The obtained 

result reveals that the Elzaki homotopy perturbation method is an 

effective and accurate technique to solve the systems of differential 

equations of fractional order. 
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1. Introduction  
 

Many scientific disciplines can be modeled by initial value problems of fractional 

order which lead to a better understanding in characterizing the natural phenomena in 

various fields of science such as engineering, biology, economy, computer science, and 

physics. The exact and analytical solutions of fractional order differential equations are 

difficult to be found, thus the numerical methods are used to investigate the solutions of 

differential equations of fractional orders. The proposed system at first was highlighted by 

Hirschfelder and Curtiss [1]. Then stiff systems were studied by many researchers in 

different branches [2]–[4]. Several numerical methods have been developed to obtain the 

analytical and approximate solutions of stiff systems of integer and fractional orders, such 

as Adomian decomposition method [5], homotopy perturbation method [6], homotopy 

analysis method [7], variation iteration method [8], rational homotopy perturbation 

method[9], Block method [10], Laplace adomian decomposition method and modified 

decomposition method [11], multistage Bernstein method[12], and fractional power series 

method [13]. 

Homotopy perturbation method (HPM) is an important semi-analytic technique for 

solving differential equations [14]–[16] and an efficient technique to study the different 

types of nonlinear functional equations. Volterra-Fredholm nonlinear systems were solved 

by HPM [17], hyperbolic PDEs [18], Zakharov-Kuznetsov[19], and system of nonlinear 

differential equations[20]. 

So far, many modified techniques have been described to solve linear and nonlinear 

differential equations of integer and fractional orders. Those of which are Laplace 

homotopy perturbation method, Laplace Adomian decomposition method, and recently, 

Elzaki homotopy transformation perturbation method is used to solve a range of problems 

such as a family of Fisher’s equation [21], spatial diffusion of Biological population [22], 

nonlinear oscillators [23], system of linear and nonlinear PDEs of fractional orders [24], 

time-fractional Navier–Stokes equations [25], and An algorithm for solving the Burgers–

Huxley equation using the Elzaki transform [26] 

Elzaki integral transform is a modification of the Laplace and Sumudu transforms 

which was invented by Tariq [27], Elzaki transformation is an efficient and powerful 

technique that has found the exact solutions to several differential equations which cannot 

be solved by Sumudu transform [28]. Elzaki integral equation is a powerful and efficient 

technique that has been used to solve many differential equations of integer and fractional 

orders [25][29]–[33].  

The objective of this paper is to expand the applications of EHPM and illustrate the 

efficiency of the proposed method, thus we consider the stiff systems fractional ordinary 

differential equations: 

𝐷𝜇𝑖𝑧𝑖(𝑡) + 𝐹𝑖(𝑡, 𝑧1(𝑡), 𝑧2(𝑡), … , 𝑧𝑛(𝑡)) = 𝑓𝑖(𝑡),   𝑧𝑖(𝑡0) = 𝑎𝑖,0,   𝑚 − 1 < 𝜇𝑖 < 𝑚 , 𝑚 ∈ 𝑁.       (1)

                                                                     
2. Preliminaries 

 

In this section, we introduce some definitions and properties of fractional calculus and 

Elzaki transform which are used in this article. 

Definition 2.1. [4] A real valued function 𝑔(𝑦), 𝑦 > 0 is belongs to the space ∁𝜎, 𝜎 ∈ 𝑅 if 

there exists at least a real number 𝑑 > 𝜎, such that 𝑔(𝑦) = 𝑦𝑑𝑔1(𝑦) where 𝑔1(𝑦) ∈
 ∁(0, ∞), and it is said to be in the space ∁𝜎

𝑛 if 𝑔𝑛 ∈ 𝑅𝜎 , 𝑛 ∈ 𝑁.   

Definition 2.2. [34] The function 𝑓(𝑢) is called R-L fractional integral of order ∝≥ 0 if it 

is defined as:  

𝐽𝛼𝑓(𝑢) =
1

𝛤(𝛼)
∫

𝑢

0
(𝑢 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡, 𝛼 > 0, 𝑡 > 0.                          

In particular 𝐽0𝑓(𝑢) = 𝑓(𝑢). 
For 𝜃 ≥ 0 and 𝜗 ≥ −1, some properties of the operator 𝐽𝛼 
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1. 𝐽𝛼𝐽𝜃𝑓(𝑢) = 𝐽𝛼+𝜃𝑓(𝑢), 

2. 𝐽𝛼𝐽𝜃𝑓(𝑢) = 𝐽𝜃𝐽𝛼𝑓(𝑢), 

3. 𝐽𝛼𝑥𝜗 =
𝛤(𝜗+1)

𝛤(𝛼+𝜗+1)
𝑥𝛼+𝜗.                                                           

Definition 2.3. [34] The function 𝑓 ∈ 𝐶−1
𝑛 , 𝑛 ∈ 𝑁 is called Caputo fractional derivative if 

it is defined as 

 𝐷𝛼𝑓(𝑢) =
1

𝛤(𝑛−𝛼)
∫

𝑢

0
(𝑢 − 𝑡)𝑛−𝛼−1𝑓𝑛(𝑡)𝑑𝑡, 𝑛 − 1 < 𝛼 ≤ 𝑛.  

