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GLOBAL STABILITY OF A PREDATOR-PREY MODEL WITH IVLEV-TYPE

FUNCTIONAL RESPONSE

YINSHU WU AND WENZHANG HUANG

Abstract. A predator-prey model with Ivlev-Type functional response is studied. The main purpose

is to investigate the global stability of a positive (co-existence) equilibrium, whenever it exists. A

recently developed approach shows that for certain classes of models, there is an implicitly defined

function which plays an important rule in determining the global stability of the positive equilibrium.

By performing a detailed analytic analysis we demonstrate that a crucial property of this implicitly

defined function is governed by the local stability of the positive equilibrium, which enable us to show

that the global and local stability of the positive equilibrium, whenever it exists, is equivalent. We

believe that our approach can be extended to study the global stability of the positive equilibrium for

predator-prey models with some other types of functional responses.

1. Introduction

The predator-prey systems described by differential equations have served as important models in

the studies of dynamical interaction of predator-prey species in ecological systems. The mathematical

results on the predator-prey systems provide very useful information and insight of the mechanism that

govern the evolution of ecological systems. Hence the research on the predator - prey systems has

been one of long and lasting efforts in the theoretical studies of ecology. Consider the following type of

predator-prey systems u′ = ru
(

1− u

K

)
− f(u)v,

v′ = v
[
− d+ βf(u)

]
,

(1.1)

where u and v are respectively the prey and predator populations; ru(1− u/K) is a logistic growth of

the prey population with r the intrinsic growth rate and K the carrying capacity; f(u) is the functional

response of predator species on prey population; d stands for the predator death rate and β is the

predator’s conversion rate after its consumption of prey species. The functional response considered here

is assumed to depend on the prey population. There are other models in literature where the functional

response can be a function depending on both the prey and predator populations. Many forms of the

functional response f have been introduced in literature to study the predator-prey interactions under

variety of environment and circumstance. One of main interests in the studies of predator-prey models

is to understand the long time, or asymptotical dynamical behavior so to gain the key information for

the establishment of right strategies for the control and management of the ecological systems.

It is apparent that the system (1.1) has always a boundary equilibrium point EK = (K, 0), the

equilibrium of predator extinction. And it is easy to see that all positive solutions of (1.1) converge to

EK if the system (1.1) does not have any positive (interior/co-existence) equilibrium points, equivalently,

−d+βf(u) < 0 for all u ∈ [0,K). However, when the system (1.1) possesses a positive equilibrium point
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E∗, it has been shown that for certain types of functional response, (1.1) can exhibit a complicated

dynamical behavior, such as heteroclinic orbits, multiple limit cycles, etc. [6, 8, 10, 11, 13]. On the other

hand, it has also been confirmed that, for a large class of functional responses, the global dynamics of

the predator-prey system (1.1) can be classified as

(P1) The system (1.1) has a unique positive equilibrium E∗, and E∗ is globally stable whenever it is

locally stable.

(P2) The system (1.1) has a unique positive equilibrium E∗, and every positive, non-constant solution

of the system (1.1) converges to a limit cycle if the positive equilibrium E∗ is unstable.

The systems that share the above properties include the Lotka-Volterra models, the model with the

general Holling Type functional response [3], the model with the sigmoid functional response [15]. Even

the model which contains a complicated toxin-determined functional response can share the above

properties [1]. Some models, such as the model with t Holling Types II and III functional response,

actually share the following property stronger than Property (P2) [2, 4, 9]:

(P3) The system (1.1) has a unique positive equilibrium E∗, and all positive, non-constant solutions

converge to a unique limit cycle, a global attract , whenever E∗ is unstable.

It is interesting to mention that, the model with Ivlev type of functional response has the Property

P3 [5, 12]. However, the problem on whether the system possesses Property (P1) remains open. That

is, it is unclear in general whether the locally stability of the positive equilibrium E∗ implies its global

stability, except under certain additional condition where the Liapunov function can be applied to show

the global stability of the positive equilibrium E∗ [14].

In the attempt to fill the above gap, our main interest of this paper is to investigate the global

stability of the positive equilibrium E∗ of the model (1.1) with an Ivlev type of functional response.

That is

f(u) = 1− e−αu. (1.2)

By using a recently introduced approach [1], we shall establish the following main theorem about the

global stability of the positive equilibrium of the system (1.1) with the Ivlev-type functional response.

