
Mathematics in Applied Sciences and Engineering https://ojs.lib.uwo.ca/mase
Volume 1, Number 4, December 2020, pp.383-402 https://doi.org/10.5206/mase/10855

ON THE FOCUSING GENERALIZED HARTREE EQUATION

ANUDEEP KUMAR ARORA, SVETLANA ROUDENKO, AND KAI YANG

Abstract. In this paper we give a review of the recent progress on the focusing generalized Hartree

equation, which is a nonlinear Schrödinger-type equation with the nonlocal nonlinearity, expressed as

a convolution with the Riesz potential. We describe the local well-posedness in H1 and Ḣs settings,

discuss the extension to the global existence and scattering, or finite time blow-up. We point out

different techniques used to obtain the above results, and then show the numerical investigations of

the stable blow-up in the L2-critical setting. We finish by showing known analytical results about the

stable blow-up dynamics in the L2-critical setting.

1. Introduction

In this paper we give a review of recent progress on a Schrödinger-type equation with nonlocal

potential, the focusing generalized Hartree (gHartree) equation,

iut + ∆u+

(
1

|x|N−γ
∗ |u|p

)
|u|p−2u = 0, (x, t) ∈ RN × R. (1.1)

Here, u(x, t) is a complex-valued function, ∗ denotes the convolution operator in RN , and the convolution

with
1

|x|N−γ
is associated to the Riesz potential Iγ of order γ given by

Iγ(x) = C(N, γ)
1

|x|N−γ
, 0 < γ < N,

where

C(N, γ) =
Γ(N−γ2 )

Γ(γ2 ) 2γ πN/2
.

Typically, p ≥ 2, however, it is also possible to consider powers 1 < p < 2. The equation (1.1) is a

generalization of the standard Hartree equation with p = 2, i.e.,

iut + ∆u+

(
1

|x|N−γ
∗ |u|2

)
u = 0, (x, t) ∈ RN × R, (1.2)

which, for example, can be considered as a model for many-body quantum systems in non-relativistic

setting; it also arises in the study of long range interactions between the molecules. The work on the

mean-field limit of many-body quantum systems, where the number of bosons is very large, but the

interactions between them are weak, goes back to Hepp [30], also see [58], [9], [8], [18]. Lieb and Yau

[42] mentioned it in the context of Chandrasekhar theory of stellar collapse, which says that after the

death of a star, depending on its mass, the stellar remnants can take one of the three forms: neutron

stars, white dwarfs and black hole. Lieb and Thirring [41] conjectured that the collapse for boson stars

can be predicted by a Hartree-type equation. A special case of the Riesz potential with γ = 2 in R3 is

Received by the editors 1 July 2020; accepted 1 December 2020; published online 16 December 2020.

2010 Mathematics Subject Classification. Primary 35Q55, 35Q40; Secondary 37K05.
Key words and phrases. Hartree equation, Choquard-Pekar equation, convolution nonlinearity, global well-posedness,

blow-up, dynamic rescaling.

383



384 ANUDEEP K. ARORA, SVETLANA ROUDENKO, AND KAI YANG

known as the Coulomb potential, which goes back to work of Lieb [39] and has been intensively studied,

see reviews [22], [21]. It also appears as a model of a boson star in the pseudo-relativistic setting (for

example, see [19], [20]), given by

iut −
√
−∆ +m2 u+

(
1

|x|
∗ |u|2

)
u = 0, (x, t) ∈ R3 × R. (1.3)

As mentioned before, the distinct feature of the Hartree equation (1.2) is that it models systems with

long-range interactions. Possible experimental realizations of such (repulsive) interactions, where the

power in the convolution changes, include the interaction of ultracold Rydberg atoms that have large

principal quantum numbers [44]. These interactions between atoms in highly excited Rydberg levels

are long range and dominated by dipole-dipole-type forces (the strength of the interaction between Rb

atoms is about 1012 times stronger than that between Rb atoms in the ground state [57]). The spatial

dependence of interactions may be 1/|x|3 for small |x| and 1/|x|6 for larger |x|. Other powers such as

1/|x|2 are also possible, see [53].

The equation (1.1) can be written as an electrostatic version of the Maxwell-Schrödinger system,

describing the interaction between the electromagnetic field and the wave function related to a quantum

non-relativistic charged particle (see, for instance, [11] and [40]){
iut + ∆u+ V |u|p−2u = 0

−∆V = (N − 2)|SN−1| |u|p,
(1.4)

which can be viewed as the Schrödinger - Poisson system for the wave function u and the potential V ;

here, SN−1 is the sphere in RN , and |SN−1| stands for its volume.

The aim of this paper is to survey the main results from a unified point of view of the generalized

Hartree equation and show the current developments in the global existence and finite time blow-up in

the gHartree equation.

The paper is organized as follows. In Section 2, we review the necessary background such as invari-

ances of the equation and conserved quantities, then some useful tools such as Strichartz estimates. In

Section 3, we state the known results on the local well-posedness in H1 (available for 0 < s < 1) and at

the critical regularity Ḣs (available for s > 0, with certain restrictions in some cases). The local well-

posedness is then extended to either global existence or finite-time blow-up in Section 4, depending on

initial conditions. In the same section we review results about ground states in the gHartree equation.

In Section 5, we discuss initial conditions that predict blow-up in finite time, and can be used in various

cases (including energy-supercritical case, s > 1). In Section 6 we show the numerical results on the

blow-up in the L2-critical case, followed by the discussion of spectral property in Section 7.1. Finally,

in Section 7 we explain what is known about the stable blow-up dynamics in gHartree equation and

open questions.

Acknowledgments. All three authors on this project were partially supported by the NSF grant

DMS-1815873/1927258 (PI: Roudenko).

2. Preliminaries

We start with the Duhamel formulation (for example, see [62]), where the solution u : I ×RN → C
to the equation (1.1) is written in the integral form

u(t) = eit∆u0 + i

∫ t

0

ei(t−t
′)∆

(
1

|x|N−γ
∗ |u|p

)
|u|p−2u(t′) dt′ (2.1)

for all t ∈ I ⊂ R. The interval I is known as the lifespan of u. If I = R, the solution u is said to

be global. The first question to understand is whether the equation (1.1), or equivalently, (2.1), can



SURVEY OF GHARTREE EQUATION 385

have local solutions. Before stating the results about the local well-posedness, i.e., existence of a unique

local-in time solution satisfying (2.1) that lies in some Sobolev space and continuous dependence on the

initial data, we review conserved quantities and other useful properties.