Definition 2.4. [27] The Elzaki-transform of the function 𝑓(𝑢) is defined as: 

𝐸[𝑓(𝑢)] = 𝑇(𝑣) = 𝑣 ∫
∞

0
𝑓(𝑢)𝑒

−𝑢

𝑣 𝑑𝑢             𝑢 > 0. 

Suppose that 𝑓 is piecewise continuous, then we can calculate 𝐸 [
𝜕𝑓

𝜕𝑥
] as follows: 

𝐸 [
𝜕𝑓(𝑥,𝑢)

𝜕𝑥
] = ∫

∞

0
𝑣𝑒

−𝑢

𝑣  
 𝜕𝑓(𝑥,𝑢)

𝜕𝑥
𝑑𝑢 =

 𝜕

𝜕𝑥
∫

∞

0
𝑣𝑒

−𝑢

𝑣  𝑓(𝑥, 𝑢)𝑑𝑢 =
 𝜕

𝜕𝑥
𝑇(𝑥, 𝑣),  

Similarly, we can have: 

𝐸 [
 𝜕2𝑓(𝑥, 𝑢)

𝜕𝑥2 ] =
 𝑑2𝑇(𝑥, 𝑢)

𝑑𝑥2 . 

Assume that 
𝜕𝑓

𝜕𝑢
= ℎ, then we have: 

𝐸 [
 𝜕2𝑓(𝑥, 𝑢)

𝜕𝑢2 ] = 𝐸 [
𝜕ℎ(𝑥, 𝑢)

𝜕𝑢
] =

1

𝑣
𝐸[ℎ(𝑥, 𝑢)] − 𝑣ℎ(𝑥, 0) 

𝐸 [
 𝜕2𝑓(𝑥, 𝑢)

𝜕𝑢2 ] =
𝑇(𝑥, 𝑢)

𝑣2 − 𝑓(𝑥, 0) − 𝑣
𝜕𝑓

𝜕𝑢
(𝑥, 0) 

By mathematical induction one can extend this result to the 𝑛𝑡ℎpartial derivative as follows: 

                                  𝐸 [
 𝜕𝑛𝑓(𝑥,𝑢)

𝜕𝑢𝑛 ] =
𝑇(𝑥,𝑡)

𝑣𝑛 − ∑𝑛−1
𝑖=0 𝑣2−𝑛+𝑖  𝜕𝑖𝑓(𝑥,0)

𝜕𝑢𝑖 .                                  (2) 

 

3. Elzaki homotopy perturbation method analysis 
 

Assume the following system of nonlinear differential equations  

        𝛭𝑖(𝑧𝑖) + 𝛮𝑖(𝑧𝑖) = 𝑔𝑖(𝑡),      𝑡 ∈ 𝛬, 𝑖 = 1,2, … , 𝑛                                                      (3) 

where 𝑧𝑖 and  𝑔𝑖(𝑡) are sought and known functions respectively, 𝛭𝑖 and 𝛮𝑖 are linear and 

nonlinear operators respectively, where: 

𝛮𝑖(𝑧𝑖) = ∑

∞

𝑘=0

𝐴𝑖𝑘 ,  

where 𝐴𝑖𝑘 represents the Adomian polynomial as follows: 

𝐴𝑖𝑘 =
1

𝑚!

𝑑𝑚

𝑑𝜏𝑚 (𝛮𝑖(∑

∞

𝑘=0

𝑧1𝑘𝜏𝑚, … , ∑

∞

𝑘=0

𝑧𝑛𝑘𝜏𝑚) ,  

Now, we assume the following homotopy 

И𝑖(ϒ𝑖 , 𝑝) = (1 − 𝑝)(𝛭𝑖(ϒ𝑖) − 𝑧𝑖,0) + 𝑝(𝛭𝑖(ϒ𝑖) + 𝛮𝑖(ϒ𝑖) − 𝑔𝑖), 

or equivalently,            И𝑖(ϒ𝑖 , 𝑝) = 𝛭𝑖(ϒ𝑖) − 𝑧𝑖,0 + 𝑝𝑧𝑖,0 + 𝑝(𝛮𝑖(ϒ𝑖) − 𝑔𝑖),              (4) 

Since 𝛭𝑖(ϒ𝑖) − 𝑧𝑖,0 = 0 and 𝛭𝑖(ϒ𝑖) + 𝛮𝑖(ϒ𝑖) − 𝑔𝑖 = 0 which are equivalent to the 

operator equations И𝑖(𝑧, 0) = 0 and И𝑖(𝑧, 1) = 0 respectively, also 𝑝 ∈ [0,1] is a 

homotopy parameter, 𝑧𝑖,0 are initial approximations and ϒ𝑖: (𝑡, 𝑝): 𝛬 × [0,1] → 𝑅. 

