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DYNAMICS OF A STOICHIOMETRIC PRODUCER-GRAZER MODEL WITH

MATURATION DELAY

HUA ZHANG, HAO WANG, AND BEN NIU

Abstract. Ecological stoichiometry provides a multi-scale approach to study macroscopic phenomena

via microscopic lens. A stoichiometric producer-grazer model with maturation delay is proposed and

studied in this paper. The interaction between stoichiometry and delay is novel and leads to more

interesting insights beyond classical delay-driven periodic solutions. For example, the period doubling

bifurcation route to chaos can occur as the minimal phosphorous:carbon ratio in producer decreases.

Mathematically, we establish the conditions for the existence and stability of positive equilibria, and

study the occurrence of Hopf bifurcation at positive equilibria. Analytic results show that delay can

change the number and stability of positive equilibria through transcritical bifurcation, saddle-node

bifurcation and Hopf bifurcation, and it further determines the grazer’s extinction. Our model with a

small delay behaves like LKE model in terms of light intensity, and Rosenzweig’s paradox of enrichment

exists in a suitable light intensity. We plot bifurcation diagrams and show rich dynamics driven by

delay, light intensity, phosphorous availability, and conversion efficiency, including that a large delay

can drive the grazer to go extinct in an intermediate light intensity that is favorable for the survival

of the grazer when there is no delay; a limit cycle can appear, then disappear as the delay increases;

given the same initial condition, solutions with different delay values can tend to different attractors.

1. Introduction

There is increasing evidence that elemental imbalances between producer and grazer can significantly

influence their growth, reproduction and survival. For example, the experiment studying zooplankton-

phytoplankton interactions [32] showed zooplankton growth may suffer at high algal density instead

of always being positively correlated with algal density. This inspires many researchers to explain

the producer-grazer interactions from the stoichiometric point of view, which focuses on the relations

between multiple key elements in organisms and the abiotic environment [22].

Carbon (C, supplying energy) and phosphorus (P, measuring nutrient) are two vital elements for a

cell that is the basic unit of living organisms. One classical stoichiometric producer-grazer model known

as LKE model [19] tracks how energy flow and nutrient cycling affect the grazer’s dynamics [17, 37]. The

LKE model allows P:C (phosphorous:carbon ratio) in producer to vary above a minimum structural

P:C while to keep constant in grazer under the ”strict homeostasis” assumption [36, 35]. If P:C in

producer is greater than that of grazer, then producer becomes low-quality food. Thus, this model

incorporates the effect of both producer’s quantity (light dependent) and quality (nutrient dependent)

on the grazer’s dynamics.
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The LKE model reads

dx

dt
= bx

(
1− x

min{K, (P − θy)/q}

)
− f(x)y,

dy

dt
= êmin

{
1,
P − θy
θx

}
f(x)y − dy,

(1.1)

where x, y are the densities of producer and grazer, respectively. b is the intrinsic growth rate; K is

the carrying capacity of producer, which is assumed to be determined positively by light intensity; ê is

the maximal conversion efficiency of grazer; d is the loss rate of grazer involving metabolic losses and

death; q is the minimal P:C in producer; θ is P:C in grazer keeping a constant; P is the total mass of

phosphorus in the entire ecosystem system. All parameters are positive constants, and ê < 1, q < θ.

f(x) reflects grazer ingestion rate, and it is a bounded smooth function with

f(0) = 0, f
′
(0) <∞, f

′
(x) > 0, for x ≥ 0.

Note that limx→0
f(x)
x = f

′
(0) < ∞, which implies that system (1.1) is meaningful as x → 0 although

there is the term min
{

1, P−θyθx

}
. Reasonable types of f(x) includes Holling I, Holling II and Holling

III functions. In [19], it was revealed that model (1.1) with Holling II type of f(x) admitted multiple

positive equilibria, limit cycles and various bifurcation phenomena. The authors also observed the

paradox of energy enrichment, where intense energy enrichment substantially elevated the producer

density but decreased the grazer growth rate and may drive the grazer to extinction. An explanation

on such phenomenon is that the grazer becomes poor-quality food in an extremely high light intensity

due to amounts of carbon element is fixed by photosynthesis.