During their lifespans, solutions to (1.1) conserve the mass, energy (Hamiltonian) and momentum,

namely, for any t ∈ R

M [u(t)]
def
=

∫
RN
|u(x, t)|2 dx = M [u0],

E[u(t)]
def
=

1

2

∫
RN
|∇u(x, t)|2 dx− 1

2p

∫
RN

(
1

|x|N−γ
∗ |u( · , t)|p

)
|u(x, t)|p dx = E[u0],

P [u(t)]
def
= Im

∫
RN

ū(x, t)∇u(x, t) dx = P [u0].

The equation (1.1) enjoys several invariances, among them is the scaling invariance: if u(x, t) solves

(1.1), then so does

uλ(x, t) = λ
γ+2

2(p−1)u(λx, λ2t). (2.2)

This implies that Ḣsc norm is invariant under the above scaling provided the critical scaling index sc is

sc =
N

2
− γ + 2

2(p− 1)
. (2.3)

The equation (1.1) is referred to as the Ḣs-critical if for given N, γ, p in (1.1) the Ḣs norm is invariant

under the scaling (2.2) with s = sc, defined by (2.3). In particular,

• if sc = 0, or p = 1 + γ+2
N , the equation (1.1) is referred to as the mass-critical (or L2-critical).

• If sc = 1, or p = 1 + γ+2
N−2 , the equation is called the energy-critical (or Ḣ1 - critical).

• If 0 < sc < 1, the equation is intercritical.

• If sc > 1, the equation is said to be energy-supercritical.

We define the linear Schrödinger evolution from initial data u0 as follows

u(x, t) = eit∆u0(x) =
1

(4πit)N/2

∫
RN

ei
|x−y|2

4t u0(y) dy.

Then by the L2-isometry and L∞−L1 estimate, one can obtain the time decay estimate for 2 ≤ r ≤ ∞,
1
r + 1

r′ = 1,

‖eit∆f0(x)‖Lrx(RN ) . |t|−
N
2 ‖f0‖Lr′x (RN ) (2.4)

for all t 6= 0.

For the local well-posedness we need estimates in both, space and time. This space-time integrability

is demonstrated by Strichartz estimates. In what follows, we will always consider the case 0 ≤ s < N
2 .

2.1. Strichartz estimates.

Definition 2.1. The pair (q, r) is called L2-admissible pair if N ≥ 1 and

2

q
+
N

r
=
N

2
, 2 ≤ q, r ≤ ∞ provided (q, r,N) 6= (2,∞, 2).

Remark 2.1. One can also define the Ḣs-admissibility for N ≥ 1 and s ≥ −1 by

2

q
+
N

r
=
N

2
− s. (2.5)

Definition 2.2 (see [17]). The pair (q, r) is said to be acceptable if N ≥ 1 and

1 ≤ q, r ≤ ∞ and
1

q
< N

(
1

2
− 1

r

)
, or (q, r) = (∞, 2).
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Remark 2.2. For s ≥ 0, every Ḣs-admissible pair is acceptable.

We now recall the well-known Strichartz estimates (see [59], [35], [10]).

Lemma 2.1. If (q, r) is an Ḣs-admissible pair for s ≥ 0 then the following linear estimate holds

‖eit∆f‖LqtLrx(R×RN ) . ‖f‖Ḣsx(RN ). (2.6)

We next consider the inhomogeneous estimate (see [17]).

Lemma 2.2. Let 1 ≤ q, q̃, r, r̃ ≤ ∞. If the pairs (q, r) and (q̃, r̃) are acceptable, satisfy the condition

1

q
+

1

q̃
=
N

2

(
1− 1

r
− 1

r̃

)
and verify the following conditions:

• N = 2, we require that r, r̃ <∞,

• N > 2, we classify two cases;

– non sharp case:

1

q
+

1

q̃
< 1, (2.7)

N − 2

N
≤ r

r̃
≤ N

N − 2
; (2.8)

– sharp case:

1

q
+

1

q̃
= 1, (2.9)

N − 2

N
<
r

r̃
<

N

N − 2
, (2.10)

1

r
≤ 1

q
,

1

r̃
≤ 1

q̃
. (2.11)

Then the following estimate holds∥∥∥∥∫ t

0

ei(t−t
′)∆F (t′) dt′

∥∥∥∥
LqtL

r
x

+

∥∥∥∥∫ ∞
t

ei(t−t
′)∆F (t′) dt′

∥∥∥∥
LqtL

r
x

. ‖F‖
Lq̃
′
t L

r̃′
x
. (2.12)

We are now ready to review the results on the local well-posedness of the gHartree equation.

3. Local well-posedness

We discuss the local well-posedness results in two settings, one with the finite energy and finite mass

initial data, thus, considering the H1 space (the equation (1.1) would be energy-subcritical or critical

at most). The second variant of the local well-posedness is established at the critical regularity Ḣs,

which allows to have local-wellposendess in the energy-supercritical cases. Both of these cases consider

p ≥ 2. Recently, some results on wellposedness for p < 2 were obtained in [3].
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3.1. Local well-posednes in H1. We start with considering the initial data in H1 space, u0 ∈
H1(RN ), so that we have a finite Hamiltonian (or finite energy) solutions. We consider the integral

equation (2.1) with the power p as follows{
2 ≤ p ≤ 1 + γ+2

N−2 , if N ≥ 3

2 ≤ p <∞, if N = 1, 2.
(3.1)

We mention that the local existence of H1 solutions in the standard Hartree equation (1.2) (p = 2) is

available from the work of Ginibre and Velo [24], see also Cazenave [10]. In the general setting (p ≥ 2)

the Cauchy problem for the equation (1.1) with the initial data u0 ∈ H1 was investigated by the first

and second authors in [6], showing the local well-posedness in H1, provided sc < 1. This is guaranteed

by (3.1) (note that the nonlinearity in this case is always H1-subcritical).

Proposition 3.1. For p as in (3.1) and u0 ∈ H1(RN ), there exists T > 0 and a unique solution u(x, t)

of the integral equation (2.1) on the time interval [0, T ] with

u ∈ C([0, T ];H1(RN )) ∩ Lq([0, T ];W 1,r(RN )), (3.2)

where (q, r) is an L2-admissible pair given by

(q, r) =

(
2p

1 + sc(p− 1)
,

2Np

N + γ

)
.

In the energy-subcritical case p < 1 + γ+2
N−2 , the time T = T (‖u0‖H1 , N, p, γ) > 0. In the energy-critical

case p = 1 + γ+2
N−2 (or sc = 1) an additional assumption of smallness of ‖u0‖H1

x
is required.

