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mth-ORDER FISHER-KPP EQUATION WITH FREE BOUNDARIES AND A

GENERAL ADVECTION

CHANGQING JI, DANDAN ZHU, AND JINGLI REN

Abstract. In this paper, we investigate a mth-order Fisher-KPP equation with free boundaries and a

general advection term. Considering the influence of advection term and initial conditions on the long

time behaviour of solutions, we obtain spreading-vanishing dichotomy, spreading-transition-vanishing

trichotomy, and vanishing happens with the coefficient of advection term in small amplitude, medium

sized amplitude and large amplitude, respectively. Then, the appropriate parameters are selected in

the simulation to intuitively show the corresponding theoretical results. Moreover, the wave-spreading

and wave-vanishing are observed in our study.

1. Introduction

Reaction-diffusion equation is widely used to investigate various phenomena in physics, chemistry

and biology. The equation with the form of ut = uxx + f(t, x, u) can be used to describe the spread

of biological population or chemical substances etc [1, 4, 9, 10, 12, 19]. Li et al. [11] explored species

spread in the context of climate change by considering this model with f(t, x, u) = ur(x− ct)− u2. Hu

and Zou [8] considered the traveling wave solutions and predicted the speed and manner of a biological

species will die out when f(u) is a generalized Fisher-KPP type of nonlinearity with a shifting habitat.

In reality, the expansion of biological populations are also often affected by advection; in the mean

time, a biological species typically lives in a bounded domain with the boundary moving/expanding

according some rules. These suggest incorporation of advection into a reaction-diffusion equation on

a bounded domain with moving boundary. It is with these considerations, that the following free

boundary equation has been proposed and studied for the 1-dimension space:

ut = uxx − β(t)ux + f(t, x, u), t > 0, g(t) < x < h(t). (1.1)

When β(t) is a constant, equation (1.1) can be used to describe the dynamic behaviour of biological

population in the case of constant coefficient advection. Gu et al. [5, 6] proved the spreading-vanishing

dichotomy by considering this equation with small advection environment and Fisher-KPP type of

nonlinearity. When β(t) = β is constant and f(t, x, u) = f(u) is homogeneous in time and space and

f(u) is nonlinearity of Fisher type, Gu et al. [7] studied this equation with free boundaries and obtained

the long time behaviour of the solutions. Ren and Zhu [16] investigated this equation when β(t) = β is

constant and f(t, x, u) = f(u) is a mth-order Fisher-KPP type and obtained the following results: (i) for

small advection (small β), there is the spreading-transition-vanishing trichotomy; (ii) for median-sized

advection, there is the virtual spreading-transition-vanishing trichotomy; (iii) for large advection, there

is the vanishing dynamics.
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When f(t, x, u) = f(t, u) and both β(t) and f(t, u) are both T-periodic in time variable t, equation

(1.1) can be used to describe the biological population dynamics in time-periodic environment. The

equation with a periodic Fisher-KPP type of nonlinearity has been studied widely by many scholars

[2, 13, 14, 17]. Sun et al. [18] proposed a T-periodic advection-reaction-diffusion problem with free

boundaries. They obtained the following results: (i) there is a spreading-vanishing dichotomy in the

case of β̄ ∈ [0, c̄); (ii) there is a spreading-transition-vanishing trichotomy in the case of β̄ ∈ [c̄,B(β̃));

(iii) vanishing happens in the case of β̄ ≥ B(β̃). Here

c̄ = 2

√
1

T

∫ T

0

fu(t, 0)dt, β̄ =
1

T

∫ T

0

β(t)dt,

and β̃(t) = β(t)− β̄, B(β̃) is a function depending on β̃(t).

Motivated by the above works, it is worth to study the equation where the advection term is time-

dependent but not necessarily periodic, and the reaction term is a general mth-order Fisher-KPP type

of nonlinearity. For convenience, we consider a special time-dependent advection coefficient, that is, an

oscillatory coefficient with time varying amplitude: β(t) = λ(t) sin(t), which will not be periodic if λ(t)

is not a periodic function, or if it is a periodic but the period is different from 2π. The specific free

boundary system as follows:
ut = uxx − λ(t) sin(t)ux + αum(1− u), t > 0, g(t) < x < h(t),

g′(t) = −µux(t, g(t)), u(t, g(t)) = 0, t > 0,

h′(t) = −µux(t, h(t)), u(t, h(t)) = 0, t > 0,

− g(0) = h(0) = h0, u(0, x) = u0(x), −h0 ≤ x ≤ h0,

(1.2)

where µ and α are positive constants, m ∈ N∗. The initial function u0(x) ∈ Φ(h0) for h0 > 0, where

Φ(h0) = {φ ∈ C2([−h0, h0]) : φ(−h0) = φ(h0) = 0, φ′(−h0) > 0, φ′(h0) < 0, φ(x) > 0 for x ∈ (−h0, h0)}.