Complete analysis for model (1.1) on local and global stability of all equilibria and existence of limit

cycles was provided by [17] and [37]. The authors in [17] dealt with two cases of f(x): Holling type I

and Holling type II. For the former case, theoretical analysis showed the unique internal equilibrium

was always globally asymptotically stable if it existed. For the later case, limit cycles, bistability and

several bifurcation types were exhibited when all parameters were fixed at realistic values except K

varied. This work was enriched by [37], where authors gave a comprehensive dynamics analysis for

Holling II type of f(x) with all flexible parameters. Three new types of bistability comparing with

[17] were found: between two positive equilibria, between one positive equilibrium and one boundary

equilibria, between the limit cycle and one boundary equilibrium. For model (1.1), Yuan et al. [39]

accounted for the effect of environmental noises on the switch between two stochastic attractors in

the bistable situation. WKL model in [34] mechanistically incorporates free nutrient in media. Other

extensions and applications of LKE model can be found in [33, 24, 38, 16, 3] and the references therein.

These studies make contributions to apply stoichiometric models for the improvements in the predictive

power of population ecology and cancer treatment.

Notably, all existing stoichiometric models implicitly assume an instant process for grazer to be

capable of preying on producer for its own growth. Nevertheless, grazer often needs some time to

become mature so that it has the ability to prey producer. Inspired by [12], we assume grazer has two

stage groups: immature grazer (yj) and mature grazer (y), and only mature grazer lives on producer.

Therefore, we propose a stoichiometric producer-grazer model with stage-structure for the grazer as
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follows:
dx(t)

dt
= bx(t)

(
1− x(t)

min{K, (P − θy(t))/q}

)
− f(x(t))y(t),

dy(t)

dt
= êmin

{
1,
P − θy(t− τ)

θx(t− τ)

}
f(x(t− τ))y(t− τ)e−µτ − dy(t),

dyj(t)

dt
= êmin

{
1,
P − θy(t)

θx(t)

}
f(x(t))y(t)− µyj(t)

− êmin

{
1,
P − θy(t− τ)

θx(t− τ)

}
f(x(t− τ))y(t− τ)e−µτ ,

(1.2)

where τ is the maturation delay, µ is the mortality rate of immature grazer, and e−µτ is the survival

rate of immature grazer. System (1.2) can be derived from the standard age-structured population

model, for example, see [28, 2]. Here, we include it for the completeness. Let Y (t, a) be the density of

grazer of age a at time t, τ is the maturation period, µ is the mortality rate of immature grazer, and d

is the loss rate of mature grazer. Assume that Y (t, a) satisfies the following age-structured population

model
∂Y (t, a)

∂t
+
∂Y (t, a)

∂a
= −µY (t, a), t > 0, 0 < a < τ, (1.3)

and the mature grazer density y(t) :=
∫∞
τ
Y (t, a)da safisfies

dy(t)

dt
= Y (t, τ)− dy(t), t > 0, (1.4)

with Y (t, 0) = y(t). Fix s > 0 and let ws(t) := Y (t, t− s) for s ≤ t ≤ s+ τ . Together with model (1.3),

we have
dws(t)

dt
= −µws(t), 0 ≤ s ≤ t ≤ s+ τ,

with ws(s) = y(s). This leads to ws(t) = e−µ(t−s)y(s). Therefore,

Y (t, τ) = wt−τ (t) = e−µτy(t− τ).

Substituting Y (t, τ) into Eq. (1.4), and assuming that the prey activity of the mature grazer follows

from that in system (1.1), we can obtain the second equation of system (1.2). It is reasonable to assumed

that the density of immature grazer is small compared to that of mature grazer, so we only consider

the dynamics of the first two equations in (1.2), that is,

dx(t)

dt
= bx(t)

(
1− x(t)

min{K, (P − θy(t))/q}

)
− f(x(t))y(t),

dy(t)

dt
= êmin

{
1,
P − θy(t− τ)

θx(t− τ)

}
f(x(t− τ))y(t− τ)e−µτ − dy(t).