The proof relies on a fixed point argument, which can be achieved by showing that the operator

Φu0(u) = eit∆u0 + i

∫ t

0

ei(t−t
′)∆

(
1

|x|N−γ
∗ |u|p

)
|u|p−2u(t′) dt′

defines a contraction on

X =
{
u ∈ L∞t ([0, T ];H1

x(RN )) ∩ Lqt ([0, T ];W 1,r(RN )) : ν(u) ≤M
}
,

for some M > 0, where ν(u) = max
{

sup
t∈[0,T ]

‖u‖H1
x
, ‖u‖

L
q1
t W

1,r1
x

}
.

3.2. Local well-posedness in Ḣsc . One can also ask for the local well-posedness at the critical

regularity Ḣsc for sc ≥ 0, which we state below. The proof can be found in [5].

Proposition 3.2. Let 0 < γ < N and p ≥ 2 so that sc ≥ 0. Assume in addition that if p is not an

even integer, then sc < p − 1. Let u0 ∈ Ḣsc(RN ). Then there exists a unique solution u(x, t) of the

equation (1.1) with data u0 defined on [0, T ] for some T > 0, and such that

(1) for sc = 0 and N ≥ 1, u ∈ C([0, T ];L2
x) ∩ Lq([0, T ];Lrx), where (q, r) =

(
2p, 2Np

N+γ

)
is the

L2-admissible pair and x ∈ RN ,

(2) for 0 < sc < 1 and N ≥ 1,

u ∈ C([0, T ]; Ḣsc
x ) ∩ Lq1([0, T ]; Ẇ sc,r1

x ) ∩ Lq2([0, T ]; Ẇ sc,r2
x ),

where

(q1, r1) =
( 2p

1 + sc(p− 1)
,

2Np

N + γ

)
, (q2, r2) =

( 2p

1− sc
,

2Np

N + γ + 2scp

)
are the L2-admissible pairs and x ∈ RN ,

(3) for sc = 1 and N ≥ 3, u ∈ C([0, T ]; Ḣ1
x) ∩ Lq([0, T ]; Ẇ 1,r

x ), where (q, r) =
(

2, 2N
N−2

)
is the

L2-admissible and x ∈ RN ,
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(4) for sc > 1, u ∈ C([0, T ]; Ḣsc
x ) ∩ Lq([0, T ]; Ẇ sc,r

x ), where x ∈ RN and

(a) for p = 2 (thus, N ≥ 5), (q, r) =
(

3, 6N
3N−4

)
is the L2-admissible pair,

(b) for p > 2 (thus, N ≥ 3) and 0 < γ < min
(
N, 2p

p−2

)
, the L2-admissible pair is (q, r) =(

2, 2N
N−2

)
.

Moreover, for all 0 < T̃ < T , the continuous dependence upon the initial data holds.

The proof of this proposition is also done via the fixed point argument in the spaces given in each of

the cases (1)-(4) above via the corresponding Strichartz estimates.

4. Global existence and scattering

After establishing the local well-posedness either in H1 and Ḣsc , a natural question to ask is whether

it is possible to extend local in-time existence to larger time intervals. It turns out that the local existence

can be extended to obtain global solutions for small data, which is the next statement. Its proof is in

[6].

Proposition 4.1 (Small data theory in H1). Let p ≥ 2 satisfy (3.1) with 0 < γ < N and u0 ∈ H1(RN ).

Suppose ‖u0‖H1 ≤ A. There exists δ = δ(A) > 0 such that if ‖eit∆u0‖S(Ḣsc ) ≤ δ, then there exists a

unique global solution u of (1.1) in H1(RN ) such that

‖u‖
L

2p
1−sc
t L

2Np
N+γ
x

≤ 2‖eit∆u0‖
L

2p
1−sc
t L

2Np
N+γ
x

and

‖|∇|scu‖
L

2p
1+sc(p−1)
t L

2Np
N+γ
x

≤ 2 c ‖u0‖H1 ,

where c depends on constants from the Gagliardo-Nirenberg interpolation estimate and the Strichartz

inequality.

A similar result is available in Ḣsc , which makes it possible to extend the local existence to the larger

time intervals. This is proved in [5].

Proposition 4.2 (Small data theory in Ḣsc). Let γ,N, p be as in Proposition 3.2 so that sc ≥ 0. Assume

in addition that if p is not an even integer, then sc < p − 1. Let u0 ∈ Ḣsc(RN ) with ‖u0‖Ḣsc ≤ A.

There exists δ = δ(A) > 0 such that if ‖eit∆u0‖W sc ≤ δ, then one can find a unique global solution u of

(1.1) in Ḣsc(RN ) such that

‖u‖W sc ≤ 2‖eit∆u0‖W sc ,

and

‖|∇|scu‖S0 ≤ 2 c1 ‖u0‖Ḣsc .
Here,

‖u‖W sc =



‖u‖
L

2p
1−sc
t L

2Np
N+γ
x

, for 0 < sc < 1,

‖u‖
L∞t L

2N
N−2
x

, for sc = 1,

max
(
‖u‖

L3
tL

6N
3γ+2
x

, ‖u‖
L∞t L

2N
γ+2
x

)
, for sc > 1 and p = 2,

‖u‖
L∞t L

2N(p−1)
γ+2

x

, for sc > 1 and p > 2,
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and

‖u‖S0 =



‖u‖
L

2p
1+sc(p−1)
t L

2Np
N+γ
x

, for 0 < sc < 1,

‖u‖
L2
tL

2N
N−2
x

, for sc = 1,

max
(
‖u‖

L3
tL

6N
3N−4
x

, ‖u‖L∞t L2
x

)
, for sc > 1 and p = 2,

‖u‖
L2
tL

2N
N−2
x

, for sc > 1 and p > 2

Now that we have some global solutions, one can ask about their asymptotic behavior as t → ±∞.

Specifically, if solutions eventually behave as a linear evolution (or approach a linear evolution), which

is called scattering, or exhibit a nonlinear behavior. A global solution u(t) to (1.1) is said to scatter in

Hs(RN ) as t→ +∞, if there exists u+ ∈ Hs(RN ) such that

lim
t→+∞

‖u(t)− eit∆u+‖Hs(RN ) = 0.

Global existence, asymptotic behavior of solutions and scattering theory for the standard Hartree equa-

tion (1.2) goes back to work of Ginibre and Velo [24], where the local wellposedness is established and

the authors also prove asymptotic completeness for a repulsive potential (that is, the sign in front of

the convolution term in (1.2) is negative, or often called the defocusing case). Hayashi and Tsutsumi

[29] obtained the asymptotic completeness of wave operators in Hm ∩Lp(|x|βdx). Related results were

established in various settings, for example, see Ginibre and Ozawa [23], Ginibre and Velo [25]-[26], and

Hayashi, Naumkin and Ozawa [28].

