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AN EXTENDED SEIARD MODEL FOR COVID-19 VACCINATION IN MEXICO:

ANALYSIS AND FORECAST

ÁNGEL G. C. PÉREZ AND DAVID A. OLUYORI

Abstract. In this study, we propose and analyse an extended SEIARD model with vaccination. We

compute the control reproduction number Rc of our model and study the stability of equilibria. We

show that the set of disease-free equilibria is locally asymptotically stable when Rc < 1 and unstable

when Rc > 1, and we provide a sufficient condition for its global stability. Furthermore, we perform

numerical simulations using the reported data of COVID-19 infections and vaccination in Mexico

to study the impact of different vaccination, transmission and efficacy rates on the dynamics of the

disease.

1. Introduction

The Coronavirus Disease 2019 (COVID-19) pandemic, caused by the Severe Acute Respiratory Syn-

drome Coronavirus 2 (SARS-CoV-2) has caused a worldwide crisis due to its effects on society and

global economy. Due to the absence of specific anti-COVID-19 medical treatments, most countries had

been relying on non-pharmaceutical interventions, such as wearing of face masks, social/physical dis-

tancing, partial/total lockdown, travel restrictions, and closure of schools and work centres, in order to

curtail the spread of the disease before December 2020. However, these measures have been insufficient

to mitigate the pandemic globally as medical facilities were overstretched and death toll heightened.

Vaccination has been an effective strategy in combatting the spread of infectious diseases, e.g.,

pertussis, measles, and influenza. Historically, the eradication of smallpox has been considered as the

most remarkable success of vaccination ever recorded [40]. So far, the development and testing of

vaccines against SARS-CoV-2 has occurred at an unprecedented speed and, in the last months, several

vaccines have been approved for use in many countries, and their deployment is already underway. In

a pandemic situation such as this, current preventive vaccines consisting of inactivated viruses do not

protect all vaccine recipients equally as the protection conferred by the vaccine is dependent on the

immune status of the recipient [3].

Over the past few decades, a large number of simple compartmental models with vaccination have

been proposed in the literature to assess the effectiveness of vaccines in combatting the infectious

diseases [19, 28, 4, 1, 16, 21, 9, 8, 37, 30]. With the recent development of anti-COVID vaccines, several

models have been proposed to provide insight into the effect that inoculation of a certain portion of

the population will have on the dynamics of the COVID-19 pandemic. The authors in [10] studied an

SEIHRDV model and an SMEIHRDV model (the latter including a semi-susceptible class) and fitted the

parameters using data from several countries to evaluate the effect of social distancing and vaccination

on controlling COVID-19. Another model was studied in [25] to compare the outcomes of single-dose

and two-dose anti-COVID vaccination regimes. The global stability of a two-strain COVID-19 model
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with vaccination against one strain was studied in [32]. The stability analysis of an SEIR model with

prophylactic and therapeutic vaccines was performed in [38]. In [20], the effect of immunity, vaccination,

and reinfection with changing parameters was analysed using an SEVIS model, while in [13] an SIQRD

model was used to simulate several scenarios of vaccine delivery in Indonesia.

Since it is known that individuals infected with SARS-CoV-2 can transmit the virus to other peo-

ple without presenting symptoms of the disease, some authors have proposed models that distinguish

between symptomatic and asymptomatic infections. For instance, an age- and region-structured model

was proposed in [22] to simulate the rollout of a two-dose vaccination programme in the UK using the

Pfizer–BioNTech and Oxford–AstraZeneca vaccines. An agent-based transmission model was used in

[34] to project the impact of a two-dose vaccination campaign with the Pfizer–BioNTech and Moderna

vaccines in Ontario. On the other hand, a sensitivity analysis and uncertainty quantification of an SEIsI-

aQR model with vaccination strategy was conducted in [23]. A three-patch metapopulation epidemic

model structured by risk was used to investigate several vaccination scenarios in Mexico City in [27].

The threshold dynamics of a COVID-19 model combining vaccination and treatment was established in

[12], while [11] considered an SE(Is)(Ih)AR model with vaccination and antiviral controls. Some other

COVID-19 models with vaccination can be found in [14, 31, 5, 2, 26].

Of the works mentioned above, only [11, 12, 32, 38] studied the global stability of the equilibrium

states; moreover, none of these studies considered that people who become infected after being vac-

cinated may have reduced infectivity and a lower chance of showing severe symptoms. Hence, in the

present work, we aim to study a model that takes into account all of these factors and perform a local

and global stability analysis of the disease-free equilibria, as well as present an application of this model

to the COVID-19 epidemic in Mexico.

In mid-November 2020, Mexico passed the mark of 1,000,000 confirmed cases and 100,000 deaths due

to COVID-19. On 11 December 2020, the Mexican government’s medical safety commission approved

the emergency use of the Pfizer–BioNTech coronavirus vaccine, with the first 250,000 doses intended

for health workers. The inoculation of frontline health personnel started that year on 24 December.