Theorem 1.1. Suppose that the predator-prey model (1.1) with the Ivlev-type functional response given

by (1.2) has a positive equilibrium. Then it is globally asymptotical stable if and only if it is locally

stable.

This paper is organized as follows. The local stability of the positive equilibrium is studied in Section

2. In Section 3 we present a detailed studies of the crucial properties of the function g and an implicitly

defined function N and its inverse N−1. The property of the composition g(N−1) is used in the Section

4 to complete the proof of our main theorem 1.1 of this paper.

2. Preliminary

Consider the predator-prey model with Ivlev-type functional responseu′ = ru
(
1− u

K

)
− (1− e−αu)v,

v′ =
[
β(1− e−αv)− d]v.

(2.1)

Let

x =
u

K
, y =

v

K
, a = αK.

Then the system (2.1) is transformed to a system of x and y as{
x′ = rx(1− x)− (1− e−ax)y,

y′ =
[
β(1− e−ax)− d]y.

(2.2)
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It is easy to verify that

(i) The system (2.2) has always two boundary equilibria E0 = (0, 0), E1 = (1, 0).

(ii) The system (2.2) has a positive (interior) equilibrium E∗ = (x∗, y∗) if and only if β(1−e−a) > d.

Moreover, since the function 1 − e−ax is monotone increasing, the positive equilibrium E∗ is

unique if it exists.

In this paper, we are interested in the necessary and sufficient condition for the global stability of the

positive equilibrium E∗. Hence throughout the rest of paper we suppose that β(1 − e−a) > d so that

the system (2.2) has a unique positive equilibrium E∗ = (x∗, y∗), where x∗ ∈ (0, 1) is a unique solution

to the equation β(1− e−ax)− d = 0 and

y∗ =
rx∗(1− x∗)
1− e−ax∗

.

Let us further rewrite the system (2.2) as{
x′ = f(x)

[
g(x)− y

]
,

y′ =
[
βf(x)− d

]
y

(2.3)

where

f(x) = 1− e−ax, g(x) =
rx(1− x)

1− e−ax
. (2.4)

By the calculation of the Jacobin matrix associated with the positive equilibrium E∗, one is able to

verify the following lemma (or see Proposition 2.1 in [3]).

Lemma 2.1. The positive equilibrium E∗ is locally asymptotically stable if g′(x∗) < 0, and is unstable

if g′(x∗) > 0.

Although the local stability of the positive equilibrium E∗ can not be determined by the linearization

of the system (2.3) at E∗ when g′(x∗) = 0, in this paper we shall establish the following global stability

criterion which includes the case when g′(x∗) = 0.

Theorem 2.2. The positive equilibrium E∗ is globally stable if and only if g′(x∗) ≤ 0, which implies

that the local and global stability of the positive equilibrium E∗ is equivalent in the light of Lemma 2.1.

To prove Theorem 2.2 we need first to introduce a couple of functions. Let

H(x) = β − d

f(x)
, for x ∈ (0,∞),

and

θ = N(x) =

∫ x

x∗

|H(s)|ds. (2.5)

Since |H(x)| > 0 for all x 6= x∗, the function N is a strictly monotone increasing function of x for

x ∈ (0, 1]. Moreover, it is obvious that

lim
x→0+

N(x) = −∞

since limx→0+ H(x) = −∞. Hence N has an inverse function x = N−1(θ) defined for θ ∈ (−∞,M),

where

M =

∫ 1

x∗

|H(x)|dx.

With the definition of N−1(θ), we are able to establish the following
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Proposition 2.3. Suppose that

g
(
N−1(−θ)

)
> g
(
N−1(θ)

)
for all θ ∈ (0,M ]. (2.6)

Then the system 2.3 has no closed orbit in the region IR2
+ = {(x, y) : x ≥ 0, y ≥ 0}.

Proof. Suppose in opposite that the system (2.3) has a closed orbit γ = {(x(t), y(t)) : t ∈ [0, ω]}
of period ω in IR2

+. Then it is obvious that x(t) ≤ 1 for all t ∈ [0, ω] and the positive equilibrium

E∗ = (x∗, y∗) must be an interior point of the region enclosed by γ. By using the property of the

vector field associated with the system (2.3), without loss of generality, we can suppose that there is an

ω1 ∈ (0, ω) such that


x(0) = x(ω1) = x(ω) = x∗,

x(t) > x∗, t ∈ (0, ω1),

x(t) < x∗, t ∈ (ω1, ω).