The following scattering result in H1(RN ) is proved in [6].

Proposition 4.3 (H1 scattering). Let u(t) be a global solution to (1.1) with initial data u0 ∈ H1(RN ).

If ‖u‖
L

2p
1−sc
t L

2Np
N+γ
x

< +∞ (globally finite Ḣsc Strichartz norm) and supt∈R+ ‖u(t)‖H1 ≤ B (uniformly

bounded H1(RN ) norm). Then u(t) scatters in H1(RN ) as t → +∞, i.e., there exists u+ ∈ H1(RN )

such that

lim
t→+∞

‖u(t)− eit∆u+‖H1 = 0.

The next question is if the small data global existence can be extended to the global existence for

large solutions, or if there is a threshold for global existence. In [6] we showed a dichotomy for global

existence and scattering vs. finite time blow-up solutions, provided the initial data is in H1. The

threshold was given by a combination of the mass-energy and the gradient comparison to that of the

ground state. For the Ḣs data, it is a more difficult question as the conserved quantities at the Ḣs level

are not available (unless s = 0 or s = 1).

In order to characterize the sharp threshold for the dichotomy, one needs a notion of a ground state,

which we review next.

4.1. Ground state solutions. The equation (1.1) in the case when sc < 1 admits standing wave

solutions of the form u(x, t) = eitQ(x), where Q the nonlinear nonlocal elliptic equation

−Q+ ∆Q+

(
1

|x|N−γ
∗ |Q|p

)
|Q|p−2Q = 0. (4.1)
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(In the energy-critical case the above equation reduces to the one without the linear term.) The equation

(4.1) is known as the nonlinear Choquard or Choquard-Pekar equation. A special case of (4.1) when

N = 3, p = 2, and γ = 2,

∆Q−Q+

(
1

|x|
∗ |Q|2

)
Q = 0, x ∈ RN , (4.2)

appeared back in 1954 in the work of S. I. Pekar [54] describing the quantum mechanics of a polaron

at rest. Lieb in [39] mentions it in the context of the Hartree-Fock theory of plasma, pointing out that

P. Choquard proposed investigating minimization of the corresponding functional in 1976. In 1996 R.

Penrose proposed equation (4.2) as a model of self-gravitating matter, in which quantum state reduction

is understood as a gravitational phenomenon, see [50].

The existence and uniqueness of the positive solutions to (4.2) was first proved by Lieb [39]. The

general existence result of positive solutions along with the regularity and radial symmetry of solutions

to (4.1) was shown by Moroz and van Schaftingen [51] (see also a review by Moroz and van Schaftingen

[52] and references therein).

The uniqueness proof of Lieb in R3 for p = 2 with γ = 2 was extended to the dimension N = 4 by

Krieger, Lenzmann and Raphaël in [37]; the uniqueness in the pseudo-relativistic 3d setting (1.3) was

established by Lenzmann [38]. In [6, Appendix] the proof of uniqueness is written for 2 < N < 6 (and

p = 2, γ = 2). (The uniqueness and nondegeneracy of the ground state for γ = 2 and p = 2 + ε, i.e.,

when p is sufficiently close to 2 in R3 was shown in [63].) In general, the uniqueness is still open.

In the case of gHartree equation when the uniqueness is known, we denote this unique positive

solution, or the ground state, by Q. When it is not available, it is sufficient to use the minimizer of the

Gagliardo-Nirenberg inequality of convolution type∫
RN

(
1

|x|N−γ
∗ |u|p

)
|u|p dx ≤ CGN‖∇u‖Np−(N+γ)

L2 ‖u‖N+γ−(N−2)p
L2 . (4.3)

and the unique value of the sharp constant, expressed via ‖Q‖L2 , see [6].

We next show how large the initial data can be taken to continue enjoying the property of global

existence and scattering.

4.2. Dichotomy: global vs blow-up solutions. We state a dichotomy result for global vs. finite

time solutions under the so-called mass-energy threshold, which also shows the H1 scattering for the

global solutions. This result was proved in [6], following the concentration-compactness and rigidity

road map of Kenig and Merle [36]. This is in the spirit of [33], [14], [27], [34] for the focusing NLS

equation, given as

iut + ∆u+ |u|p−1u = 0, (x, t) ∈ RN × R. (4.4)

As in [32] and [33] for the NLS equation, we observe that the quantities

‖u0‖1−scL2(RN )
‖∇u0‖scL2(RN )

and M [u0]1−sc E[u0]sc

are scale-invariant in the gHartree equation (1.1), and for sc > 0 with θ = 1−sc
sc

we define

• renormalized mass-energy:

ME [u] =
M [u]θE[u]

M [Q]θE[Q]
,

• renormalized gradient (which depends on t):

G[u(t)] =
‖u‖θL2(RN )‖∇u(t)‖L2(RN )

‖Q‖θ
L2(RN )

‖∇Q‖L2(RN )

.

For simplicity, we state the version with the zero momentum; the full version can be found in [6].
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Theorem 4.4. Let u0 ∈ H1(RN ) with P [u0] = 0 and let u(t) be the corresponding solution to (1.1)

with the maximal time interval of existence (T∗, T
∗). Suppose that ME [u0] < 1.

(1) If G[u0] < 1, then

(a) the solution exists globally in time with G[u(t)] < 1 for all t ∈ R, and

(b) u(t) scatters in H1, in other words, there exists u± ∈ H1 such that

lim
t→±∞

‖u(t)− eit∆u±‖H1(RN ) = 0.

(2) If G[u0] > 1, then G[u(t)] > 1 for all t ∈ (T∗, T
∗). Moreover, if

(a) |x|u0 ∈ L2(RN ) (finite variance) or u0 is radial, then the solution blows up in finite time,

(b) u0 is of infinite variance and nonradial, then either the solution blows up in finite time or

there exits a sequence of times tn → +∞ (or tn → −∞) such that ‖∇u(tn)‖L2(RN ) →∞.

In a recent work [12], Dodson and Murphy presented a simplified proof of Theorem 4.4 part (1) for

(4.4) with p = 3 in R3 that avoids concentration-compactness route. They used a scattering criterion

introduced by Tao in [61], which together with the radial Sobolev embedding and virial/Morawetz

estimate was sufficient to prove scattering (in the radial setting). In [13], they extended the above

approach to the non-radial case, avoiding the concentration-compactness.

The first author of this paper generalized the method of Dodson and Murphy in the radial case to the

inter-critical range of the nonlinear Schrödinger equation (4.4) and also showed that it can be applied

in the case of the nonlocal potential such as the gHartree equation (1.1), see [1].