Four other COVID-19 vaccines were approved between January and February 2021, and vaccination

of people over 60-years old with the AstraZeneca vaccine began in February. The first vaccines to be

applied in Mexico followed a two-dose regime, until the single-dose CanSino vaccine began to be applied

to a portion of the population in April 2021. The Johnson & Johnson vaccine, also single-dose, was

deployed in June 2021 to inoculate the population over age 18 in the municipalities of the northern

border. The government expected to have vaccinated all adult population with at least one dose by

October 2021, after which, the application of vaccines would continue for people aged 12 to 17 with

comorbidities.

In this paper, we propose a differential equation model to simulate the application of a two-dose

vaccine against COVID-19, considering the possibility of vaccine leakiness and asymptomatic infections.

The motivation of this study is derived from the work of the authors in [7, 6], who considered an SEIARD

mathematical model to investigate the outbreak of COVID-19 in Mexico. Therefore, in the present work,

we incorporate the vaccination component to the model in [6] to derive an extended SEIARD model to

examine the effectiveness of the COVID-19 jabs which are currently being deployed to many countries

to help combat the raging pandemic situation.

The rest of this paper is organized as follows. In Section 2, we present the equations and assumptions

of the extended SEIARD model with vaccination. In Section 3, we perform a theoretical analysis of the

model, compute its control reproduction number and study the stability of the disease-free equilibria.

In Section 4, we carry out numerical simulations using reported data on COVID-19 infections and

vaccination in Mexico. Lastly, we provide some discussions and concluding remarks in Section 5.
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Figure 1. Flow diagram of the model with vaccination.

2. Model formulation

To derive the mathematical model, we divide the unvaccinated population into susceptible (S),

exposed (E), symptomatic infectious (I), asymptomatic infectious (A), and recovered (R). The number

of individuals in each subpopulation at time t is denoted by S(t), E(t), etc. Since the time scale we

consider in our analysis is considerably shorter than the mean lifespan of individuals in the population,

our model does not consider the natural death and birth rates. Susceptible individuals become exposed

by contact with symptomatic infectious individuals at a rate β1 and by contact with asymptomatic

infectious individuals at a rate β2. The exposed individuals become infectious at a rate w: a proportion

p1 of them will show symptoms, while the rest remains asymptomatic. We assume that the symptomatic

class has a disease-induced death rate, denoted by δ1. Both symptomatic and asymptomatic infectious

people recover at a rate γ.

We also assume that the susceptible population S is vaccinated at a rate v ≥ 0 (the number of

first doses administered per day at time t is given by vS(t)). Individuals who have received only the

first dose of the vaccine are included in the class V1, and they move to the class V2 upon receiving

the second dose, which occurs at a rate θ. Due to vaccine leakiness, vaccination of an individual does

not completely remove the risk of infection. Hence, we also assume that the vaccinated population can

become exposed (EV ), symptomatic infectious (IV ) and asymptomatic infectious (AV ). Individuals in

the class V1 (respectively, V2) move to the class EV due to contact with symptomatic infectious people

at a rate (1 − η1)β1 (respectively, (1 − η2)β1) and by contact with the asymptomatic infectious at a

rate (1 − η1)β2 (respectively, (1 − η2)β2), where η1 is the efficacy of the vaccine after one dose (η2 is

the efficacy of the vaccine after two doses). The infectivity of individuals in the IV and AV classes is

reduced by a factor 1− q with respect to that of individuals in the I and A classes.

The population in the class EV becomes infectious at a rate w; we assume that the proportion of

people from this class who become symptomatic infectious is p2, which may be different from that of

unvaccinated people due to the effect of the vaccine in reducing the severity of the infection. Likewise,

the disease-induced death rate δ2 is lower for the vaccinated population. Individuals in the IV and AV
classes also move to the R class upon recovery at a rate γ.

We will denote by N(t) the total population at time t, which is given by

N(t) = S(t) + E(t) + I(t) +A(t) + V1(t) + V2(t) + EV (t) + IV (t) +AV (t) +R(t).
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Hence, our model is described by the following system of differential equations:

Ṡ = − S
N
β1(I + qIV )− S

N
β2(A+ qAV )− vS,

Ė =
S

N
β1(I + qIV ) +

S

N
β2(A+ qAV )− wE,

İ = p1wE − (δ1 + γ)I,

Ȧ = (1− p1)wE − γA,

V̇1 = vS − (1− η1)
V1

N
β1(I + qIV )− (1− η1)

V1

N
β2(A+ qAV )− θV1,

V̇2 = θV1 − (1− η2)
V2

N
β1(I + qIV )− (1− η2)

V2

N
β2(A+ qAV ),

ĖV = (1− η1)
V1

N
β1(I + qIV ) + (1− η1)

V1

N
β2(A+ qAV )

+ (1− η2)
V2

N
β1(I + qIV ) + (1− η2)

V2

N
β2(A+ qAV )− wEV ,

İV = p2wEV − (δ2 + γ)IV

ȦV = (1− p2)wEV − γAV ,

Ṙ = γ(I +A+ IV +AV ).