(2.7)

Moreover, y(t) is strictly increasing for t ∈ (0, ω1) and is strictly decreasing for t ∈ (ω1, ω) (see Fig.

2.1).

Let θ(t) = N(x(t)). Then
θ′(t) =

∣∣∣H(x(t)
)∣∣∣f(x(t))[g

(
x(t)

)
− y(t)],

y′(t) = f(x(t))
[
β − d

f(x(t))

]
y(t) = f(x(t))H(x(t))y(t).

(2.8)

Notice that H(x(t)) > 0 for t ∈ (0, ω1) and H(x(t)) < 0 for t ∈ (ω1, ω). It follows that
θ′(t)

y′(t)
=

g
(
x(t)

)
− y(t)

y(t)
, t ∈ (0, ω1),

θ′(t)

y′(t)
= −

g
(
x(t)

)
− y(t)

y(t)
, t ∈ (ω1, ω).

(2.9)

Let

y0 = y(0), y1 = (ω1).



228 X. ONE AND X. TWO

Since y(t) is strictly monotone in the intervals [0, ω1] and [ω1, ω], respectively, there are two continuously

differential functions ξ1(y) and ξ2(y) defined for y ∈ [y0, y1] such that

t = ξ1(y) for t ∈ [0, ω1] if and only if y = y(t) ∈ [y0, y1],

t = ξ2(y) for t ∈ [ω1, ω] if and only if y = y(t) ∈ [y0, y1].

Now let θ1(y) = θ(ξ1(y)) and θ2(y) = −θ(ξ2(y)) for y ∈ (y0, y1). Then by equalities (2.9) and x =

N−1(θ), and following a straight forward computation, we obtain that
dθ1

dy
=

g(N−1(θ1))− y
y

,

dθ2

dy
=
g(N−1(−θ2))− y

y
.

(2.10)

Moreover, the definitions of θ1(y) and θ2(y) give that

θ1(y0) = θ2(y0) = θ1(y1) = θ2(y1) = 0,

θi(y) > 0 for y ∈ (y0, y1), i = 1, 2.

(2.11)

On the other hand, the assumption (2.6) implies that

g(N−1(−θ))− y
y

>
g(N−1(θ))− y

y
(2.12)

for all y ∈ [y0, y1] and all θ > 0. From the equations in (2.10), and with the use of the inequality (2.12)

and the comparison argument, it follows that θ2(y1) > θ1(y1), which leads to a contradiction to the

equality in (2.11). �

Remark The above Proposition 2.3 and its proof are essentially the same as the Proposition 3.2 and

its proof introduced in [1]. We provide a complete proof of our proposition 2.3 since the functional

response in the model studied in [1] is different from the functional response in this paper.

As a straight consequence of the Proposition 2.3 we have the following theorem, which will be used

in this paper to prove our Theorem 2.2.

Theorem 2.4. The positive equilibrium E∗ is globally stable provided that for all θ ∈ (0,∞),

g
(
N−1(−θ)

)
> g
(
N−1(θ)

)
. (2.13)

Proof. We shall only give a brief proof here. For more detailed proof we refer readers to the proof of

Theorem 2.1 in [1]. First it is easy to verify that any positive solution (x(t), y(t)) of the system (2.3) is

bounded. Therefore its ω-limit set Ω ⊂ IR2
+ exists. By Poncaré-Bendixson Theorem Ω must be one of

(a) A closed orbit in IR2
+;

(b) A cyclic chain, i.e, a closed curve consists of equilibrium points and global orbits in a certain

order;

(c) An equilibrium point.

The Proposition 2.3 has excluded the existence of a closed orbit in IR2
+. Recall that, besides the positive

equilibrium E∗ the system (2.3) has another two equilibria E0 and E1. The existence of E∗ implies

that the stable manifold of E1 is in the positive x-axis. Moreover the stable manifold of E0 is in the

y-axis. It follows that Ω can not be a cyclic chain that contains either E0 or E1. Therefore, one must

have Ω = {E∗}. Therefore (x(t), y(t)) converges to E∗ as t→∞. �
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3. The Properties of Functions g(x) and N−1(θ)

From the statement of Theorem 2.4 we see that the property of the composition g
(
N−1

)
plays an

important role in governing the global stability of the positive equilibrium E∗. Hence in this section

we shall explore in detail about the properties of g and N−1, which will enable us to establish the

inequality (2.6). Let us begin with the following lemma.