(1.5)

The maturation delay in produce-grazer models has been widely studied, and it usually changes the

stability/instability of equilibrium, for example, see [21, 4, 25, 18], but the interaction between stoi-

chiometry and delay is novel. In this paper, we mainly study how delay affects the existence of positive

equilibria and different types of bifurcation phenomena for system (1.5). As mentioned above, light in-

tensity K and phosphorus availability P are two primary limiting factors for determining the persistence

or extinction of the grazer. We also explore the change of their roles with the introduction of delay.

The existence of delay and minimum function makes it challenging to give deeper theoretical analysis

on the dynamics of the stoichiometric system, but numerical simulations provide another effective way

to understand the dependence of underlying dynamics on delay and some key parameters in the stoi-

chiometric system. Some interesting results relative to stoichiometry and delay can be summarized as

follows, and the implications of these results are provided in Section 4.
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(1) There are two types of coexistence: a stable periodic solution and a locally asymptotically stable

(LAS) positive equilibrium; two LAS positive equilibira, see Fig 1.

(2) Our model with a small delay behaves like LKE model in terms of light intensity, and Rosen-

zweig‘s paradox of enrichment can occur for a suitable light intensity and small delay, but a

large delay annihilates the oscillations, see Figs 3 and 7.

(3) The delay can not only produce a periodic solution (see Appendix), but it can annihilate a

periodic solution, see Figs 4 and 5, where the amplitude of the periodic solution increases

over delay, and an increasing delay drives the periodic solution to collide with the critical line

x+ y = p, which can make the solution change its convergent state.

(4) There is a period doubling bifurcation route to chaos when both stoichiometry and delay are

incorporated into the system, see Figs 9 and 10.

The rest of the paper is organized as follows. In Section 2, we present the basic property of solutions

to system (1.5) and the stability of boundary equilibria. With Holling II type functional response, the

existence and stability of positive equilibria are discussed, and some conditions for the occurrence of

Hopf bifurcation are obtained. In Section 3, using biologically meaningful parameter values, we depict

some bifurcation diagrams to illustrate the conclusions obtained in Section 2. Further, we exhibit rich

dynamics, and comprehensively show how the grazer’s dynamics depends on key parameters. In Section

4, we relate our analytic results to some important biological phenomena. Finally, we conclude the main

results and suggest directions for future research.

2. Basic analysis

In this section, we first establish the nonnegativity and boundedness of solutions, then we consider

the existence and stability of non-trivial equilibria.

For simplicity, let p = P
θ and s = q

θ , and then system (1.5) becomes

dx(t)

dt
= bx(t)

(
1− x(t)

min{K, (p− y(t))/s}

)
− f(x(t))y(t),

dy(t)

dt
= êmin

{
1,
p− y(t− τ)

x(t− τ)

}
f(x(t− τ))y(t− τ)e−µτ − dy(t).

(2.1)

2.1. Nonnegativity and boundedness. In the biological perspective, the initial conditions are given

as

x(η) ≥ 0, q > y(η) ≥ 0, η ∈ [−τ, 0]. (2.2)

Denote k = min{K,P/q}, the basic property of solutions with initial values (2.2) is stated in the

following theorem.

Theorem 2.1. Let (x(t), y(t)) be any solution of system (2.1) subject to initial conditions (2.2). Then,

x(t) ≥ 0 for t ∈ (0,∞), and lim sup
t→∞

x(t) ≤ k. Moreover, if M := maxx∈[0,k] f(x) < d
ê , then 0 ≤ y(t) ≤ p

for t ∈ (0,∞).

Proof. Solving x(t) from the first equation of (2.1) gives

x(t) = x(0)e

∫ t
0

[
b

(
1− x(u)

min{K,(p−y(u))/s}

)
− f(x(u))

x(u)
y(u)

]
du
.