(2.1)

We define an additional variable D(t) that denotes the number of people deceased due to COVID-19,

which is governed by the equation

Ḋ = δ1I + δ2IV . (2.2)

We assume that β1, β2, θ, w and γ are positive, v, δ1, δ2 ≥ 0 and q, η1, η2, p1, p2 ∈ [0, 1]. The

interpretation of parameters is summarized in Table 1. The flow diagram of the model can be seen in

Figure 1.

3. Theoretical analysis

In this section, we will derive some theoretical results for model (2.1). Our aim is to investigate the

behaviour of the epidemic in the next few years after the vaccination campaign is over. Thus, we will

mainly focus on the case when the vaccination rate v is zero, but the vaccinated subpopulations (V1,

V2, EV , IV , AV ) may have positive initial values.

First, we will determine the disease-free equilibria of the model, i.e., the equilibria with E = I =

A = EV = IV = AV = 0. In the case when v is positive, the disease-free equilibria (DFE) of system

(2.1) are given by the set

S =
{

(S,E, I, A, V1, V2, EV , IV , AV , R) = (0, 0, 0, 0, 0, V ∗
2 , 0, 0, 0, R

∗) ∈ R10 : V ∗
2 > 0, R∗ > 0

}
.

The equilibria in S correspond to the case when the whole population has been fully vaccinated or

recovered from COVID-19, and there are no susceptible individuals.

When v = 0, model (2.1) has a continuum of disease-free equilibria, given by the set

S0 =
{

(S,E, I, A, V1, V2, EV , IV , AV , R) = (S∗, 0, 0, 0, 0, V ∗
2 , 0, 0, 0, R

∗) ∈ R10 :

S∗ ≥ 0, V ∗
2 > 0, R∗ > 0

}
.

Each equilibrium P0 ∈ S0 represents a scenario when the anti-COVID vaccination programme has

ended, and a certain number of individuals V ∗
2 has been vaccinated to achieve herd immunity in the

population. We will compute the control reproduction number Rc of the model based on this expression

for the DFE.
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Using the notation in [33], we determine the matrix of new infections F and the transition matrix

V , considering only the infected compartments (E, I, A, EV , IV and AV ). First, we define

F =



S
N β1(I + qIV ) + S

N β2(A+ qAV )

0

0

(1− η1)V1

N

[
β1(I + qIV ) + β2(A+ qAV )

]
+ (1− η2)V2

N

[
β1(I + qIV ) + β2(A+ qAV )

]
0

0


and

V =



wE

−p1wE + (δ1 + γ)I

−(1− p1)wE + γA

wEV
−p2wEV + (δ2 + γ)IV
−(1− p2)wEV + γAV


.

Then, the derivative of F at a disease-free equilibrium P0 ∈ S0 is

F =



0 S∗

N∗ β1
S∗

N∗ β2 0 S∗

N∗ qβ1
S∗

N∗ qβ2

0 0 0 0 0 0

0 0 0 0 0 0

0 (1− η2)
V ∗
2

N∗ β1 (1− η2)
V ∗
2

N∗ β2 0 (1− η2)
V ∗
2

N∗ qβ1 (1− η2)
V ∗
2

N∗ qβ2

0 0 0 0 0 0

0 0 0 0 0 0


where N∗ = S∗+V ∗

2 +R∗ denotes the total population at the equilibrium. The derivative of V evaluated

at P0 is

V =



w 0 0 0 0 0

−p1w δ1 + γ 0 0 0 0

−(1− p1)w 0 γ 0 0 0

0 0 0 w 0 0

0 0 0 −p2w δ2 + γ 0

0 0 0 −(1− p2)w 0 γ


.

It follows that

FV −1 =



A11
S∗β1

N∗(δ1+γ)
S∗β2

N∗γ A14
S∗qβ1

N∗(δ2+γ)
S∗qβ2

N∗γ

0 0 0 0 0 0

0 0 0 0 0 0

A41
(1−η2)V ∗

2 β1

N∗(δ1+γ)
(1−η2)V ∗

2 β2

N∗γ A44
(1−η2)V ∗

2 qβ1

N∗(δ2+γ)
(1−η2)V ∗

2 qβ2

N∗γ

0 0 0 0 0 0

0 0 0 0 0 0


,
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where

A11 =
S∗

N∗

[
β1p1

δ1 + γ
+
β2(1− p1)

γ

]
,

A14 =
S∗

N∗ q

[
β1p2

δ2 + γ
+
β2(1− p2)

γ

]
,

A41 =
V ∗

2

N∗ (1− η2)

[
β1p1

δ1 + γ
+
β2(1− p1)

γ

]
,

A44 =
V ∗

2

N∗ q(1− η2)

[
β1p2

δ2 + γ
+
β2(1− p2)

γ

]
.