System (1.2) contains a number of advection-reaction-diffusion equations. For example, it is the Fisher-

Kpp equation with time-periodic advection when λ(t) is a constant, m = 1 [17, 18] .

Suppose that

λ(t) ∈ Cγ/2(R)(γ ∈ (0, 1)), and λ(t) sin(t) is an integrable function. (1.3)

In this paper, we first give the global existence and uniqueness of the solution. Then, by considering the

influence of advection coefficient and initial value conditions on the solutions, we obtain a spreading-

vanishing dichotomy with small amplitude of β(t); a spreading-transition-vanishing trichotomy with

medium-sized amplitude of β(t); vanishing happens with large amplitude of β(t). The partition of β(t)

relies on the mean value

β̄ :=
1

2π

∫ kπ+2π

kπ

β(t)dt

and the shape β̃(t) := β(t) − β̄. In addition, we find some new phenomena in numerical simulations,

i.e. wave-spreading and wave-vanishing cases. Now, we give the following concepts:

(i) Wave-Spreading: I∞ = R, lim
t→∞

u(t, ·) = 1 locally uniformly in R and the solution u

oscillates left and right in the spreading domain;

(ii) Wave-Vanishing: I∞ is a finite length interval, lim
t→∞

max
g(t)≤x≤h(t)

u(t, x) = 0 and the solution

u oscillates left and right in the vanishing domain,

where

I(t) := [g(t), h(t)], g∞ := lim
t→∞

g(t), h∞ := lim
t→∞

h(t) and I∞ := (g∞, h∞).
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This paper is structured as follows. In Section 2, we present the global existence and uniqueness

of the solution. Long time behaviour of the solutions are obtained with different ‘sizes’ of a general

function λ(t) in Section 3. To show the theoretical results more intuitively, we give some numerical

simulations in Section 4.

2. Global existence and uniqueness

In this section, we first establish the local existence and uniqueness of the solution, and then show

that the solution exists globally and is unique. To this end, we need to recall the following conditions

on a general nonlinearity function f(t, x, u) required in [20]:

(H1) f is a Lipschitz continuous function respect to x: For any given τ, l, k > 0, there exists a

constant M1(τ, l, k) such that

|f(t, x1, u)− f(t, x2, u)| ≤M1(τ, l, k)|x1 − x2| for (t, xi, u) ∈ (0, τ)× (0, l)× (0, k), i = 1, 2.

(H2) f is a Lipschitz continuous function respect to u: For any given τ, l, k > 0, f ∈ L∞((0, τ) ×
(0, l)× (0, k)) and there exists a constant M2(τ, l, k) such that

|f(t, x, u1)− f(t, x, u2)| ≤M2(τ, l, k)|u1 − u2| for (t, x, ui) ∈ (0, τ)× (0, l)× (0, k), i = 1, 2.

In system (1.2), since reaction term f(u) := αum(1 − ux.Si)(m ∈ N∗) independent of t and x,

condition (H1) obviously holds. (H2) can also be easily verified for this nonlinear function f(u). Thus,

we can use the results in [20] to establish the following lemma.

Lemma 2.1. There exists a T > 0 such that problem (1.2) has a unique solution (u, g, h) in [0, T ],

which satisfies

(i) g(t), h(t) ∈ C1+γ/2([0, T ]), u ∈W 1,2
p (GT ) ∩ C(1+γ)/2,1+γ(ḠT );

(ii) 0 < −g′(t), h′(t) < L1, 0 ≤ u(t, x) ≤ L2, (t, x) ∈ GT ,

where GT := {(t, x) : (t, x) ∈ (0, T ) × (g(t), h(t))}, the constants L1, L2 and T only depend on h0, α,

and ‖u0‖C2([−h0,h0]).

Proof. Consider the following transformation

(t, x)→ (t, y), where x = y + ζ(−y)(g(t) + h0) + ζ(y)(h(t)− h0), y ∈ R.

Let

ζ(y) =
e−(y−h0)

2 − e−4h2
0

1− e−4h2
0

,

we have ζ(y) ∈ C∞(R), ζ(−h0) = 0, ζ(h0) = 1 and

ζ ′(y) =
−2(y − h0)e−(y−h0)

2

1− e−4h2
0

.