Thus, x(t) ≥ 0 for all t > 0, and x(t) > 0 if x(0) > 0. Moreover, we see that

dx(t)

dt
≤ bx(t)

(
1− x(t)

min{K, p/s}

)
= bx(t)

(
1− x(t)

k

)
,

From the standard comparison argument, we have lim sup
t→∞

x(t) ≤ k.
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Using the variation-of-constant formula to the second equation in (2.1), we have

y(t) = y(0)e−dt +

∫ t

0

êmin
{

1,
p− y(u− τ)

x(u− τ)

}
f(x(u− τ))y(u− τ)e−µτe−d(t−u)du (2.3)

which indicates y(t) ≥ y(0)e−dt for t ∈ [0, τ ] provided that p > y(η) ≥ 0, η ∈ [−τ, 0]. Moreover, if

y(η) 6≡ 0 for η ∈ [−τ, 0], then y(t) > 0, t ∈ [0, τ ]. For t ∈ [τ, 2τ ],

(I) if 0 ≤ y(t) < p, t ∈ [0, τ ], then by a similar way, we have y(t) ≥ 0, and y(t) > 0 when y(η) 6≡ 0 for

η ∈ [−τ, 0].

(II) If there exists t1 ∈ [0, τ ] such that y(t1) tends to p from below, and 0 ≤ y(t) < p for t ∈ [0, t1), we

claim that under the condition M < d
ê , it holds that 0 < y(t) ≤ p for t ∈ [τ, 2τ ]. It follows from the

second equation of (2.1) that

dy(t1)

dt
= êmin

{
1,
p− y(t1 − τ)

x(t1 − τ)

}
f(x(t1 − τ))y(t1 − τ)e−µτ − dy(t1)

≤ êMy(t1)− dy(t1).

Thus, dy(t1)
dt < 0 when M < d

ê , which implies that for any small ε > 0, y(t1 +ε) < y(t1). Thus, y(t) ≤ p,
t ∈ [0, t1 + ε]. We also see that y(t) ≤ p for t ∈ [t1, τ ] with the similar argument. Using (2.3), we have

y(t) > y(0)e−dt ≥ 0 for t ∈ [t1 + ε, t1 + ε+ τ ]. As a consequence, 0 < y(t) ≤ p for t ∈ [0, τ ]. Similar to

(I), we prove the claim.

We can repeat the process for any [nτ, (n+ 1)τ ], n ≥ 2. �

Remark 2.1. Due to the existence of a minimum function in the second equation of system (2.1), it is

difficult to determine the global existence and the nonnegativity of the component y(t). When there

is a strong restriction on f(x), Theorem 2.1 gives the result. Actually, when f(x) does not satisfy the

restriction given in Theorem 2.1, 0 ≤ y(t) < p can also hold (see section 3), but we can not prove

it theoretically. Such a minimum function can induce complex dynamics that is difficult to provide

rigorous proofs, see subsection 3.3.

2.2. Stability of boundary equilibria. System (2.1) always has equilibria: E0 = (0, 0) and E1 =

(k, 0), and their local stability is obtained by the distribution of eigenvalues corresponding to the

linearized system.

Theorem 2.2. (i) E0 is always unstable.

(ii) If k < p, E1 is LAS (locally asymptotically stable) when êf(k) < d for all τ ≥ 0.

(iii) If k > p, E1 is LAS when f(k)
k êp < d for all τ ≥ 0.

Proof. The characteristic equation at E0 is

(λ− b)(λ+ d) = 0, (2.4)

this suggests that two eigenvalues have different signs, so E0 is always unstable.