Now, we apply the Elzaki transform on (4), we obtain 

𝐸[𝛭𝑖(ϒ𝑖) − 𝑧𝑖,0 + 𝑝𝑧𝑖,0 + 𝑝(𝛮𝑖(ϒ𝑖) − 𝑔𝑖)] = 0 

By differential property of of Elzaki transform, we get 
1

𝑣𝜇
𝐸[ϒ𝑖] − 𝑣2−𝜇ϒ𝑖,0 − 𝑣3−𝜇ϒ′

𝑖,0 − ⋯ − 𝑣𝑛+1−𝜇ϒ𝑖,0
(𝑛−1)

= 𝐸[𝑧𝑖,0 − 𝑝𝑧𝑖,0 + 𝑝(𝛮𝑖(ϒ𝑖) − 𝑔𝑖)] 
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Applying the inverse Elzaki transform, we obtain  

ϒ𝑖 = 𝐸−1 [𝑣2ϒ𝑖,0 + 𝑣3ϒ′
𝑖,0 + ⋯ + 𝑣𝑛+1ϒ𝑖,0

(𝑛−1)
] + 𝐸−1 [𝑣𝜇𝐸[𝑧𝑖,0 − 𝑝𝑧𝑖,0 +

                        𝑝(𝛮𝑖(ϒ𝑖) − 𝑔𝑖)]].                                                                                         (5) 

By HPM, the following series represent the solution of equation (5), where 𝑝 ∈ [0,1]. 
                                 ϒ𝑖(𝑡) = ∑∞

𝑗=0 𝑝𝑗ϒ𝑖,𝑗 ,    𝑖 = 1,2, … , 𝑛                                                (6) 

Substituting (6) in (5), we obtain 

∑

∞

𝑛=0

𝑝𝑛ϒ𝑖,𝑛 = 𝐸−1 [𝑣2ϒ𝑖,0 + 𝑣3ϒ′
𝑖,0 + ⋯ + 𝑣𝑛+1ϒ𝑖,0

(𝑛−1)
]

+ 𝐸−1 [𝑣𝜇𝐸 [𝑧𝑖,0 − 𝑝𝑧𝑖,0 + 𝑝 (𝛮𝑖 (∑

∞

𝑛=0

𝑝𝑛ϒ𝑖,𝑛) − 𝑔𝑖)]] 

Now, by comparing the coefficients of the same powers of the embedded parameter  𝑝 , 

leads to 

𝑝0  ∶  ϒ𝑖,0 = 𝐸−1 [𝑣2ϒ𝑖,0 + 𝑣3ϒ′
𝑖,0 + ⋯ + 𝑣𝑛+1ϒ𝑖,0

(𝑛−1)
+ 𝐸[𝑧0]] 

𝑝1  ∶  ϒ𝑖,1 = 𝐸−1 [𝑣𝜇𝐸[𝛮𝑖(ϒ𝑖,0) − 𝑧𝑖,0 − 𝑔𝑖]] 

𝑝2  ∶  ϒ𝑖,2 = 𝐸−1 [𝑣𝜇𝐸[𝛮𝑖(ϒ𝑖,0, ϒ𝑖,1)]] 

𝑝3  ∶  ϒ𝑖,3 = 𝐸−1 [𝑣𝜇𝐸[𝛮𝑖(ϒ𝑖,0, ϒ𝑖,1, ϒ𝑖,2)]] 

⋮ 

𝑝𝑗  ∶  ϒ𝑖,𝑗 = 𝐸−1 [𝑣𝜇𝐸[𝛮𝑖(ϒ𝑖,0, ϒ𝑖,1, ϒ𝑖,2, … , ϒ𝑖,𝑗−1 )]] 

⋮ 

Assume that ϒ𝑖,0 = 𝛽𝑖,0, ϒ′
𝑖,0 = 𝛽𝑖,1, … , ϒ𝑖,0

(𝑛−1)
= 𝛽𝑖,𝑛−1 are the initial approximations, 

where 𝑖 = 1, 2, … , 𝑛. Finally, the solution of (3) is obtained by the following series: 

        𝑧𝑖(𝑡) = ϒ𝑖  = ϒ𝑖,0 + ϒ𝑖,1 + ϒ𝑖,2 + ⋯ +.                                                                   (7) 

The convergence and uniqueness of the series (7) is discussed in [21]. 