Since ζ ′(y) ∈ C(R) and lim
y→±∞

ζ ′(y) = 0, there exists L > 0, such that

ζ ′(y) <
L

h0
.

The transformation is a differential homeomorphism as long as

max{|h(t)− h0|, |g(t) + h0|} ≤
h0
2L
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is satisfied. Then, the free boundaries x = g(t) and x = h(t) are transformed to y = −h0 and y = h0
respectively. Due to the properties of β(t) and f(u), using the similar arguments in the proof of Theorem

1.1 in [20], we obtain that there exists a T > 0 such that (1.2) has a unique solution (u, g, h) and satisfies

g(t), h(t) ∈ C1+γ/2([0, T ]), u ∈W 1,2
p (GT ) ∩ C(1+γ)/2,1+γ(ḠT ).

Based on the properties of β(t), u0(x) and f(u), we may argue as the proof of Lemma 2.2 in [3] to

complete the estimates of (u, g, h). �

Lemma 2.2. Assume the conditions in Lemma 2.1 hold, then problem (1.2) has a unique global solution.

Proof. Denote

T0 = sup{T > 0 : (u, g, h) ∈ C(ḠT )× C1([0, T ])× C1([0, T ]) is the solution of (1.2)},

where T0 is called the maximal existence time of the solution of problem (1.2). Combining with the

idea of Theorem 1.2 in [20], we have T0 =∞. This means that the global existence and uniqueness of

the solution are obtained. �

3. Long time behavior of the solutions

Combining with the conditions in (1.3) and the conclusions in [7, 18], the following system
ut = uxx − λ(t) sin(t)ux + αum(1− u), t, x ∈ R,
u(t,−∞) = 0, u(t,∞) = 1, u(0, 0) = 1

2 , t ∈ R,
u(t+ 2kπ, x) = u(t, x+X) = 1, t, x ∈ R, X := (c̄− β̄),

(3.1)

has a traveling wave solution u := Q(t, x + c̄t −
∫ t
0
λ(s) sin(s)ds), which can be further expressed as

Q(t, x+ (c̄− β̄)t), where

c̄ = 2

√
1

2π

∫ 2π

0

fu(t, 0)dt, β̄ =
1

2π

∫ kπ+2π

kπ

λ(t) sin(t)dt (k ∈ N)

are critical values to partition the small and medium-sized advection. Denote β̃(t) := λ(t) sin(t)−β̄, from

the research of subsection 3.3 and 3.4 in [18], we obtain that there exists a functionB(β̃), which is depends on β̃(t),

such that B(β̃) is a critical value function to partition the medium-sized and the large advection.

3.1. Vanishing case.

Assume |β̄| < c̄ and (1.3) are established. According to Lemma 3.1 in [17], the following vanishing

conditions are equivalent:

(i) I∞ is a finite interval;

(ii) h∞ ≤ h∗(−β(t), a(t)), where h∗(−β(t), a(t)) is defined as Lemma 2.1 in [17];

(iii) lim
t→∞

‖u(t, ·)‖L∞([−h0,h0]) = 0.

This means that h∞ <∞ is a necessary and sufficient condition for vanishing. Therefore, we have the

following lemma.

Lemma 3.1. Assume |β̄| < c̄ and (1.3) are established. Then vanishing happens if the following initial

conditions hold

(i) h0 < h∗(−β(t), a(t));

(ii) ‖u0‖L∞([−h0,h0]) is sufficiently small.
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Proof. Since h0 < h∗(−β(t), a(t)), choose h1 ∈ (h0, h
∗(−β(t), a(t))) and consider the problem

Lω := ωt − ωzz + β(t)ωz − a(t)ω = κω, t ≥ 0, 0 < z < h1,

ω(t, 0) = 0, ω(t, h1) = 0, t ≥ 0,

ω(0, z) = ω(kπ + 2π, z), 0 ≤ z ≤ h1.
(3.2)

Denote κ1 is the principal eigenvalue of (3.2), ω1 > 0 is the corresponding eigenfunction and ‖ω1‖L∞ = 1.

We have κ1 > 0 by using Lemma 2.1 in [17]. We use ξ1(t) and ξ2(t) to denote the left most and right

most local maximum point of w1(t, ·), respectively. Set

ε1 := min
t≥0

ξ1(t), ε2 := max
t≥0

ξ2(t),

η0 := min{min
t≥0

ω1(t, ε1),min
t≥0

ω1(t, ε2)}, δ := min{κ1,
h1
h0
− 1},

then η0 ≤ 1, and there exists small η1 = η(δ) such that

η1 ·max{max
t≥0
|µω1x(t, h1)|, max

t≥0
|µω1x(t, 0)|} < δ2

2
h0.