At E1, if k < p, then the characteristic equation takes the following form

(λ+ b)[λ+ d− êf(k)e−µτe−λτ ] = 0. (2.5)

Note that the stability of E1 depends on the real parts of the zeros of λ + d − êf(k)e−µτe−λτ . When

τ = 0, λ = êf(k)− d. Clearly, E1 is LAS if êf(k) < d and is unstable as êf(k) > d. When τ > 0, it is

easy to see that λ = 0 is not a root of λ+ d− êf(k)e−µτe−λτ = 0 provided êf(k)e−µτ 6= d. Moreover,

λ = ±iω (ω > 0) are a pair of purely imaginary roots of (2.5) if and only if ω satisfies

cosωτ =
d

êf(k)e−µτ
, sinωτ =

−ω
êf(k)e−µτ

, and ω2 = [êf(k)e−µτ ]2 − d2.
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Hence, (2.5) has no roots on the imaginary axis if êf(k)e−µτ < d. Then we claim that all roots of (2.5)

have negative real parts if êf(k) < d.

For k > p, the characteristic equation is

(λ+ b)
[
λ+ d− f(k)

k
êpe−µτe−λτ

]
= 0. (2.6)

Similarly, we obtain E1 is LAS when f(k)
k êp < d. The proof is completed. �

2.3. Existence and stability of positive equilibria. In this part, the existence of positive equilibria

and their local stability are investigated with f(x) = cx
a+x . Motivated by [37], in the rest paper, we

always assume

(A) K ≤
{
P

q
,

θad

q(cêe−µτ − d)

}
,
ad+ pd

cp
< êe−µτ .

As a consequence, the positive equilibria are determined by{
0 = b(1− x

K )− cy
a+x ,

0 = cêx
a+xe

−µτ − d,
or

{
0 = b(1− x

K )− cy
a+x ,

0 = cê(p−y)
a+x e−µτ − d.

Denote

h(x) =
b

c

(
1− x

K

)
(a+ x), l1 : x∗ =

ad

cêe−µτ − d
,

l2 : y =
(
p− da

êc
eµτ
)
− d

êc
eµτx, x ∈

[
x∗,min

{
K,

cêp

d
e−µτ − a

}]
.

(2.7)

When the parabola y = h(x) and the line l1 intersect in the region {(x, y) ∈ R2 : 0 < x < K, 0 <

y, x+ y < p}, there exists a positive equilibrium, denoted by E2. As the parabola y = h(x) enters the

region {(x, y) ∈ R2 : 0 < x < K, 0 < y, x+ y > p}, when it is tangent with the line l2, a newly positive

equilibrium exists; when it intersects with the line l2 at two different points, system (2.1) has two newly

positive equilibria, denoted by E3 and E4. Thus, system (2.1) may have zero, one, two or three positive

equilibria. To explore the existence of positive equilibria, it is convenient to define some critical curves,

following the following steps:

(i) Let K1(τ) = ad/(cêe−µτ − d).

(ii) If the line l1, the parabola y = h(x) and the critical line y = p− x intersect, then

b

c

(
1− x∗

K

)
(a+ x∗) = p− x∗.

Denote K2(τ) = x∗/[1− c(p− x∗)/(b(a+ x∗)], where x∗ is given in (2.7).

(iii) If the parabola y = h(x) is tangent to the line l2 at (x̃, ỹ), then we have

ỹ = b
c

(
1− x̃

K

)
(a+ x̃),

b
cK (K − a− 2x̃) = − d

êce
µτ ,

ỹ =
(
p− da

êc e
µτ
)
− d

êce
µτ x̃,

x̃ ∈
[
x∗,min

{
K, cêpd e

−µτ − a
}]

.

Vanishing x̃ and ỹ yields(
b+

deµτ

ê

)2
K2 +

[
2ab
(
b+

deµτ

ê

)
− 4bcp

]
K + (ab)2 = 0. (2.8)

Therefore, if (2.8) has positive roots K+
3 (τ) or K−3 (τ) (it can hold that K+

3 (τ) = K−3 (τ)), then

the parabola y = h(x) is tangent to the line l2 in the region {(x, y) ∈ R2 : x ≥ x∗, x + y ≥ p}
when K = K+