 

4. Applications of Elzaki homotopy perturbation method 
 

The numerical patterns are employed to confirm the efficiency and accuracy of the 

Elzaki homotopy transform perturbation technique for solving the fractional stiff systems. 

For this purpose, at the first example, the comparison of error analysis with the kernel 

Hilbert space technique [13] [35] is made, at the second example, the exact solution of the 

proposed problem is achieved where 𝛽 = 1, and at the third example the comparison 

between the proposed method and (ADM and MLDM [11]) is made.   

 

Example 4.1 Consider the following linear stiff system of fractional order 0 < 𝛽 ≤ 1  

                                      
𝐷𝑡

𝛽
𝑧(𝑡) = −𝑧(𝑡) + 95𝑤(𝑡),

𝐷𝑡
𝛽

𝑤(𝑡) = −𝑧(𝑡) − 97𝑤(𝑡),
                                                                 (8) 

with the initial conditions 𝑧(0) = 1, 𝑤(0) = 1. The exact solution of the system when 𝛽 =
1 is  

𝑧(𝑡) =
95

47
𝑒−2𝑡 −

48

47
𝑒−96𝑡 ,       𝑤(𝑡) =

48

47
𝑒−96𝑡 −

1

47
𝑒−2𝑡 . 

To solve system (8) by the EHPM, we use the following homotopy  

𝐷𝑡
𝛽

𝑍(𝑡) − 𝑧0(𝑡) + 𝑝(𝑧0(𝑡) + 𝑍(𝑡) − 95𝑊(𝑡)) = 0 

𝐷𝑡
𝛽

𝑊(𝑡) − 𝑤0(𝑡) + 𝑝(𝑤0(𝑡) + 𝑍(𝑡) + 97𝑊(𝑡)) = 0. 
Applying the Elzaki transform, we have   
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𝐸 [𝐷𝑡
𝛽

𝑍(𝑡) − 𝑧0(𝑡) + 𝑝(𝑧0(𝑡) + 𝑍(𝑡) − 95𝑊(𝑡))] = 0 

𝐸 [𝐷𝑡
𝛽

𝑊(𝑡) − 𝑤0(𝑡) + 𝑝(𝑤0(𝑡) + 𝑍(𝑡) + 97𝑊(𝑡))] = 0. 

Using the differential property of Elzaki transform, we obtain 
1

𝑣𝛽 𝐸[𝑍(𝑡)] = 𝑣2−𝛽𝑍0(𝑡) +

𝐸[𝑧0(𝑡) − 𝑝(𝑧0(𝑡) + 𝑍(𝑡) − 95𝑊(𝑡))] 
1

𝑣𝛽
𝐸[𝑊(𝑡)] = 𝑣2−𝛽𝑊0(𝑡) + 𝐸[𝑤0(𝑡) − 𝑝(𝑧0(𝑡) + 𝑍(𝑡) + 97𝑊(𝑡))]. 

Applying inverse Elzaki transform, we have  

      
𝑍(𝑡) = 𝐸−1 [𝑣2𝑍0(𝑡) + 𝑣𝛽𝐸[𝑧0(𝑡) − 𝑝(𝑧0(𝑡) + 𝑍(𝑡) − 95𝑊(𝑡))]]      

𝑊(𝑡) = 𝐸−1 [𝑣2𝑊0(𝑡) + 𝑣𝛽𝐸[𝑤0(𝑡) − 𝑝(𝑧0(𝑡) + 𝑍(𝑡) + 97𝑊(𝑡))]].  
           (9) 

Here, the following form is the solution of equation (9): 

                
𝑍(𝑡) = 𝑍0(𝑡) + 𝑝𝑍1(𝑡) + 𝑝2𝑍2(𝑡) + ⋯,      

𝑊(𝑡) = 𝑊0(𝑡) + 𝑝𝑊1(𝑡) + 𝑝2𝑊2(𝑡) + ⋯,   
                                                (10) 

Substituting (10) in to (9) and collecting the coefficients of equivalent powers of embedded 

parameter 𝑝 , we obtain the following: 

𝑝0  ∶  {𝑍0(𝑡) = 𝐸−1 [𝑣2𝑍0(0) + 𝑣𝛽𝐸[𝑧0(𝑡)]] , 𝑊0(𝑡) = 𝐸−1 [𝑣2𝑊0(0) + 𝑣𝛽𝐸[𝑤0(𝑡)]],  

𝑝1  ∶  {𝑍1(𝑡) = 𝐸−1 [−𝑣𝛽𝐸[(𝑧0(𝑡) + 𝑍0(𝑡) − 95𝑊0(𝑡))]] , 𝑊1(𝑡)