5. Blow-up criterion

A similar question about the global existence for large data at the critical regularity Ḣsc can be

considered, or if there is a threshold for global existence. For the Ḣsc data, this is a more difficult

question to answer, since the conserved quantities at the Ḣsc level are not available (unless sc = 0

or sc = 1). What is possible to answer is to show that large data may blow-up in finite time. We

give a sufficient condition, blow-up criterion, for the blow-up in finite-time in the generalized Hartree

equation (1.1), which follows the ideas in [31, 15, 43, 44] except that now we have to find a bound for

the convolution term. To state the result we define the variance, V (t)
def
= ‖xu(t)‖2L2(RN ), and note that

similar to the NLS case, finite variance solutions with negative energy blow up in finite time in gHartree

equation by a similar virial (or convexity-type) argument modified to the gHartree case.

Theorem 5.1. Let u0 ∈ H1 if sc ≤ 1 and u0 ∈ Hsc if sc > 1. Assume also V (0) < ∞ and E[u] > 0.

The following is a sufficient condition for the blow-up in finite time for the solutions to the gHartree

equation (1.1) with initial data u0 in the mass-supercritical case (sc > 0):

∂t V (0)

ωM [u0]
< 4
√

2 f

(
E[u0]V (0)

(ωM [u0])2

)
, (5.1)

where

ω2 =
N2(N(p− 2) + b− 2)

8(N(p− 2) + b)

and the function f is defined as (here, k = sc(p− 1))

f(x) =


√

1
kxk

+ x− 1+k
k if 0 < x < 1

−
√

1
kxk

+ x− 1+k
k if x ≥ 1.

(5.2)
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The proof of Theorem 5.1 can be found in [5], where the authors show examples of Gaussian data

with thresholds in various cases (such as the energy-subcritical, critical and supercritical cases). Those

examples play an essential role in studying the actual dynamics of stable finite time blow-up. In [66]

the dynamics of stable blow-up is investigated (including rates and profiles) for the gHartree equation

in the L2-critical and supercritical cases, and it was compared with the known stable blow-up dynamics

of the (local) nonlinear Schrödinger equation. We discuss that next.

6. Numerical investigation

We have shown that there are solutions which blow-up in finite time in the case s ≥ 0. The next

question is to understand the dynamics of such solutions, in particular, how the blow-up happens. For

that we need to separate the L2-critical and supercritical case (similar to the NLS equation). In this

section we show the numerical investigations of the stable L2-critical blow-up and that it happens in

the self-similar regime. We point out that the minimal mass blow-up in the L2-critical setting occurs at

the threshold M [u0] = M [Q] and is similar to the NLS (see, for example, [37]), however, the minimal

mass blow-up is not stable and is not possible to observe numerically. In what follows we consider the

initial mass larger than M [Q] (again, note that this quantity is uniquely defined), afterwards we discuss

the analytical methods available and challenges in them for blow-up studies.

6.1. Direct numerical simulation for blow-up solutions. To investigate the blow-up behavior

numerically, we note that a blow-up solution can behave as a “delta” function, and hence, standard

numerical methods cannot be applied. Thanks to the scaling invariance (2.2), one can apply the dynamic

rescaling method to investigate the blow-up dynamics. We refer to [60] as well as [65], [66] for details

on this method.

Recalling the scaling (2.2), we write

u(x, t) =
1

L2/(p−1)
v(ξ, τ) with ξ =

x

L
, τ =

∫ t

0

1

L2(s)
ds.

Substituting the above into the gHartree equation (1.1) yields

ivτ + ia(τ)( 2
p−1v + ξvξ) + ∆v + (Iγ ∗ |v|p) |v|p−2v = 0, (6.1)

where a(τ) = −LLt = −d(lnL)
dτ and we choose

L(t) =

(
1

‖u(·, t)‖∞

)(p−1)/2

(for the choice on L(t) see [65]). Understanding the behavior of the parameter L(t) as t approaches

the blow-up time T , or equivalently, L(τ) as τ →∞, will reveal the rates of the blow-up as well as the

convergence to a blow-up profile.

To study the self-similar profile in the blow-up, we separate variables v(ξ, τ) = eiτQ(ξ) and obtain

∆ξQ−Q+ ia(τ)

(
2

p− 1
Q+ ξQξ

)
+ (Iγ ∗ |Q|p)|Q|p−2Q = 0, (6.2)

here, ∆ξ := ∂ξξ + d−1
ξ ∂ξ denotes the Laplacian with radial symmetry. It was shown that a(τ) converges

to a constant a (and in the L2-critical case a = 0, however, the convergence is very slow), thus, instead

of (6.2) we study ∆ξQ−Q+ ia

(
2

p− 1
Q+ ξQξ

)
+ (Iγ ∗ |Q|p)|Q|p−2Q = 0,

Qξ(0) = 0, Q(0) ∈ R, Q(∞) = 0.

(6.3)
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The first condition for Q indicates that the local maximum is at zero. The second condition on Q shows

that we fix the phase of the solutions, since the equation is phase invariant; the last condition means that

Q(ξ)→ 0 as ξ →∞. Actually, in the L2-critical case one advantage is that the profile solution will be

a ground state solution from (4.1), since a = 0. Thus, (6.3) is simply reduced to (4.1). (The parameter

a is non-zero in the L2-supercritical case, see [66] or [65], and we need to study the non-zero a case in

the L2-critical case, since that allows us to track the blow-up rate with the logarithmic corrections.)

We mention that numerically we study only γ = 2 case (the convolution is then inverse Laplancian

up to a dimensional constant, or in other words, a fundamental solution of the Poisson equation), and

solving (6.3) with a = 0 numerically produces a unique ground state solution Q to (4.2) (iterations

always converge to the same Q, see Remark 6.1 in [66]).

We return to the equation (6.1) and note that it is well-defined for τ > 0, and thus, can be solved

with a standard numerical method with respect to ξ and τ , for details refer to [66]. We investigate the

blow-up dynamics in the L2-critical gHartree equation (with γ = 2) in dimensions 3 ≤ N ≤ 7), the

snapshots while tracking the blow-up solution in the 4d case (N = 4, p = 2) is shown in Figure 1. In

other dimensions, the snapshots look similar. One can note that the solution converges to the rescaled

ground state Q slowly (recall that in 4d the ground state Q from (4.2) is proved to be unique).

Figure 1. The 4d Hartree (p = 2, γ = 2): snapshots of the blow-up dynamics, con-

verging to the ground state Q at different time t. The snapshots are given in pairs:

the left figure is a rescaled solution v from (6.1) and the right is the actual solution

compared to the rescaled Q, note the height on the vertical axis and concentration on

the horizontal axis.