The control reproduction number Rc of model (2.1) is given by Rc = ρ
(
FV −1

)
, where ρ denotes

the spectral radius. Hence,

Rc =
S∗

N∗

[
β1p1

δ1 + γ
+
β2(1− p1)

γ

]
+
V ∗

2

N∗ q(1− η2)

[
β1p2

δ2 + γ
+
β2(1− p2)

γ

]
. (3.1)

The quantity Rc measures the average number of new COVID-19 cases generated by a typical

infectious individual introduced into a population where a fraction V ∗
2 /N

∗ has been fully vaccinated

using a vaccine with efficacy η2.

According to [33, Theorem 2], we can obtain the following result about the control reproduction

number.

Theorem 3.1. A disease-free equilibrium P0 = (S∗, 0, 0, 0, 0, V ∗
2 , 0, 0, 0, R

∗) of system (2.1) with v = 0

is locally asymptotically stable if Rc < 1, and it is unstable if Rc > 1.

The epidemiological interpretation of Theorem 3.1 is that, if Rc < 1, then a small perturbation from

a disease-free equilibrium will not generate an epidemic outbreak. On the other hand, if Rc > 1, the

epidemic curve will initially show an exponential growth, then reach a peak and start to decrease until

becoming extinct.

The following theorem gives a sufficient condition for the global stability of the disease-free equilibria.

Theorem 3.2. Suppose that

β1p1

δ1 + γ
+
β2(1− p1)

γ
< 1 and q(1− η2)

[
β1p2

δ2 + γ
+
β2(1− p2)

γ

]
< 1. (3.2)

Then, the disease-free equilibrium P0 = (S∗, 0, 0, 0, 0, V ∗
2 , 0, 0, 0, R

∗) of system (2.1) with v = 0 is

globally asymptotically stable.

Proof. Consider the following Lyapunov function:

L = g1E + g2I + g3A+ g4EV + g5IV + g6AV + g7V1,

where

g1 = γ(δ1 + γ), g2 = γβ1, g3 = (δ1 + γ)β2, g4 =
γ(δ1 + γ)

1− η2
,

g5 =
qγβ1(δ1 + γ)

δ2 + γ
, g6 = qβ2(δ1 + γ), g7 =

γ(δ1 + γ)

1− η2
.
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The time derivative of L evaluated at the solutions of system (2.1) with v = 0 is given by

L̇ = g1

[
S

N
β1(I + qIV ) +

S

N
β2(A+ qAV )− wE

]
+ g2

[
p1wE − (δ1 + γ)I

]
+ g3

[
(1− p1)wE − γA

]
+ g4

[
(1− η1)

V1

N
β1(I + qIV ) + (1− η1)

V1

N
β2(A+ qAV )

+ (1− η2)
V2

N
β1(I + qIV ) + (1− η2)

V2

N
β2(A+ qAV )− wEV

]
+ g5

[
p2wEV − (δ2 + γ)IV

]
+ g6

[
(1− p2)wEV − γAV

]
+ g7

[
−(1− η1)

V1

N
β1(I + qIV )− (1− η1)

V1

N
β2(A+ qAV )− θV1

]
.

After cancelling terms and simplifying, we obtain

L̇ = γβ1(δ1 + γ)(I + qIV )

(
S

N
+
V2

N
− 1

)
+ γβ2(δ1 + γ)(A+ qAV )

(
S

N
+
V2

N
− 1

)
+ wγ(δ1 + γ)

[
β1p1

δ1 + γ
+
β2(1− p1)

γ
− 1

]
E

+
wγ(δ1 + γ)

1− η2

[
qβ1p2(1− η2)

δ2 + γ
+
qβ2(1− p2)(1− η2)

γ
− 1

]
EV −

γθ(δ1 + γ)

1− η2
V1.

Since S(t) + V2(t) ≤ N(t) for all t, we have S
N + V2

N ≤ 1. Combining this with the hypothesis

(3.2), we can see that L̇ ≤ 0, and L̇ = 0 if and only if E(t) = 0 and EV (t) = 0. Substituting

E(t) = 0 and EV (t) = 0 in system (2.1) with v = 0 shows that (S,E, I, A, V1, V2, EV , IV , AV , R) →
(S∗, 0, 0, 0, 0, V ∗

2 , 0, 0, 0, R
∗) as t → ∞. Hence, the largest positively invariant set where L̇ = 0 is the

continuum of disease-free equilibria. Therefore, by LaSalle’s invariance principle, we conclude that the

DFE is globally asymptotically stable. �

3.1. Impact of vaccination coverage on the control reproduction number. Next, we will study

how the control reproduction number Rc is affected by some of the model parameters.