= 𝐸−1 [−𝑣𝛽𝐸[(𝑧0(𝑡) + 𝑍0(𝑡) + 97𝑊0(𝑡))]],  

𝑝2  ∶  {𝑍2(𝑡) = 𝐸−1 [−𝑣𝛽𝐸[(𝑍1(𝑡) − 95𝑊1(𝑡))]] , 𝑊2(𝑡) = 𝐸−1 [−𝑣𝛽𝐸[(𝑍1(𝑡)

+ 97𝑊1(𝑡))]],  

𝑝3  ∶  {𝑍3(𝑡) = 𝐸−1 [−𝑣𝛽𝐸[(𝑍2(𝑡) − 95𝑊2(𝑡))]] , 𝑊3(𝑡) = 𝐸−1 [−𝑣𝛽𝐸[(𝑍2(𝑡)

+ 97𝑊2(𝑡))]],  

⋮ 
Here, we set 𝑍0(0) = 𝑧0(𝑡) = 1 and   𝑊0(0) = 𝑤0(𝑡) = 1. Thus, the above equations lead 

to the following results: 

𝑍0(𝑡) = 1 +
𝑡𝛽

𝛤(𝛽+1)
,                                             𝑊0(𝑡) = 1 +

𝑡𝛽

𝛤(𝛽+1)
, 

𝑍1(𝑡) =
93

𝛤(𝛽+1)
𝑡𝛽 +

94

𝛤(2𝛽+1)
𝑡2𝛽 ,                        𝑊1(𝑡) = −

99

𝛤(𝛽+1)
𝑡𝛽 −

98

𝛤(2𝛽+1)
𝑡2𝛽 , 

𝑍2(𝑡) = −
9498

𝛤(𝛽+1)
𝑡2𝛽 −

9404

𝛤(3𝛽+1)
𝑡3𝛽 ,                   𝑊2(𝑡) =

9510

𝛤(2𝛽+1)
𝑡2𝛽 +

9412

𝛤(3𝛽+1)
𝑡3𝛽 

𝑍3(𝑡) =
9129486

𝛤(3𝛽+1)
𝑡3𝛽 +

9035446

𝛤(4𝛽+1)
𝑡4𝛽 ,                     𝑊3(𝑡) = −

912972

𝛤(3𝛽+1)
𝑡3𝛽 −

903560

𝛤(4𝛽+1)
𝑡4𝛽 , 

Thus, the solution of system (8) using the series (7) is 

𝑧(𝑡) = 1 +
94

𝛤(𝛽 + 1)
𝑡𝛽 −

9404

𝛤(2𝛽 + 1)
𝑡2𝛽 +

903544

𝛤(3𝛽 + 1)
𝑡3𝛽 …, 

𝑤(𝑡) = 1 −
98

𝛤(𝛽 + 1)
𝑡𝛽 +

9412

𝛤(2𝛽 + 1)
𝑡2𝛽 −

903560

𝛤(3𝛽 + 1)
𝑡3𝛽 …, 
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Figure 1. The behavior of EHPM solution of system (8) for different values of 𝛽 and exact 

solution. 

Figure 1: illustrates the behavior of the EHPM solution of system (8) for different values of 𝛽  and 

exact solution. It can be seen that there is a good agreement between the exact solution and the 

approximate solution using EHPM, especially when 𝛽 = 1.  

 

Table 1.  The Absolute Error of kernel Hilbert space method KHSM and EHPM of (8) 

𝒕 𝒛(𝒕)EHPM 𝒛(𝒕)KHSM 𝒘(𝒕)EHPM     𝒘(𝒕)KHSM 

0.00 0 0 0 0 
0.5 3.0163443 × 10−15  4.76706570 × 10−4  3.0163483 × 10−15  4.44439990 × 10−4  

0.1 5.0178941 × 10−14 4.11985309 × 10−5 3.4785609 × 10−13 1.37132721 × 10−5 

0.15 6.4189477 × 10−11 2.37714435 × 10−5 1.1162905 × 10−10 4.49704615 × 10−7 

0.2 7.3684661 × 10−9 1.99138385 × 10−5 1.2169510 × 10−9 2.1210257 × 10−7 

0.25 3.4096780 × 10−7 1.67357026 × 10−5 3.6738962 × 10−7 1.76192995 × 10−7 

 

Table 1: shows the comparison between the absolute errors of the approximate solution of the 

proposed technique at different values of 𝑡 when 𝛽 = 1 for 20 order approximation and the 

approximate solution of KHSM. The results illustrate that the proposed technique is superior to 