Next, we study the blow-up rate. For that we track the quantities L(t) and a(τ) in Figure 2. The left

subplot in Figure 2 shows that lnL(t) depends on ln(T − t) linearly with the slope 0.50, which means
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L(t) ∼
√
T − t. We check the convergence of the parameter a(τ) to see if there are any corrections to the

rate. The middle subplot in Figure 2 shows that a(τ) decays (very) slowly to zero. This affects the rate

of the blow-up, or convergence to the blow-up profile Q, hence, we investigate further the dependence

of a(τ) on possible logarithmic corrections. The right subplot in Figure 2 shows a(τ) decays at least at

a rate of 1/ ln(τ), possibly with further corrections. It is quite challenging to track an extra logarithmic

correction, however, we do functional fitting (see [66]) as well as the asymptotic analysis. This leads to

the conclusion that the square root rate has a “log-log” correction term, similar to the NLS equation,

and in the L2 cases that we have tracked, the dynamics of blow-up is very similar to the NLS. We refer

the interested reader to [66] for further details on asymptotic analysis.

Figure 2. The 4d Hartree (p = 2, γ = 2). Left: the slope of L(t) vs. T − t on a log

scale. Middle: the behavior of a(τ), indicating a very slow decay to zero. Right: the

fitting a(τ) vs. 1/ ln(τ) - a(τ) decays as 1/ ln(τ).

7. Stable blow-up dynamics

Numerical simulations and asymptotic analysis in Section 6 show that stable blow-up dynamics in

the L2-critical gHartree equation (in the considered cases of γ = 2 and dimensions 3 ≤ N ≤ 7) follows

the log-log regime, similar to the known results in the L2-critical NLS equation, which had an interesting

history. We mention some of it.

In the L2-critical NLS, the numerical and heurestical investigations of stable blow-up solutions go

back to 1970’s and attracted an enormous amount of attention (see [64] for a review). The search

of the correct blow-up rate was especially involved, as it has a correction and it is a challenging task

to understand what the correction should be (numerically it is not possible to track double logarithm

correction). The first rigorous analytical proof of the stable log-log blow-up regime was done at the

turn of this century by Galina Perelman [55] for the 1d quintic NLS equation, which was followed by a

systematic study in a series of papers by Merle and Raphaël [45, 46, 47, 48, 49], obtaining a detailed

description of the stable blow-up dynamics for solutions with mass slightly higher than the mass of the

ground state solution. The proof requires certain coercivity properties on some bilinear forms, often

referred to as the Spectral Property (see Section 7.1, also [47, Section 4.4(D)] or [64]). In the 1d case,

the spectral property is proved analytically, since the ground state in the NLS equation is explcit (a

rescaled version of sech1/2 x), for example see [47, Appendix A]. In higher dimensions the available

proofs are numerically-assisted due to the fact that Q is not explicit as well as certain signs of the

inner products are also computed numerically (and since the signs are robust to perturbations, it is

suffient for the validity of the Spectral Property). For dimensions 2 ≤ N ≤ 5, see [16]; for dimensions

2 ≤ N ≤ 12, see [64].

There is very little known about the blow-up dynamics (how it happens, what rates, profiles and

other characterizations) for the other forms of nonlinearities, in particular, nonlocal, convolution-type
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nonlinearity. We mention that understanding the blow-up dynamics for the convolution nonlinearity, as

it is in the Hartree, or gHartree equation, is relevant for the development of theories for a gravitational

collapse of, for example, boson stars (as mentioned in the introduction) modeled by the equation

(1.3). Fröhlich and Lenzmann [19] proved the existence of finite time blow-up solutions in the pseudo-

relativistic Hartree equation (1.3) in regards to the theory of gravitational collapse.

In [4] there is a first attempt to analytical study of the stable blow-up dynamics for the L2-critical

gHartree equation. Most of the results in that paper hold for the general L2-critical gHartree equation

(with γ = 2), however, the Spectral Property we were able to verify only in R3, see subsection 7.1 and

[7]. It is an open question to prove analytically the log-log blow-up dynamics in other dimensions in

the L2-critical setting of the gHartree equation, for example, as shown in Figures 1 and 2 (or for other

examples, see [66]).

As mentioned in Section 6 we take γ = 2 (allowing us to write the convolution as the inverse

Laplacian). Then the L2-critical exponent for (1.1) is p = 1 + 4
N , and the equation (1.1) becomes

iut + ∆u+

(
1

|x|N−2
∗ |u|1+ 4

N

)
|u| 4N−1u = 0. (7.1)

The corresponding ground state equation is

−Q+ ∆Q+

(
1

|x|N−2
∗Q1+ 4

N

)
Q

4
N = 0. (7.2)

We gave numerical confirmation in Section 6 to the following conjecture (originally stated in [66])

and in the rest of this survey we will give the sketch of the proof of this conjecture in the 3d case with

the one log correction rate.

Conjecture 7.1. A stable blow-up solution to the L2-critical gHartree equation has a self-similar struc-

ture and comes with the rate

lim
t→T
‖∇u(·, t)‖L2

x
=

(
ln | ln(T − t)|

2π(T − t)

) 1
2

as t→ T ,

known as the log-log rate. The solution blows up in a self-similar regime with profile converging to a

rescaled profile Q, which is a ground state solution of (7.2), namely,

u(x, t) ∼ 1

L(t)
d
2

Q

(
x− x(t)

L(t)

)
eiγ(t)

with time depending parameters L(t), x(t) and γ(t), converging when t→ T as follows: x(t)→ xc (the

blow-up center), γ(t)→ γ0 (for some γ0 ∈ R) and

L(t) ∼
(

2π(T − t)
ln | ln(T − t)|

) 1
2

.

Thus, the stable blow-up dynamics in the L2-critical gHartree equation is similar to the stable blow-up

dynamics in the L2-critical NLS equation.

In [4] the following blow-up result is proved (see also [2]).

Theorem 7.2. Let N = 3 and consider the L2-critical gHartree equation (7.1) with p = 7
3

iut + ∆u+

(
1

|x|
∗ |u| 73

)
|u| 13u = 0. (7.3)

Consider u0 ∈ H1(R3) such that

M [Q] < M [u0] < M [Q] + α, for some α > 0, (7.4)
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and

W [u0] < 0, Im

(∫
R3

ū0∇u0 dx

)
= 0.

Let u(t) be the corresponding solution to (7.3). Then there exist α0 > 0 such that for all α < α0

(1) there exist time depending parameters (λ(t), x(t), γ(t)) ∈ R× R3 × R such that

u(t) =
1

λ(t)3/2

(
Q+ ε

)(x− x(t)

λ(t)

)
eiγ(t),

and ‖ε(t)‖H1(R3) .
√
α0,

(2) u(t) blows up in finite time, i.e., there exists 0 < T < +∞ such that

lim
t→T
‖∇u(t)‖L2(R3) = +∞; and

(3) for t close to the blow-up time T , we have

‖∇u(t)‖L2(R3) ≤ C
(
| ln(T − t)|
T − t

) 1
2

, (7.5)

for some universal constant C > 0.