By equation (3.1), we know that Rc does not only depend on the parameters of system (2.1), but

also on the final proportions of unvaccinated susceptible people (S∗/N∗) and fully vaccinated people

(V ∗
2 /N

∗) at the time when vaccines are no longer being deployed to the population.

We recall that a disease-free equilibrium takes the form P0 = (S∗, 0, 0, 0, 0, V ∗
2 , 0, 0, 0, R

∗), where the

total population is N∗ = S∗ + V ∗
2 +R∗. If we define

x =
V ∗

2

N∗

as the proportion of fully vaccinated people and

y =
R∗

N∗

as the proportion of people recovered from COVID-19, we can rewrite the expression for the control

reproduction number as

Rc(x, y) =

[
β1p1

δ1 + γ
+
β2(1− p1)

γ

]
(1− x− y) + q(1− η2)

[
β1p2

δ2 + γ
+
β2(1− p2)

γ

]
x.

Figure 2 depicts the value of Rc as function of the proportions x and y, using several values for the

transmission rates and efficacy after the second vaccine dose. Other parameter values were taken as in

Table 1. We can see that an increase in either x or y contributes to reducing the reproduction number,

and therefore, is helpful towards achieving herd immunity.
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Figure 2. Value of the control reproduction number as function of the proportion of

fully vaccinated individuals (horizontal axis) and recovered individuals (vertical axis).

Herd immunity occurs when a large portion of the population has become immune to the disease

due to vaccination or natural recovery, which makes spread of the disease difficult. Thus, the minimal

level of vaccination coverage that is required to achieve herd immunity (that is, making Rc < 1) will

also depend on the percentage of the population that has been infected and then successfully recovered.

Comparing the different panels of Figure 2, we can see that increasing the vaccine efficacy η2 reduces the

vaccination coverage needed to make Rc < 1 for a fixed proportion of recovered people. However, this

reduction is small compared to the effect gained by decreasing the transmission rate. For example, when

η2 = 0.65 and the recovered population is close to zero, it is necessary to vaccinate 46% of population

to obtain Rc = 1 in the case of 120% transmission rate, 33% in the case of baseline transmission rate,

and only 11% of population in the case of 80% transmission rate (bottom row of Figure 2).

4. Numerical simulations

In this section, we perform some numerical simulations for model (2.1) to provide estimates for the

evolution of the COVID-19 outbreak in Mexico.

4.1. Data fitting and estimation of parameters. We used cumulative data provided by the Johns

Hopkins University repository [18] to fit the parameters of model (2.1) in the absence of vaccination.

We considered the data for reported COVID-19 infections, deaths and recovered cases during the period

from 12 November 2020 to 24 December 2020, which is before the vaccination programme in Mexico

began.

For this part, we considered system (2.1) with v = 0 and the vaccinated subpopulations V1, V2, EV ,

AV and IV equal to zero. For the other variables, we used the initial conditions

S(0) = 1.1938× 108, E(0) = 1.58582× 105, I(0) = 1.58582× 105,

A(0) = 1.1629× 106, R(0) = 6.134975× 106, D(0) = 97056.
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Table 1. Baseline values for the parameters used in the simulations.

Parameter Description Value Source

β1 Transmission rate by contact with I and IV classes 0.2 day−1 Fitted to data

β2 Transmission rate by contact with A and AV classes 0.0330 day−1 Fitted to data

q Relative infectivity of individuals in IV and AV classes 0.52 [17]

v Vaccination rate Variable Assumed

θ Application rate of second doses 1/70 day−1 Assumed

η1 Vaccine efficacy rate after one dose 0.463 [35]

η2 Vaccine efficacy rate after two doses 0.557 [35]

w Transfer rate from exposed to infectious 0.25 day−1 [29]

p1 Portion of people in E class that develop symptoms 0.12 [6]

p2 Portion of people in EV class that develop symptoms 0.089 Estimated

δ1 Disease-induced death rate of I class 3.2135 × 10−3 day−1 Fitted to data

δ2 Disease-induced death rate of IV class 0 Assumed

γ Recovery rate of infectious individuals 3.6987 × 10−2 day−1 Fitted to data

The values for I(0), R(0) and D(0) were chosen based on the reported data for 12 November 2020. The

value of A(0) was chosen so the symptomatic infections represent 0.12 times the total infections, i.e.,

I(0) = 0.12 [A(0) + I(0)]. The value of E(0) was assumed equal to I(0), and S(0) was estimated as

S(0) = N − E(0)− I(0)−A(0)−R(0)−D(0), where N is the population of Mexico.