Denote

w(t, x) := η0η1e
−δtω1(t, x+ h1), (t, x) ∈ [0,∞)× [−h1, h1],

then for the properties of f(t, ω),

wt − wxx + β(t)wx − f(t, w)

=− δη0η1e−δtω1(t, x+ h1) + ωt − ωzz + β(t)ωz − a(t)ω

≥η0η1e−δt(−δ + κ1)ω1(t, x+ h1)

≥0.

Since w(0, x) = η0η1ω1(0, x+ h1), we choose the initial function u0(x) satisfies

u0(x) ≤ η0η1ω1(0, x+ h1), x ∈ [−h0, h0],

by the Lemma 3.7 in [2], we obtain

u(t, x) ≤ ω(t, x), (t, x) ∈ [0, τ)× [−h0, h0], (3.3)

where τ := sup{t > 0 : g(t) > −h1, h(t) < h1}. According to the proof of Lemma 3.3 in [17], we have

τ =∞. This implies

[g(t), h(t)] ⊂ [−h1, h1], t ≥ 0,

i.e. I∞ is a finite interval. Therefore, vanishing happens. �

Similarly, choose h2 > h0, and denote κ2 is the principal eigenvalue of (3.2), ω2 > 0 with ‖ω2‖L∞ = 1

is the corresponding eigenfunction. Since β̄ ≥ c̄, then κ2 > 0. We have the following lemma.

Lemma 3.2. Assume c̄ ≤ β̄ < B(β̃) and (1.3) are established. Let (u, g, h) be the solution of (1.3).

Then vanishing happens if ‖u0‖L∞([−h0,h0]) is sufficiently small.
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3.2. Spreading case.

Lemma 3.3. Assume c̄ ≤ β̄ < B(β̃) and (1.3) are established. Let (u, g, h) be the solution of (1.3).

Then spreading happens if there exist x1, Lc such that

u(t, x) ≥WLc
(0, x− x1) for x ∈ [x1 − Lc, x1], (3.4)

where 0 < c� 1, WLc is the compactly supported traveling wave defined in [18].

Proof. Since

β(t) ∈ Cγ/2([0,∞)) for γ ∈ (0, 1), β(kπ) = β(kπ + 2π) = 0, k ∈ N+.

For any small Lc > 0, when x1 is large enough, using proposition 3.16 in [18], system (1.2) has a low

solution

u = WLc := U0(t, RLc − x, β −RLc , x1),

where RLc =
∫ t
0
rLc(s)ds, r(t, β) = −µux(t, R(t, β)), rLc = r(t, β) − Lc, 0 < r̄ < β̄ + c̄. Thus, we can

prove this lemma by similar arguments in [18]. �

3.3. Sharp threshold.

For any given initial value h0 > 0 and φ ∈ Φ(h0), denote (u(t, x;σφ), g(t;σφ), h(t;σφ)) := (u, g, h)

be the solution of (1.2) with u0 = σφ. For convenience, set

Ω1 := {σ ≥ 0| vanishing happens for u(·, ·;σφ)}, σ∗ := sup Ω1,

Ω2 := {σ ≥ 0| spreading happens for u(·, ·;σφ)}, σ∗ := inf Ω2.

According to Lemma 3.1 and Lemma 3.2, we obtain σ ∈ Ω1 for all small σ > 0, namely Ω1 6= ∅.

Theorem 3.4. Assume 0 ≤ β̄ < c̄ and (1.3) are established, (u, g, h) is a solution of (1.2) with u0 = σφ

for φ ∈ Φ(h0). Then, there exist σ∗ = σ∗(h0, φ, β), σ∗ = σ∗(h0, φ, β) such that σ∗ = σ∗ and

(i) if σ ∈ [0, σ∗], vanishing happens;

(ii) if σ ∈ (σ∗,∞), spreading happens.

Proof. Obviously, if σ∗ = ∞, only vanishing happens. Thus, in the following proof, we assume that

σ∗ ∈ (0,∞). Now, we prove σ∗ = σ∗. Otherwise, if σ∗ < σ∗, there exist σ1, σ2 ∈ (σ∗, σ
∗) with σ1 < σ2.