Lemma 3.1. Let a > 0. If a ≤ 2, then

g′(x) < 0

for all x > 0. That is, the function g(x) is strictly decreasing for x > 0.

Proof. By the definition of g(x) [see (2.4)] we have

g′(x) =
r
[
(1− 2x)(1− e−ax)− ax(1− x)e−ax

]
(1− e−ax)2

=
re−axg1(x)

(1− e−ax)2
, (3.1)

where

g1(x) = (1− 2x)(eax − 1)− ax(1− x).

The assumption of a ≤ 2 implies that for all x > 0,

g′1(x) = −2(eax − 1) + a(1− 2x)eax − a(1− 2x)

= −(2− a+ 2ax)(eax − 1)

< 0

Hence g1(x) is strictly decreasing for x > 0. Combining the fact that g1(0) = 0 we conclude that

g1(x) < 0, and so that, by the equality (3.1),

g′(x) < 0 for all x > 0.

�

Next we turn to investigate the property of the function g(x) for a > 2.

Lemma 3.2. Define the function

η(x) =
rx

1− e−ax
for x > 0.

Then for all x > 0,

η′(x) > 0, η′′(x) > 0, η′′′(x) < 0.

Proof. Let ζ(x) =
x

1− e−x
. Then η(x) =

r

a
ζ(ax). Hence to confirm Lemme 3.2 it is sufficient to show

that ζ ′(x) > 0, ζ ′′(x) > 0 and ζ ′′′(x) < 0 for x > 0.

First we have

ζ ′(x) =
1− e−x − xe−x

(1− e−x)2
=
ex − (1 + x)

ex(1− e−x)2
> 0 (3.2)

for all x > 0 since ex − (1 + x) > 0 for x > 0. Noticing that

ζ ′(x) =
ex − (1 + x)

ex(1− e−x)2
=
ex − (1 + x)

ex + e−x − 2
,

a straight forward calculation yields that

ζ ′′(x) =
(ex − 1)(ex + e−x − 2)− (ex − 1− x)(ex − e−x)

(ex + e−x − 2)2

=
ζ1(x)

(ex + e−x − 2)2

(3.3)
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with

ζ1(x) = 4− 2(ex + e−x) + x(ex − e−x).

Expanding ζ1(x) in the power series we obtain

ζ1(x) = 4− 4

∞∑
k=0

x2k

(2k)!
+ 2x

∞∑
k=1

x2k−1

(2k − 1)!

= −4

∞∑
k=1

x2k

(2k)!
+ 2

∞∑
k=1

x2k

(2k − 1)!

= 2

∞∑
k=1

[
1

(2k − 1)!
− 2

(2k)!

]
x2k

= 2

∞∑
k=2

(2k − 2)

(2k)!
x2k > 0 for all x > 0.

(3.4)

So that

ζ ′′(x) =
ζ1(x)

(ex + e−x − 2)2
> 0 for x > 0. (3.5)

Next, we have

ζ ′′′(x) =
ζ2(x)

(ex + e−x − 2)3
, (3.6)

where

ζ2(x) = ζ ′1(x)(ex + e−x − 2)− 2ζ1(x)(ex − e−x)

=
[
− (ex − e−x) + x(ex + e−x)

]
(ex + e−x − 2)

−2
[
4− 2(ex + e−x) + x(ex − e−x)

]
(ex − e−x)

= 3(e2x − e−2x) + 6x−
[
6(ex − e−x) + x(e2x + e−2x) + 2x(ex + e−x)

]
= 6

∞∑
k=0

(2x)2k+1

(2k + 1)!
+ 6x−

−
[
12

∞∑
k=0

x2k+1

(2k + 1)!
+ 2x

∞∑
k=0

(2x)2k

(2k)!
+ 4x

∞∑
k=0

x2k

(2k)!