We outline the strategy of the proof below and refer readers to [4] for a detailed analysis. Note that

we start with the general setting (in any dimension), and we point out where the proof is only possible

to carry in 3d.

The variational characterization of the ground state Q along with (7.4) and conservation laws allows

us to decompose the solution u(x, t) to (7.1) around Q

ε(y, t) = eiγ(t)λ(t)N/2u(λ(t)y + x(t), t)−Q(y), (7.6)

where ‖ε‖H1(RN ) ≤ δ(α0), λ(t) > 0, x(t) ∈ RN and γ(t) ∈ R are C1 functions of time. We rescale the

time variable by ds
dt = 1

λ(t)2 , and write ε = ε(y, s), observe that in this time rescaling we have s ∈ [0,∞).

This decomposition allows us to transform the analysis to ε = ε1 + iε2. Before we write the equations

for each component ε1 and ε2, we define the scaling generator

Λf =
N

2
f + x · ∇f. (7.7)

We obtain the following equations

(ε1)s − L−ε2 =
λs
λ

ΛQ+
xs
λ
· ∇Q+

λs
λ

(Λε1) +
xs
λ
· ∇ε1 + γ̃sε2 −R2(ε),

(ε2)s + L+ε1 = −γ̃sQ+
λs
λ

(Λε2) +
xs
λ
· ∇ε2 − γ̃sε1 +R1(ε),

where γ̃s = −s− γs, the operators L± are defined by

L+ε1 := −∆ε1 + ε1 −
4

N

(
|y|−(N−2) ∗Q1+ 4

N

)
Q

4
N−1ε1

−
(

1 +
4

N

)(
|y|−(N−2) ∗

(
Q

4
N ε1

))
Q

4
N ,

L−ε2 := −∆ε2 + ε2 −
(
|y|−(N−2) ∗Q1+ 4

N

)
Q

4
N−1ε2,

and the remainders R1, R2 are quadratic in ε. We choose the modulation parameters λ(s), x(s), γ(s)

such that ε satisfies the following orthogonality conditions

ε1 ⊥ yjQ, ε1 ⊥ ΛQ+ Λ2Q and ε2 ⊥ Λ2Q. (7.8)
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Now to perform the blow-up analysis one needs to have the virial identity which is given by

d

dt

∫
|x|2|u(x, t)|2dx = 4 Im

(∫
ū x · ∇u

)
= −16

∣∣E[u0]
∣∣t+ C.

However, we rewrite the above virial identity for the ε, which will be given by calculating the time

derivative (in s) of the quantity Ψ(ε(s)) = Im
(∫
ε̄ x · ∇ε

)
(s). Thus, evaluating Ψ(u(t)) via the decom-

position (7.6), we get

Ψ(u(t)) = Im

(∫
(ε+Q) y · ∇(ε+Q)

)
= −4

∣∣E[u0]
∣∣t+

C

4
,

which is equivalent to

Ψ(ε(s))− 2

∫
ε2 ΛQ = −4

∣∣E[u0]
∣∣t+

C

4
.

Taking the derivative of above expression with respect to s and using dt
ds = λ2(s), we obtain

(Ψ(ε))s(s) = 2(ε2,ΛQ)s(s)− 4λs(s)
∣∣E[u0]

∣∣.
Thus, for the virial identity in ε we compute (ε2,ΛQ)s and obtain the following

(ε2,ΛQ)s = H(ε, ε) + 2λ2|E0| − γ̃s(ε1,ΛQ)− λs
λ

(ε2,Λ
2Q)− xs

λ
(ε2,∇(ΛQ)) +G(ε),

where G(ε) is cubic in ε and H(ε, ε) is given by (7.16) (or (7.17)).

The next step would be to show coercivity of the bilinear form H and then proceed with the bounds

on (ε,ΛQ)s, which will allow us to obtain the blow-up rate with the log correction.

This is a point, where the Spectral Property is needed to proceed. We pause the proof here, and

discuss the Spectral Property in a separate subsection.

Before we give the sketch of the proof, we discuss the Spectral Property needed to prove Theorem

7.2, which will indicate why we only consider the 3d case.

7.1. Spectral Property. We recall the scaling generator Λf = N
2 f + x · ∇f . We define the two

operators L1 and L2 as

L1f =
1

2
[L+(Λf)− Λ(L+f)] ; (7.9)

L2f =
1

2
[L−(Λf)− Λ(L−f)] . (7.10)

Definition 7.1. Let N > 2. Given L1,2 and a skew-adjoint operator Λ, consider the two real

Schrödinger operators

L1,2 = −∆ + V1,2,

defined by the commutator relations

L1,2f =
1

2
[L1,2(Λf)− Λ(L1,2f)] .

Let the real quadratic form for z = (u, v)T ∈ H1
r ×H1

r with radial symmetry be

B(z, z) = B1(u, u) + B2(v, v).

The system is said to satisfy a spectral property with radial symmetric assumption on the subspace

U ∈ H1
r ×H1

r if there exists a universal constant δ0 > 0 such that ∀z ∈ U ,

B(z, z) ≥ δ0
∫ (
|∇z|2 + e−|y||z|2

)
dy.

We establish the following results (for the proofs with numerical assistence see [7]).
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Theorem 7.3. The spectral property holds for the 3d generalized Hartree equation (1.1) for (f, g)T ∈
U ⊂ L2 × L2 specified by the following orthogonality conditions

〈f,Q〉 = 0, 〈f,Λ2Q〉 = 0; (7.11)

〈ΛQ, g〉 = 0, 〈Λ2Q, g〉 = 0, (7.12)

where ΛQ = N
2 Q+ x · ∇Q as in (7.7), and Λ2Q = Λ(ΛQ).

Theorem 7.4. If we treat the dimension N as a parameter, since we are under the radial symmetric

assumption, we have the following results:

1. Let the dimensions α1 ≤ N ≤ α2 and assume the subspace U ⊂ L2
r × L2

r with the orthogonal

conditions

〈f,Q〉 = 0, 〈f,ΛQ〉 = 0; 〈ΛQ, g〉 = 0, 〈Λ2Q, g〉 = 0. (7.13)

Then, the spectral property holds for (f, g)T ∈ U with α1 ≈ 2.02 and α2 ≈ 2.6.