KHSM and an efficient method for investigating the solution of proposed fractional systems. 
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Example 4.2: Consider the following non-linear stiff system of fractional order  

                            
𝐷𝑡

𝛽
𝑧(𝑡) = −(𝜌−1 + 2)𝑧(𝑡) + 𝜌−1𝑤2(𝑡), 0 < 𝛽 ≤ 1,      

𝐷𝑡
𝛽

𝑤(𝑡) = 𝑧(𝑡) − 𝑤(𝑡) − 𝑤2(𝑡),                          𝑡 ∈ [0,2] 
                        (11) 

with the initial conditions 𝑧(0) = 1, 𝑤(0) = 1. The exact solution of the system when 𝛽 =
1 is  

𝑧(𝑡) = 𝑒−2𝑡 ,       𝑤(𝑡) = 𝑒𝑡 . 
To solve system (11) by the EHPM, we use the following homotopy  

𝐷𝑡
𝛽

𝑍(𝑡) − 𝑧0(𝑡) + 𝑝(𝑧0(𝑡) + (𝜌−1 + 2)𝑍(𝑡) − 𝜌−1𝑊2(𝑡)) = 0 

𝐷𝑡
𝛽

𝑊(𝑡) − 𝑤0(𝑡) + 𝑝(𝑤0(𝑡) − 𝑍(𝑡) + 𝑊(𝑡) + 𝑊2(𝑡)) = 0.       
Applying the Elzaki transform, we have   

𝐸 [𝐷𝑡
𝛽

𝑍(𝑡) − 𝑧0(𝑡) + 𝑝(𝑧0(𝑡) + (𝜌−1 + 2)𝑍(𝑡) − 𝜌−1𝑊2(𝑡))] = 0 

𝐸 [𝐷𝑡
𝛽

𝑊(𝑡) − 𝑤0(𝑡) + 𝑝(𝑤0(𝑡) − 𝑍(𝑡) + 𝑊(𝑡) + 𝑊2(𝑡))] = 0.     

Using the differential property of Elzaki transform, we obtain 
1

𝑣𝛽 𝐸[𝑍(𝑡)] = 𝑣2−𝛽𝑍0(𝑡) +

𝐸[𝑧0(𝑡) − 𝑝(𝑧0(𝑡) + (𝜌−1 + 2)𝑍(𝑡) − 𝜌−1𝑊2(𝑡))] 
1

𝑣𝛽
𝐸[𝑊(𝑡)] = 𝑣2−𝛽𝑊0(𝑡) + 𝐸[𝑤0(𝑡) − 𝑝(𝑤0(𝑡) − 𝑍(𝑡) + 𝑊(𝑡) + 𝑊2(𝑡))].     

Applying inverse Elzaki transform, we have  

   
𝑍(𝑡) = 𝐸−1 [𝑣2𝑍0(𝑡) + 𝑣𝛽𝐸[𝑧0(𝑡) − 𝑝(𝑧0(𝑡) + (𝜌−1 + 2)𝑍(𝑡) − 𝜌−1𝑊2(𝑡))]]      

𝑊(𝑡) = 𝐸−1 [𝑣2𝑊0(𝑡) + 𝑣𝛽𝐸[𝑤0(𝑡) − 𝑝(𝑤0(𝑡) − 𝑍(𝑡) + 𝑊(𝑡) + 𝑊2(𝑡))]].              
   (12) 

Here, the following form is the solution of system (11): 

                           
𝑍(𝑡) = 𝑍0(𝑡) + 𝑝𝑍1(𝑡) + 𝑝2𝑍2(𝑡) + ⋯,      

𝑊(𝑡) = 𝑊0(𝑡) + 𝑝𝑊1(𝑡) + 𝑝2𝑊2(𝑡) + ⋯.   
                                                      (13) 

Substituting (13) in to (12) and collecting the coefficients of equivalent powers of 

embedded parameter 𝑝 , we obtain the following: 

𝑝0  ∶  {𝑍0(𝑡) = 𝐸−1 [𝑣2𝑍0(0) + 𝑣𝛽𝐸[𝑧0(𝑡)]] , 𝑊0(𝑡) = 𝐸−1 [𝑣2𝑊0(0) + 𝑣𝛽𝐸[𝑤0(𝑡)]],  

𝑝1  ∶  {𝑍1(𝑡) = 𝐸−1 [−𝑣𝛽𝐸[𝑧0(𝑡) + (𝜌−1 + 2)𝑍0(𝑡) − 𝜌−1𝑊0
2(𝑡)]] , 𝑊1(𝑡)

= 𝐸−1 [−𝑣𝛽𝐸[𝑤0(𝑡) − 𝑍0(𝑡) + 𝑊0(𝑡) + 𝑊0
2(𝑡)]],         

𝑝𝑗: { 𝑍2(𝑡)