]

= 6x+

∞∑
k=0

6 · 22k+1

(2k + 1)!
x2k+1 −

∞∑
k=0

[
12

(2k + 1)!
+

22k+1 + 4

(2k)!

]
x2k+1

=

∞∑
k=0

A(k)x2k+1,

(3.7)
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where
A(0) = 6 + 12− [12 + 6] = 0,

A(1) =
6 · 23

3!
−
[

12

3!
+

23 + 4

2!

]
=

1

3!

(
48− [12 + 3(23 + 4)]

)
= 0,

A(2) =
6 · 25

5!
−
[

12

5!
+

25 + 4

4!

]
=

1

5!

(
6 · 25 − [12 + 5(25 + 4)]

)
= 0.

(3.8)

For k ≥ 3, one has

A(k) =
1

(2k + 1)!

(
6 · 22k+1 −

[
12 + (2k + 1)(22k+1 + 4)

])

<
1

(2k + 1)!

(
6 · 22k+1 − (2k + 1)22k+1

)
< 0.

(3.9)

From the equalities (3.6), (3.8) and the inequality (3.9) it follows that ζ2(x) < 0, so that ζ ′′′(x) < 0 for

all x > 0 by (3.6). �

Corollary 3.3. g′′′(x) < 0 for all x ∈ (0, 1], so that g′′(x) is strictly decreasing.

Proof. By the definition of g and η one has

g(x) =
rx

1− e−ax
[1− x] = η(x)

[
1− x

]
.

It follows that
g′(x) = η′(x)[1− x]− η(x),

g′′(x) = η′′(x)[1− x]− 2η′(x),

g′′′(x) = η′′′(x)[1− x]− 3η′′(x).

(3.10)

Since η′′′(x) < 0 and η′′(x) > 0 for all x > 0 by Lemma 3.2, the last equality in (3.10) yields that

g′′′(x) < 0 for all x ∈ (0, 1]. �

It is easy to verify that

g(0+) = lim
x→0+

η(x) = lim
x→0

rx

1− e−ax
=
r

a
.

Moreover, a direct computation yields that

lim
x→0+

η′(x) = lim
x→0+

r
eax − (1 + ax)

eax(1− e−ax)2
=
r

2
.

It follows that

g′(0+) = lim
x→0

g′(x) = lim
x→0

(
η′(x)[1− x]− η(x)

)
=
r

2
− r

a
. (3.11)

Lemma 3.4. Suppose a > 2. Then there is an x0 ∈ (0, 1) such that g′(x0) = 0 and

g′(x) > 0 for x ∈ (0, x0), g′(x) < 0 for x ∈ (x0, 1].
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Proof. Suppose a > 2. Then (3.11) implies that g′(x) > 0 for small x ≥ 0. Define the set S by

S = {x ∈ (0, 1] : g′(s) > 0, s ∈ [0, x]} .

Then it is obvious that (0, ε] ⊂ S for a small number ε > 0. Moreover, g′(1) = −η(1) < 0 implies that

there is a small number δ > 0 such that x /∈ S for x ≥ 1− δ. It therefore follows that the number

x0 = sup {x ∈ (0, 1] : g′(s) > 0, s ∈ [0, x]}

is well defined and 0 < ε < x0 ≤ 1 − δ < 1. By the definition of x0 it is apparent that g′(x) > 0 for

x ∈ (0, x0) and g′(x0) = 0. Consequently one also deduces that g′′(x0) ≤ 0. This yields that Since

g′′(x) < 0 for all x > x0, for g′′(x) is strictly decreasing by Corollary 3.3. Therefore, g′(x) is strictly

decreasing for x ∈ (x0, 1] and so that g′(x) < g′(x0) = 0 for x ∈ (x0, 1]. �

New let us turn to study the property of the function N−1(θ), the inverse function of N defined in

(2.5). By the definition of θ = N(x) and x = N−1(θ), we have

θ = N(N−1(θ)) =

∫ N−1(θ)

x∗

|H(s)| ds. (3.12)

Lemma 3.5. For each θ > 0, N−1(−θ) < x∗ < N−1(θ) and

x∗ −N−1(−θ) < N−1(θ)− x∗.

Proof. Note that N(x) is strictly increasing and so is for its inverse N−1(θ). The definition of N(x)

yields that N(x∗) = 0, i.e. x∗ = N−1(0). It follows that

N−1(−θ) < N−1(0) = x∗ < N−1(θ) for θ > 0.