We regarded as fixed parameters w = 0.25, which corresponds to a latent period of 4 days [29], and

a proportion p1 = 0.12 of symptomatic infections [6]. The set of differential equations was solved using

Matlab 2016b with the ode45 solver. The values for β1, β2, δ1 and γ were estimated by minimizing

the Sum of Squared Errors (SSE), which is calculated as follows. For a given vector of parameters x,

we compute numerically the I(t) and D(t) components of the solutions for our model, as well as the

estimated number of people recovered from symptomatic infections RI(t) and the cumulative number

of symptomatic infected cases C(t), defined by

ṘI(t) = γI(t), C(t) = I(t) +RI(t) +D(t).

Then the Sum of Squared Errors is given by

SSE(x) =

n∑
i=1

[
k1 (C(ti)− Cexp

i )
2

+ k2 (D(ti)−Dexp
i )

2
+ k3 (RI(ti)−Rexp

i )
2 ]
,

where Cexp
i , Dexp

i and Rexp
i denote the experimental data for cumulative infections, deaths and re-

coveries, respectively, reported for day ti (i = 1, . . . , n), while k1, k2 and k3 are coefficients used to

compensate the order of magnitude for the data. In our simulations, we used k1 = 20, k2 = 10 and

k3 = 1. The global minimum of the SSE function was obtained by applying three consecutive searches:

a gradient-based method, a gradient-free algorithm and, again, a gradient-based method.

The best fit values for β1, β2, δ1 and γ are shown in Table 1. Figure 3 depicts a comparison between

the model solutions and the observed cumulative COVID-19 data before the vaccination period.

4.2. Simulations for the model with vaccination. We will now simulate the solutions to model

(2.1) to assess the impact of the vaccination campaign that started in Mexico in December 2020 to

combat the COVID-19 pandemic.

As of August 2021, seven COVID-19 vaccines have received Emergency Use Authorization for their

deployment in Mexico:

• BNT162b2 (Pfizer–BioNTech),
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Figure 3. Reported cumulative number of symptomatic cases, COVID-19 deaths and

recovered cases in Mexico for the pre-vaccination period, and simulations using model

(2.1) with the parameters in Table 1 and v = 0.

• AZD1222 (Oxford–AstraZeneca),

• Sputnik V (Gamaleya Institute),

• CoronaVac (Sinovac),

• BBV152 (Covaxin),

• Ad5-nCoV (CanSino), and

• Ad26.COV2-S (Johnson & Johnson).

The first five of these vaccines require two doses, while CanSino and Johnson & Johnson are single-dose

vaccines [15].

Efficacy estimates for each vaccine based on data from clinical trials are subject to change with the

emergence of new analyses. An interim analysis for the Oxford–AstraZeneca vaccine [35] estimated an

efficacy against infection (symptomatic or asymptomatic) of 46.3% (31.8%–57.8%), considering people

who had a nucleic acid amplification test (NAAT)-positive swab more than 21 days after a single dose,

and 55.7% (41.1%–66.7%) for people who tested positive more than 14 days after a second dose of the

vaccine. However, a more recent study [36] estimated an efficacy of 63.9% (46.0%–76.9%) after one dose

and 59.9% (35.8%–75.0%) after two standard doses given 12 or more weeks apart.

Due to longer dose intervals being associated with greater efficacy against symptomatic infection, the

WHO has recommended to administer the Oxford–AstraZeneca vaccine with an interval of 8 to 12 weeks

between first and second doses [39]. Based on the above, we will assume in our simulations an average

length of 1/θ = 70 days for the inter-dose period, and we will use η1 = 0.463 and η2 = 0.557 as baseline

values for the efficacy parameters. Furthermore, we assume a reduction of 48% in the infectivity of

individuals becoming infected after being vaccinated (i.e., q = 0.52), following the estimations in [17].
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Table 2. Estimated values for the vaccination rate v.

Date Value (day−1)

24 Dec 2020 – 11 Jan 2021 4.0× 10−5

12 Jan 2021 – 15 Jan 2021 7.9× 10−4

16 Jan 2021 – 14 Feb 2021 6.0× 10−5

15 Feb 2021 – 7 Mar 2021 7.3× 10−4

8 Mar 2021 – 14 Mar 2021 0.0021

15 Mar 2021 – 31 Mar 2021 0.0017

1 Apr 2021 – 15 Apr 2021 0.0035

16 Apr 2021 – 15 May 2021 0.0017

16 May 2021 – 27 Jul 2021 0.0060
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Figure 4. COVID-19 vaccination coverage in Mexico from 24 December 2020 to 27

July 2021. X represents real data, continuous lines represent model simulations using

the vaccination rate in Table 2.