= 𝐸−1 [−𝑣𝛽𝐸 [(𝜌−1 + 2)𝑍𝑗−1(𝑡)

− 𝜌−1 ∑

𝑗−1

𝑙=0

𝑊𝑗(𝑡)𝑊𝑗−𝑙−1(𝑡)]],                             𝑊2(𝑡) = 𝐸−1 [−𝑣𝛽𝐸 [−𝑍𝑗−1(𝑡)

+ 𝑊𝑗−1(𝑡) + ∑

𝑗−1

𝑙=0

𝑊𝑗(𝑡)𝑊𝑗−𝑙−1(𝑡)]] , 𝑗 = 2,3, …,  

⋮ 
Here, we set 𝑍0(0) = 𝑧0(𝑡) = 1 and   𝑊0(0) = 𝑤0(𝑡) = 1. Thus, the above equations lead 

the following results. 

𝑍0(𝑡) = 1 +
𝑡𝛽

𝛤(𝛽 + 1)
, 
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𝑊0(𝑡) = 1 +
𝑡𝛽

𝛤(𝛽 + 1)
, 

𝑍1(𝑡) = −3
𝑡𝛽

𝛤(𝛽 + 1)
+ (𝜌−1 − 2)

𝑡2𝛽

𝛤(2𝛽 + 1)
+

𝜌−1𝛤(2𝛽 + 1) 𝑡3𝛽

𝛤2(𝛽 + 1)𝛤(3𝛽 + 1)
, 

𝑊1(𝑡) = −2
𝑡𝛽

𝛤(𝛽 + 1)
− 2

𝑡2𝛽

𝛤(2𝛽 + 1)
−

𝛤(2𝛽 + 1)𝑡3𝛽

𝛤2(𝛽 + 1)𝛤(3𝛽 + 1)
, 

𝑍2(𝑡) = (6 − 𝜌−1)
𝑡2𝛽

𝛤(2𝛽 + 1)
− (

1

𝜌2 + 4𝜌−1 +
4𝜌−1𝛤(2𝛽 + 1)

𝛤2(𝛽 + 1)
− 4)

𝑡3𝛽

𝛤(3𝛽 + 1)

− (
1

𝜌2 + 4𝜌−1 +
4𝜌−1𝛤(3𝛽 + 1)𝛤(𝛽 + 1)

𝛤2(2𝛽 + 1)
)

𝛤(2𝛽 + 1) 𝑡4𝛽

𝛤2(𝛽 + 1)𝛤(4𝛽 + 1)

−
2𝜌−1𝛤(2𝛽 + 1)𝛤(4𝛽 + 1) 𝑡5𝛽

𝛤3(𝛽 + 1)𝛤(3𝛽 + 1)𝛤(5𝛽 + 1)
, 

𝑊2(𝑡) = 3
𝑡2𝛽

𝛤(2𝛽 + 1)
+ (𝜌−1 + 4 +

4𝛤(2𝛽 + 1)

𝛤2(𝛽 + 1)
)

𝑡3𝛽

𝛤(3𝛽 + 1)

+ (2𝜌−1 + 6 +
4𝛤(3𝛽 + 1)

𝛤2(𝛽 + 1)𝛤(2𝛽 + 1)
)

𝑡4𝛽

𝛤(4𝛽 + 1)

+
2𝛤(2𝛽 + 1)𝛤(4𝛽 + 1)𝑡5𝛽

𝛤3(𝛽 + 1)𝛤(3𝛽 + 1)𝛤(5𝛽 + 1)
, 

⋮ 
Thus, the solution of system (11) using the series (7) is 

𝑧(𝑡) = 𝑍0(𝑡) + 𝑍1(𝑡) + 𝑍2(𝑡) + ⋯, 
𝑤(𝑡) = 𝑊0(𝑡) + 𝑊1(𝑡) + 𝑊2(𝑡) + ⋯, 

𝑧(𝑡) = 1 −
2𝑡𝛽

𝛤(𝛽 + 1)
+

4𝑡2𝛽

𝛤(2𝛽 + 1)
+

𝜌−1𝛤(2𝛽 + 1) 𝑡3𝛽

𝛤2(𝛽 + 1)𝛤(3𝛽 + 1)

− (
1

𝜌2 + 4𝜌−1 +
4𝜌−1𝛤(2𝛽 + 1)

𝛤2(𝛽 + 1)
− 4)

𝑡3𝛽

𝛤(3𝛽 + 1)

− (
1

𝜌2 + 4𝜌−1 +
4𝜌−1𝛤(3𝛽 + 1)𝛤(𝛽 + 1)

𝛤2(2𝛽 + 1)
)

𝛤(2𝛽 + 1) 𝑡4𝛽

𝛤2(𝛽 + 1)𝛤(4𝛽 + 1)