Moreover, we have H(x∗) = 0 and

H ′(x) =
d

dx

[
β − d

1− e−ax
]

=
ade−ax

(1− e−ax)2
> 0,

H ′′(x) = −
a2de−ax

[
(1− e−ax)2 + 2e−ax(1− e−ax)

]
(1− e−ax)4

< 0.

Hence H(x) is monotone increasing and concave downward. Notice that θ > 0 is the area of the region

between the x-axis and the graph ofH(x) on the interval [x∗, N
−1(θ)] and−θ is the area of the (negative)

region between the graph of H(x) and the x-axis on the interval [N−1(−θ), x∗]. By the downward

concavity of H(x) one therefore easily concludes that for each θ > 0, x∗−N−1(−θ) < N−1(θ)−x∗ (See

Fig. 3.1). �
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4. Proof of Theorem 2.2

We shall prove Theorem 2.2 by the use of Theorem 2.4.

Theorem 4.1. Suppose that g′(x∗) ≤ 0. Then for all θ ∈ (0,M ],

g
(
N−1(−θ)

)
> g
(
N−1(θ)

)
.

Proof. Let us first suppose a ≤ 2. Note that N−1(−θ) < N−1(θ) for θ ∈ (0,M ] since N−1(θ) is strictly

monotone increasing. It immediately follows that

g
(
N−1(−θ)

)
> g
(
N−1(θ)

)
for θ ∈ (0,M ] because g(x) is strictly decreasing by Lemma 3.1. [Remark: The global stability of E∗
under the condition a ≤ 2 also was proved in [14] by the Liapunov direct method.]

Next we suppose that a > 2. For θ ∈ (0,M ] let x− = N−1(−θ) and x+ = N−1(θ). Then by Lemma

3.5 we have x− < x∗ = N−1(0) < x+ and

x∗ − x− < x+ − x∗.

Hence there is a number x̄+ ∈ (x∗, x+) such that

x∗ − x− = x̄+ − x∗. (4.1)

Now we have

g
(
N−1(−θ)

)
= g(x−) = g(x∗) +

∫ x−

x∗

g′(x)dx

= g(x∗) +

∫ x−

x∗

g′(x∗)dx+

∫ x−

x∗

[g′(x)− g′(x∗)]dx.
(4.2)

By the equality (4.1) and the assumption of g′(x∗) ≤ 0 we obtain∫ x−

x∗

g′(x∗)dx = −g′(x∗)(x∗ − x−) ≥ g′(x∗)(x∗ − x−) =

∫ x̄+

x∗

g′(x∗)dx. (4.3)

Moreover, recall by Corollary 3.3 that g′′(x) is strictly decreasing. Thus we arrive at



234 X. ONE AND X. TWO

∫ x−

x∗

[g′(x)− g′(x∗)]dx = −
∫ x−

x∗

[∫ x∗

x

g′′(s)ds

]
dx

=

∫ x∗

x−

[∫ x∗

x

g′′(s)ds

]
dx

> g′′(x∗)

∫ x∗

x−

∫ x∗

x

ds dx

= g′′(x∗)

∫ x̄+

x∗

∫ x

x∗

ds dx

>

∫ x̄+

x∗

[∫ x

x∗

g′′(s)ds

]
dx

=

∫ x̄+

x∗

[g′(x)− g′(x∗)]dx.

(4.4)

From (4.2) - (4.4) it follows that

g
(
N−1(−θ)

)
> g(x∗) +

∫ x̄+

x∗

g′(x∗)dx+

∫ x̄+

x∗

[g′(x)− g′(x∗)]dx = g(x̄+). (4.5)

The assumption g′(x∗) ≤ 0 and Lemma 3.4 yeild that g(x) is decreasing for x ∈ [x∗, 1]. Hence by the

inequality (4.5) and the fact that x̄+ < x+ = N−1(θ) we deduce that

g
(
N−1(−θ)

)
> g(x̄+) > g(

(
N−1(θ)

)
.

�

Proof of Theorem 1.1 Is apparent that Theorem 2.2, and hence the main Theorem 1.1, is a direct

consequence of Lemma 2.1, Theorems 2.4 and 4.1.
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