2. Let the dimensions α3 ≤ N ≤ α4 and assume the subspace U ⊂ L2
r × L2

r with the orthogonal

conditions

〈f,Q〉 = 0, 〈f, λ2Q〉 = 0; 〈ΛQ, g〉 = 0, 〈Λ2Q, g〉 = 0. (7.14)

Then, the spectral property holds for (f, g)T ∈ U with α3 ≈ 2.7 and α4 ≈ 3.1.

Note that in the above Theorem the only acceptable integer is N = 3 (between α3 and α4). For

the purpose of analytical proof later, we need a modified version of the above spectral property to

incorporate the span of ΛQ, which we state next.

Theorem 7.5. The spectral property holds for the 3d generalized Hartree equation for (f, g)T ∈ U ⊂
L2 × L2 in the space orthogonal to the spans

〈f,Q〉 = 0, 〈f,ΛQ+ αΛ2Q〉 = 0; 〈ΛQ, g〉 = 0, 〈ΛQ, g〉 = 0, (7.15)

with α in the range α < α∗1 or α > α∗2, where α∗1 ≈ −0.44601 and α∗2 ≈ 0.69022.

Remark 7.1. Theorem 7.5 actually holds for 2.8 ≤ N ≤ 3.1 with slightly different values of α∗1 and α∗2
depending on the value of N . We point that the 3d case is of the most interest (as this is the only

integer dimension that fits the above spectral property.

The numerically-assisted proof of the above theorems consists of the following steps:

1. Identify the number of negative eigenvalues (indices) of L1 and L2.

2. Show that the indices of L1 and L2 are stable under perturbations.

3. Justify that the chosen orthogonal conditions produce the negative spans.

We refer the readers to [7] for further details. Note that the reason that we cannot consider the case

N = 4 is due to the fact that in 4d the potentials in Definition 7.1 decay as C
|x|2 with a large constant

C, which leads to infinitely many negative eigenvalues, and thus, in the step (1.) we would get infinitely

many directions (or orthogonal conditions) to deal with, see [56].

Thus, reformulating the above spectral property in terms of the bilinear form H, we have two real-

valued operators L1 and L2, defined in (7.9) and (7.10), and the associated real-valued quadratic form

H(ε, ε) for ε = ε1 + iε2 ∈ H1(R3) defined as

H(ε, ε) = H1(ε1, ε1) +H2(ε2, ε2) (7.16)

= (L1ε1, ε1) + (L2ε2, ε2). (7.17)
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Then there exists a universal constant δ0 > 0 such that for any ε ∈ H1(R3), the quadratic form H is

positive, or more precisely,

H(ε, ε) ≥ δ0
∫ (
|∇ε|2 + |ε|2e−2−|y|

)
dy,

provided

(ε1, Q) = (ε1,ΛQ+ Λ2Q) = 0 and (ε2,ΛQ) = (ε2,Λ
2Q) = 0.

7.2. Completing the 3d blow-up rate proof. We are now ready to finish the sketch of the proof of

the stable log-log blow-up in the 3d case.

We show why the choice of the orthogonality condition ΛQ + Λ2Q comes into play. We fix the

dimensionN = 3 and using the Spectral Property discussed above we proceed as follows. Let ε ∈ H1(R3)

with (ε1, yiQ) = (ε1,ΛQ+ Λ2Q) = (ε2,Λ
2Q) = 0 (i.e., ε satisfies (7.8), which implies that it verifies the

modulation theory). We set

ε̃ = ε− aQ− bΛQ− icΛQ.

Observe that (ε̃1, yiQ) = (ε̃2,Λ
2Q) = 0. Also, (ε̃1, Q) = 0 and (ε̃1,ΛQ+ Λ2Q) = 0 with

a =
(ε1, Q)

‖Q‖2L2(R3)

= b.

Similarly, (ε̃2,ΛQ) = 0 with c =
(ε2,ΛQ)

‖ΛQ‖2L2(R3)

. Hence, ε̃ now satisfies both the spectral property and the

modulation theory.

We evaluate

H(ε, ε) =H(ε̃, ε̃) + 2a(ε̃1, L1Q) + 2b(ε̃1, L1(ΛQ)) + a2H1(Q,Q) + b2H1(ΛQ,ΛQ)

+ 2ab(L1Q,ΛQ) + 2c(ε̃2, L2(ΛQ)) + c2H2(ΛQ,ΛQ)

≥ δ̃0

∫
|∇ε̃|2 − C (a2 + c2) ≥ δ0

∫
|∇ε|2 − 1

δ0

(
(ε1, Q)2 + (ε2,ΛQ)2

)
(7.18)

for some fixed universal constant δ1 > 0 small enough. Here, we have used the fact that H1(Q,Q) < 0,

H1(ΛQ,ΛQ) = 0, H2(ΛQ,ΛQ) < 0 and (L1Q,ΛQ) < 0.

We now give a maximum principle type property, which gives the sign structure of the quantity

(ε2,ΛQ), which says that there exists a unique s0 ∈ R such that for all s < s0, (ε2,ΛQ)(s) < 0, for

all s > s0, (ε2,ΛQ)(s) > 0 and (ε2,ΛQ)(s0) = 0.. This together with the relation involving scaling

parameter and the quantity (ε2,ΛQ) of the form λs
λ ∼ −(ε2,ΛQ) yields the monotonicity of the scaling

parameter λ(t), i.e., for all s2 ≥ s1 ≥ s0, λ(s2) < 2λ(s1).

Using the monotonicity property of scaling parameter, we establish the preliminary weaker upper

bound on the blow-up rate, given by

‖∇u(t)‖L2(R3) ≤
C√

|E[u(0)]|(T − t)
.

We then use the fact that the quadratic form H(ε, ε) has a non-trivial kernel to establish a refined

version of the the localized virial relation, which then allows us to prove a superior control on the

scaling parameter, namely,

λ2(s) ≤ exp

(
− C

(ε2,ΛQ)(s)

)
, or equivalently, (ε2,ΛQ)(s) ≥ C∣∣ ln(λ(s))

∣∣ . (7.19)
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We then consider a sequence of times tn such that λ(tn) = 2−n and use (7.19) along with the mono-

tonicity of scaling parameter to deduce that

λ2(t) |ln(λ(t))| ≥ Cλ2(tn) |ln(λ(tn))| ≥ C(T − tn) ≥ C(T − t).

This allows us to conclude the desired upper bound (7.5)

‖∇u(t)‖L2(R3) ≤ C
(
| ln(T − t)|
T − t

) 1
2

,

completing the proof.
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[37] J. Krieger, E. Lenzmann and P. Raphaël, On stability of pseudo-conformal blowup for L2-critical Hartree NLS, Ann.
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