Using the comparison principle, we have

g(t;σ2φ) < g(t;σ1φ), h(t;σ1φ) < h(t;σ2φ),

u(t, x;σ2φ) < u(t, x;σ1φ) for (t, x) ∈ (0,∞)× (g(t;σ1φ), h(t;σ1φ)).

Based on the continuous dependence of the solution u(t, x;σφ) with respect to x, there exists δ1 > 0

such that

u(1, x;σ1φ) < u(1, x− δ1;σ2φ) for x ∈ [g(t;σ1φ), h(t;σ1φ)].

Using the comparison principle again, we obtain

u(t, x;σ1φ) < u(t, x− δ1;σ2φ) for (t, x) ∈ (1,∞)× (g(t;σ1φ), h(t;σ1φ)).

Thus, when (t, x) ∈ (1,∞)× [g(t;σ1φ)− h(t;σ2φ), 0], we have

u(t, x+ h(t;σ1φ);σ1φ) < u(t, x+ h(t;σ2φ) + λ(t)− δ1;σ2φ),

where λ(t) = h(t;σ1φ) − h(t;σ2φ). By using Lemma 4.1 in [18], we have u(t, x + h(t;σ1φ);σ1φ) and

u(t, x + h(t;σ2φ);σ2φ) converges to 0 uniformly, that is, lim
t→∞

λ(t) − δ1 = 0. This is a contradiction.

Thus, σ∗ = σ∗.

Next, we show that vanishing happens when σ = σ∗. If not, spreading happens when σ = σ∗, and

there exists t0 > 0 such that h(t0) − g(t0) > h∗(−β(t), a(t)) + 1. By the continuous dependence of
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(u(t, x;σφ), g(t;σφ), h(t;σφ)), taking ε > 0 is sufficiently small, denote (uε(t, x;σφ), gε(t;σφ), hε(t;σφ))

is a solution of (1.2) with u0 = (σ∗ − ε)φ, and satisfies

hε(t0)− gε(t0) > h∗(−β(t), a(t)).

According to Lemma 3.4 in [17], spreading happens for the solution (uε(t, x;σφ), gε(t;σφ), hε(t;σφ))

with u0 = (σ∗ − ε)φ. It is a contradiction with the definition of σ∗. Thus, vanishing happens when

σ = σ∗.

�

Theorem 3.5. Assume c̄ ≤ β̄ < B(β̃) and (1.3) are established, (u, g, h) is a solution of (1.2) with

u0 = σφ for φ ∈ Φ(h0). Then there exist σ∗ = σ∗(h0, φ, β) and σ∗ = σ∗(h0, φ, β) such that

(i) if σ ∈ [0, σ∗), vanishing happens;

(ii) if σ ∈ [σ∗, σ
∗], transition happens: g∞ > −∞, h∞ = +∞, lim

t→∞
u(t, ·) = 0 locally uniformly in

I∞ and spreading does not happen;

(iii) if σ ∈ (σ∗,∞), spreading happens.

Proof. From previous illustration, Ω1 6= ∅ and [0, σ∗) ∈ Ω1. In the following, we assume σ∗ ∈ (0,∞)(if

σ∗ = ∞, only vanishing happens). According to Theorem 4.9 in [7], Ω1 = [0, σ∗). Moreover, when

σ ≥ σ∗, g∞ > −∞, h∞ = +∞, lim
t→∞

u(t, ·) = 0 locally uniformly in (g∞,+∞).

On the other hand, if Ω2 = ∅, spreading does not happen for all σ ≥ 0. Thus transition happens

when σ ≥ σ∗. If Ω2 = ∅, that is σ∗ < ∞. From Lemma 3.3 and the continuous dependence of

(u(t, x;σφ), g(t;σφ), h(t;σφ)), Ω2 is an open set. Thus Ω2 = [σ∗,∞).

According to the above analysis, neither spreading nor vanishing happens for u(t, x;σφ) with σ ∈
[σ∗, σ

∗]. Therefore, if σ ∈ [σ∗, σ
∗], u(t, x;σ∗φ) is a transition solution and

g∞ > −∞, h∞ = +∞, lim
t→∞

u(t, ·) = 0 locally uniformly in (g∞,+∞).

�

Theorem 3.6. Assume β̄ ≤ −c̄ or β̄ ≥ B(β̃) and (1.3) are established. (u, g, h) is a time-global solution

of (1.2) with u0 = σφ for φ ∈ Φ(h0). Then vanishing happens.