For computing the proportion of infectious vaccinated individuals that show symptoms of the disease

(p2), we follow [35], who reported 37 cases of symptomatic COVID-19 disease out of a total of 68

NAAT-positive swabs in the group of people vaccinated with AZD1222, and 112 symptomatic cases out

of 153 NAAT-positive cases in the control group. This yields a reduction from 0.732 to 0.544 in the

symptomatic proportion after vaccination. Since we have chosen p1 = 0.12, we will take p2 = 0.089 so

that p1 : p2 = 0.732 : 0.544. Furthermore, we assume that the death rate δ2 of infectious vaccinated

people is zero since it is widely accepted that current anti-COVID vaccines provide full protection

against severe infections.

We used the daily data on COVID-19 vaccinations in Mexico obtained from [24] to estimate the value

of the vaccination rate v over nine different date ranges, as shown in Table 2. We plot in Figure 4 a

comparison of the reported number of vaccinated people and the simulations obtained with model (2.1)

for the period 24 December 2020 – 27 July 2021. In these graphs, we considered the total population

of Mexico as 127 090 000 people.

In order to obtain long-term projections for the vaccination coverage in Mexico, we simulated two

different scenarios. First, we assumed that the vaccination rate is kept constant at its baseline value on

27 July 2021 (0.6% of susceptible population per day, which equals roughly 294 000 first doses per day).

Second, we assumed that the vaccination rate increases to twice its baseline value starting on September
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Figure 5. Long-term projections of COVID-19 vaccination coverage in Mexico. X

represents real data, continuous lines represent simulations using the baseline vacci-

nation rate, and dashed lines represent simulations using 200% vaccination rate from

September 2021 onwards.

2021. Figure 5 shows that, if vaccines continue to be delivered at their baseline rate, the vaccination

coverage with at least one dose will have reached 70% of Mexican population by January 2023. On

the other hand, if the vaccination rate is doubled, the same coverage with at least one dose could be

achieved by May 2022, and 70% of the Mexican population could be fully vaccinated by September

2022.

4.2.1. Assessing the effect of vaccination and different transmission rates. We will next compute the

solutions of model (2.1) to simulate the evolution of the pandemic in Mexico as the vaccination campaign

takes place. We consider the initial date for simulations as 24 December 2020. Based on the results

obtained in Subsection 4.1, we use the initial conditions

S(0) = 1.1622× 108, E(0) = 3.4415× 105, I(0) = 2.1247× 105,

A(0) = 1.6521× 106, R(0) = 8.5421× 106, D(0) = 1.2128× 105,

and V1(0) = V2(0) = EV (0) = IV (0) = AV (0) = 0. In these subsection, we will consider different values

for the transmission rates β1 and β2 to account for the possibility that the number of infectious contacts

between people may increase or decrease due to resumption of economical activities, compliance with

social/physical distancing, wearing of face masks, etc. Hence, we consider three cases: when β1 and β2

are kept with the values in Table 1, when both of them decrease to an 80% of these values, and when

they increase to a 120%. The values for other parameters are fixed as in Tables 1 and 2.

Figure 6 depicts the time evolution of the number of infectious COVID-19 cases with symptoms (I(t)+

IV (t)) and the death toll (D(t)) for each of the above cases. In each graph, we have plotted the solutions

assuming the baseline vaccination rate and the 200% vaccination rate, as well as a counterfactual case

with no vaccination.

Figure 6(a) shows that, in the case of low transmission rate, the number of active cases would start

to decrease in the early months of 2021, and the epidemic would be almost extinguished by January

2022. In the cases with higher transmission rate (Figures 6(b) and (c)), the epidemic curve would reach

its peak around May 2021, and the number of active symptomatic cases would be less than 1000 by

May 2022. Figures 6(d)–(f) show that the cumulative number of deaths would be around 250 000 for

low transmission, 390 000 for baseline transmission, and 580 000 for high transmission rates.
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Figure 6. Simulations of model (2.1) using different values for the transmission rates.

(a) and (d): 80% transmission rate. (b) and (e): baseline transmission rate. (c) and

(f): 120% transmission rate. Top row: number of active symptomatic infectious cases.

Bottom row: Cumulative number of deaths.

We can also see that an increase in the vaccination rate to double its baseline value does not result in

a considerable change in the number of infections or deaths, although the vaccination scenarios result in

around 250 000 less deaths compared with the case with no vaccination. On the other hand, comparing

Figures 6(d) and (e) shows that more than 130 000 deaths can be avoided by reducing the transmission

rate to 80%, while a 20% increase in the transmission rate would result in almost 200 000 additional

deaths (Figure 6(f)). This suggests that decreasing the number of infectious contacts by complying

with preventive measures is more effective than simply accelerating the deployment of vaccines.

4.2.2. Assessing the effect of different vaccine efficacy rates. Given that there is still uncertainty re-

garding the efficacy of anti-COVID vaccines against infection, including asymptomatic cases, we will

also simulate the solutions of model (2.1) using different values for the parameters η1 and η2.