−
2𝜌−1𝛤(2𝛽 + 1)𝛤(4𝛽 + 1) 𝑡5𝛽

𝛤3(𝛽 + 1)𝛤(3𝛽 + 1)𝛤(5𝛽 + 1)
+ ⋯, 

𝑤(𝑡) = 1 −
𝑡𝛽

𝛤(𝛽 + 1)
+

𝑡2𝛽

𝛤(2𝛽 + 1)
−

𝛤(2𝛽 + 1)𝑡3𝛽

𝛤2(𝛽 + 1)𝛤(3𝛽 + 1)

+ (𝜌−1 + 4 +
4𝛤(2𝛽 + 1)

𝛤2(𝛽 + 1)
)

𝑡3𝛽

𝛤(3𝛽 + 1)

+ (2𝜌−1 + 6 +
4𝛤(3𝛽 + 1)

𝛤2(𝛽 + 1)𝛤(2𝛽 + 1)
)

𝑡4𝛽

𝛤(4𝛽 + 1)

+
2𝛤(2𝛽 + 1)𝛤(4𝛽 + 1)𝑡5𝛽

𝛤3(𝛽 + 1)𝛤(3𝛽 + 1)𝛤(5𝛽 + 1)
+ ⋯. 

Here, setting 𝛽 = 1 and follow the above solution, the following results are obtained: 

𝑍0(𝑡) = 1 + 𝑡,                                               𝑊0(𝑡) = 1 + 𝑡 

𝑍1(𝑡) = −3𝑡 + (𝜌−1 − 2)
𝑡2

2!
+

2 𝜌−1 𝑡3

3!
,        𝑊1(𝑡) = −2𝑡 − 2 𝑡2 −

2𝑡3

3!
, 

𝑍2(𝑡) = (6 − 𝜌−1)
𝑡2

2
− (

1

𝜌2 + 4𝜌−1 + 8𝜌−1 − 4)
𝑡3

3!
− (

2

𝜌2 + 20𝜌−1)
 𝑡4

4!
−

2𝜌−1 𝑡5

15
, 

𝑊2(𝑡) = 3
𝑡2

2!
+ (𝜌−1 + 12)

𝑡3

3!
+ (2𝜌−1 +

3

4
)

𝑡4𝛽

4!
+

2 𝑡5

15
, 
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One can express the above values in a series after finding the other terms of the solution 

𝑧(𝑡) = 1 − 2(𝑡 − 𝑡2) −
8

6
𝑡3 −

4

6
𝑡4 + ⋯ = ∑

∞

𝑘=0

(2𝑡)𝑘(−1)𝑘

𝑘!
= 𝑒−2𝑡 

𝑤(𝑡) = 1 − 𝑡 +
𝑡2

2
−

𝑡3

6
+

𝑡4

24
+ ⋯ = ∑

∞

𝑘=0

(𝑡)𝑘(−1)𝑘

𝑘!
= 𝑒−𝑡 , 

which is the exact solution of system (11). 

 
Table 2.  The Absolute Error of kernel Hilbert space method KHSM and EHPM of (8) 

𝑡 𝑧(𝑡)EHPM 𝑧(𝑡)KHSM 𝑤(𝑡)EHPM     𝑤(𝑡)KHSM 

0.00 0 0 0 1.2 × 10−6  

0.4 5.55 × 10−17  1.20 × 10−6  0 2.47 × 10−2 

0.8 5.55 × 10−16 1.28 × 10−6 0  1.19 × 10−1 

1.2 1.70 × 10−12 9.10 × 10−7 5.55 × 10−17 2.62 × 10−1 

1.6 6.90 × 10−10 5.59 × 10−7 0 4.38 × 10−1 

2.0 7.30 × 10−8 3.18 × 10−7 5.56 × 10−16 1.2 × 10−6  

     

Table 2: illustrates the comparison between the absolute errors of the numerical solution of the 

proposed technique at different values of 𝑡 where 𝛽 = 1 for 20 terms iterations and the solution 

obtained by KHSM. It is clear that the EHPM technique is more accurate and converges faster than 

the KHSM technique. 

 

5. Conclusions 
 

In this work, a new computational technique namely Elzaki homotopy perturbation 

method are constructed to solve linear and nonlinear systems of differential equation of 

fractional order. The construction scheme of the current method is discussed and 

implemented to show the performance of the computational method for this problem. The 

results obtained showed that the proposed method is a powerful and efficient method for 

solving linear and nonlinear stiff systems of fractional orders and compared the obtained 

results of the current method with the results obtained by the other methods. Table 1 and 

table 2 observed that the suggested technique is superior to kernel Hilbert space method 

KHSM.   
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