3 (τ).
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(iv) Denoting the intersection point of the line l2 and x−coordinate as K4, we have K4(τ) =
cêp
d e
−µτ − a. One can check that if τ satisfies assumption (A), then 0 < K1(τ) < p < K4(τ)

for each τ . If cp < ab or cp > ab, êe−µτ < ad+pd
cp−ab is further true, then 0 < K1(τ) < K2(τ) for

each τ . K±3 (τ) exist if and only if cp ≥ a
(
b+ d

êe−µτ

)
, and

K±3 (τ) =
2cpb− ab

(
b+ d

êe−µτ

)
± 2
√
b2cp

[
cp− a

(
b+ d

êe−µτ

)]
(
b+ d

êe−µτ

)2 . (2.9)

Note that if K2(τ) > 0 and K+
3 (τ) exists, then it must hold K+

3 (τ) < K2(τ). Moreover,

K+
3 (τ) < K4(τ).

Based on [37, Theorems 3.1-3.7], we state the existence of positive equilibria in the following theorem.

Theorem 2.3. Assume that (A) is satisfied.

(i) Suppose that K ∈ (0,K1(τ)) or K ∈ (max{K2(τ),K4(τ)},∞). Then system (2.1) has no positive

equilibria.

(ii) Suppose that cp < ab or cp > ab but êe−µτ < ad+pd
cp−ab holds. If K ∈ (K1(τ),K2(τ)), then system

(2.1) has the positive equilibrium E2.

(iii) Suppose that cp > ab and ad
cp−ab < êe−µτ hold. If K ∈ (K+

3 (τ),K2(τ)), then system (2.1) has

the positive equilibrium E3; If K ∈ (K+
3 (τ),K4(τ)), then system (2.1) has the positive equilibrium E4.

(iv) Suppose that cp > ab, and ad
cp−ab < êe−µτ < ad+pd

cp−ab hold. If K belongs to sets (K1(τ),K2(τ)) ∩
(K+

3 (τ),K2(τ)), (K1(τ),K2(τ)) ∩ (K+
3 (τ),K4(τ)), and (K+

3 (τ),K2(τ)) ∩ (K+
3 (τ),K4(τ)), respectively,

then system (2.1) has two positive equilibria: E2 and E3, E2 and E4, or E3 and E4, respectively. If

(K1(τ),K2(τ)) ∩ (K+
3 (τ),K2(τ)) ∩ (K+

3 (τ),K4(τ)) 6= ∅, then in this interval, system (2.1) has three

positive equilibria: E2, E3 and E4.

Remark 2.2. For the critical cases, we have

(i) when K = K1(τ), that is, τ = 1
µ ln cêK

d(a+K) , E2 collides E1 and disappears, system (2.1) undergoes

a transcritical bifurcation. Recalling Theorem 2.2, we see that the boundary equilibrium E1 is LAS as

E2 disappears, i.e., τ > 1
µ ln cêK

d(a+K) .

(ii) When K = K2(τ), E2 and E3 merge into one positive equilibrium. System (2.1) undergoes a

saddle-node bifurcation, see Fig 2(a).

(iii) When K = K+
3 (τ), E3 and E4 collide into one positive equilibrium. System (2.1) undergoes a

saddle-node bifurcation, see Fig 2(b).

(iv) When K = K4(τ), namely, τ = 1
µ ln cêp

d(a+K) , E4 collides E1 leaving one boundary equilibrium.

System (2.1) undergoes a transcritical bifurcation. Moreover, Theorem 2.2 shows that E1 is LAS if

τ > 1
µ ln cêp

d(a+K) .

The local stability of positives equilibria that are not on the critical line y = p− x can be analyzed

using the method in [5], see Appendix for details. We summarize the existence and stability of positive

equilibria of system (2.1) in Table 1, where I1, I2 and Sn(τ) are defined in Appendix.