Figure 7 shows the number of active infectious cases with symptoms (I(t) + IV (t)) and without

symptoms (A(t) +AV (t)), as well as the death toll (D(t)), using different efficacy rates: in addition to

the baseline case (η1 = 0.463, η2 = 0.557), we include a case with lower efficacy (η1 = 0.4, η2 = 0.45) and

a case with higher efficacy (η1 = 0.6, η2 = 0.65). Here, we have plotted all solutions using the baseline

vaccination rate. The simulations show that lower efficacy results in an additional 7 429 symptomatic

cases and 79 624 asymptomatic cases at the peak of the infection curve, compared with the case with

higher efficacy. However, this does not significantly affect the time when the peak occurs. Moreover,

lower efficacy also results in 4 953 additional deaths.

5. Conclusion

In this work, we studied a model for COVID-19 with vaccination. Our work was based on the SEIARD

model proposed in [6], which included an exposed (latent) compartment and different transmission rates

for the symptomatic and asymptomatic infectious individuals; we extended this model by incorporating
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Figure 7. Simulations of model (2.1) using different values for the vaccine efficacy

rates. Left panel: number of active symptomatic infectious cases. Central panel:

number of active asymptomatic infectious cases. Right panel: cumulative death toll.

vaccinated compartments and considering a two-dose vaccination regime. Although several COVID-19

models with vaccination have been proposed in the literature, most studies have focused only on carrying

out numerical simulations, while our work shed some light on the theoretical properties of model (2.1).

When compared to other models analysed in the literature, we can see that the novelty of our model

lies in the inclusion of a parameter q representing the reduction in infectivity due to vaccination, as well

as the different probabilities (p1 and p2) of developing COVID-19 symptoms depending on whether the

infected person has been vaccinated.

We showed that our model has multiple disease-free equilibria and computed the control reproduction

number Rc using the next-generation matrix method. We established that the set of disease-free

equilibria is locally asymptotically stable when Rc < 1 and unstable when Rc > 1. Furthermore, we

determined a condition that guarantees the global asymptotic stability of the DFE.

We performed a numerical simulation on our model using repository data on the outbreak of COVID-

19 in Mexico and the daily data on COVID-19 vaccinations to estimate the value of the vaccination

rate over nine different date ranges. We used the efficacy estimates based on data from clinical trials

of the Oxford–AstraZeneca vaccine, which is the one that is being more widely distributed in Mexico

at the time of this writing. We remark that, in this article, we considered vaccine efficacy in the sense

of protection against COVID-19 infection (symptomatic or asymptomatic), while other works consider

efficacy as protection against symptomatic infection only.

We simulated two different scenarios to obtain projections for the vaccination coverage in the next few

years. First, we assumed that the vaccination rate is kept constant by vaccinating the same proportion

of susceptible individuals per day, and secondly, we assumed that the vaccination rate increases to

twice its baseline value from September 2021 onwards. Our study showed that if vaccines continue

to be delivered at their baseline rate, by January 2023 the first dose will be applied to 90 million

people, which represents roughly the total Mexican population over age 18. On the other hand, if the

vaccination rate is doubled, the total adult population could be partially vaccinated by May 2022 and

fully vaccinated by September 2022. In the case of low transmission rate, the number of active cases

would start to decrease in the early months of 2021, and the epidemic would be almost eradicated in

early 2022, while in the cases with medium to high transmission rate the epidemic curve would reach

its peak around May 2021 and would be close to zero by mid-2022.

Our simulations show that keeping a low transmission rate (by wearing face masks, complying with

social/physical distancing, etc.) is the most effective method to reduce the death toll. For example,

reducing the transmission rate to 80% its baseline value results in 130 000 less deaths, while doubling the
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vaccination rate does not yield a significant reduction in death toll. Also, decreasing the transmission

rate is more effective to reduce the control reproduction number and achieve herd immunity than

deploying vaccines with higher efficacy rates.

Our model has certain limitations that could affect the results presented in this study. Firstly, our

model assumes that the time between first and second doses and the efficacy rate are the same for

all vaccines applied in the population; in reality, several vaccines (including single-dose vaccines) may

be applied simultaneously in the same country, which would yield different parameter values for each

of them. Secondly, we assumed that the protection against COVID-19 provided by vaccines does not

wane over time since research about the immunity waning rate is still ongoing. Thirdly, we assume

that the contact rate remains constant throughout the simulations, when it could actually change at

different times due to lifting of restrictions and lockdown in the population. Lastly, the emergence of

different variants of SARS-CoV-2 could be taken into account to consider the increased transmissibility

and possible reduction of vaccine efficacy against these variants. These shortcomings will be addressed

in future studies.

References

[1] M. E. Alexander, C. Bowman, S. M. Moghadas, R. Summers, A. B. Gumel and B. M. Sahai, A vaccination model

for transmission dynamics of influenza, SIAM Journal on Applied Dynamical Systems 3 (2004), no. 4, 503–524.
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