Proof. According to Lemma 3.7 and Lemma 3.8 in [17], we obtain

h∞ <∞, lim
t→∞

‖u(t, ·)‖L∞([g(t),h(t)]) = 0.

This means vanishing happens. �

4. Numerical simulation and analysis

In order to show the theoretical results more intuitively, we use the similarly scheme in [15] to give

the numerical analysis of system (1.2) in this section. Assume

α = 3, µ = 1, h0 = 5, φ = cos(
π

10
x).

According to the properties of β(t), we choose β(t) = ρt sin t, then

β̄ =
1

2π

∫ kπ+2π

kπ

ρt sin tdt = −ρ cos kπ,

β̃ = ρt sin t+ ρ cos kπ, k = 1, 2, 3, · · ·
Thus, the asymptotic behaviour of the solutions to system (1.2) will be determined by the amplitude ρ

and initial value σ.
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Example 4.1. Fig.1(a) is the numerical result with m = 3, ρ = 0.01, σ = 0.1. The free boundaries

x = g(t) and x = h(t) increase slowly, and the solution decays to zero with the increase of time t. In

this case, vanishing happens, which corresponding to β(t) is a small function case in Theorem 3.4(i).

Fig.2(a) shows the curve of u(t, ·) at t = 5, 15, 30. Obviously, with the increase of time t, this curve tends

to zero. Fig.1(b) is the numerical result with m = 3, ρ = 0.01, σ = 1. The two free boundaries increase

faster than in Fig.1(a) and the solution stabilizes to 1 with the increase of time t. This means spreading

happens, which corresponding to β(t) is a small function case in Theorem 3.4(ii). When spreading

occurs, Fig.2(b) shows the curve of u(t, ·) at t = 10, 20, 30, we can see that u(t, ·) has a maximum value

of 1 near x = 0. Besides, with the increase of time t, the spread domain of u(t, ·) with respect to x also

expands.

−10
−5

0
5

10 0

10

20

30

40

50

0

0.02

0.04

0.06

0.08

0.1

t

x

u

(a)

−20 −15 −10 −5 0 5 10 15 20
0

20

40

60

0

0.2

0.4

0.6

0.8

1

t

x

u

(b)

Figure 1. Numerical simulation results of system (1.2) when m = 3, ρ = 0.01. (a):

σ = 0.1; (b): σ = 1.
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Figure 2. The curve of u(t, ·) at different t. (a): vanishing happens; (b): spreading happens.
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Example 4.2. Fig.3(a) is the numerical result for m = 3, ρ = 0.1, σ = 0.1. The free boundaries rises in

waves slowly, and the solution decays to zero with the increase of time t. In this case, vanishing happens

(we can also call it wave-vanishing, since the free boundaries rises in waves), which corresponding to β(t)

is a medium-sized function case in Theorem 3.5(i). Fig.4(a) shows the curve of u(t, ·) at t = 5, 15, 30.

Similarly with Fig.2(a), the curve u(t, ·) tends to zero. Fig.3(b) is the numerical result for m = 3,

ρ = 0.1, σ = 1. It can be seen from Fig.3(b) that free boundaries x = g(t) and x = h(t) rises in waves

faster than in Fig.3(a). Besides, the solution converges locally to 1 with the increase of time t. This

implies spreading happens (we can also call it wave-spreading since the free boundaries rises in waves),

which corresponding to β(t) is a medium-sized function case in Theorem 3.5(ii). Fig.4(b) shows the

curve of u(t, ·) at t = 13, 20, 28. Comparing the curves at different times, we can also find that the

solution spreading in waves.
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Figure 3. Numerical simulation results of system (1.2) when m = 3, ρ = 0.1. (a):

σ = 0.1; (b): σ = 1.
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Figure 4. The curve of u(t, ·) at different t. (a): vanishing happens; (b): spreading happens.
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Example 4.3. Let m = 3, ρ = 1, The numerical results with σ = 0.1 and σ = 1 are shown in Fig.5(a)

and Fig.5(b) respectively. From these two pictures, we find that the free boundaries rises in waves slowly,

and the solution decays to zero quickly. Same as the previous analysis, we can also call this as wave

vanishing case. Similarly, we obtain that wave vanishing happens in Fig.6(a) and Fig.6(b). These two

cases corresponding to Theorem 3.1.
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Figure 5. Numerical simulation results of system (1.2) when m = 3, ρ = 1. (a):σ =

0.1; (b): σ = 1.
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Figure 6. Numerical simulation results of system (1.2) when m = 3, ρ = −0.5. (a):

σ = 0.1; (b): σ = 1.
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