3. Numerical simulations

In this section, numerical simulations are carried out to illustrate theoretical results and reveal some

biological mechanisms intuitively. Referring to [19], we take

P = 0.025, ê = 0.6, b = 1.2, d = 0.25, θ = 0.03,

q = 0.0038, c = 0.81, a = 0.25, µ = 0.003.
(3.1)
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Table 1. The existence and stability of positive equilibria for system (2.1)

c êe−µτ K Stability

c < ab
p K ∈ (K1(τ),K2(τ)) E2

Hopf bifurcation occurs

if Sn(τ), n ∈ N0 has zeros in I1

c > ab
p

ad+pd
cp < êe−µτ < ad

cp−ab K ∈ (K1(τ),K2(τ)) E2
Hopf bifurcation occurs

if Sn(τ), n ∈ N0 has zeros in I1

ad
cp−ab < êe−µτ < ad+pd

cp−ab

K ∈ (K1(τ),K2(τ)) E2
Hopf bifurcation occurs

if Sn(τ), n ∈ N0 has zeros in I1
K ∈ (K+

3 (τ),K2(τ)) E3 unstable

K ∈ (K+
3 (τ),K4(τ)) E4

Hopf bifurcation occurs

if Sn(τ), n ∈ N0 has zeros in I2

ad+pd
cp−ab < êe−µτ K ∈ (K+

3 (τ),K4(τ)) E4
Hopf bifurcation occurs

if Sn(τ), n ∈ N0 has zeros in I2

3.1. Biological mechanisms related to τ . It can be seen that c > ab
p . Due to assumption (A), we

restrict 0 ≤ τ < 134.1278 and K ≤ min{6.5789, 2.0908}.

3.1.1. Joint effect of τ and K on asymptotic dynamics. We present the existence of positive equilibria

on τ −K plane, see Fig 1(a). Bifurcation diagrams provide direct understanding about Theorem 2.3

and Remark 2.2, which reflect the species persistence/extinction regulated by τ and K.

The pair (τ,K) satisfying K > max{K4(τ),K2(τ)} is in region D1; (τ,K) satisfying K < K1(τ) is

in region D7. Theorem 2.3 indicates that system (2.1) has no positive equilibria in the two regions.

The pair (τ,K) satisfying K1(τ) < K < K2(τ) is in regions D3, D4, D5 and D6, thus E2 exists in

these regions. We further know that in regions D3 and D4, E2 is unstable induced by Hopf bifurcation,

and it remains LAS in regions D5 and D6.

When K+
3 (τ) < K < K2(τ), (τ,K) locates in regions D3 and D5, and E3 exists in these regions.

When K+
3 (τ) < K < K4(τ), (τ,K) belongs to regions D2, D3 and D5, E4 exists in these regions.

All bifurcation curves described in Remark 2.2 are also exhibited in Fig 1(a). Observe that three

curves: K = K1(τ), K = K2(τ) and K = K4(τ) intersect at P3, at which two positive equilibria

with one merged by E2 and E3 and the other E4 collide with E1 from its two sides, then all positive

equilibria disappear and only one boundary equilibrium stays. In fact, the position of P3 on τ − K
plane is (τ̂ , K1(τ̂)), where τ̂ = 1

µ ln cêp
d(a+p) . It is also seen that the curve K = K+

3 (τ) is tangent with the

curve K = K2(τ) at P2, thus E2, E3 and E4 collide into one positive equilibrium. Meanwhile, it can

be calculated that there is a zero eigenvalue for the corresponding characteristic equation. Therefore,

we assert P2 is a cusp bifurcation point. The Hopf bifurcation curve near E2 intersects K-axis at

(0, 0.7797) and K = K2(τ) at P1, respectively. At point P4, one can see that E3 and E4 collide into one

equilibrium, E2 goes to a boundary equilibrium and disappears. As a result, system (2.1) has exactly

one positive equilibrium.

Biologically, K = K1(τ) (the red curve) and K = K4(τ) (the magenta curve) are two critical curves

determining the grazer’s persistence, which holds in the region between the two curves. We see that the

survival region gradually declines as τ increases, which follows from the facts that K1(τ) is an increasing

function and K4(τ) is a decreasing function of τ , respectively. Therefore, beneficial light intensity for

the growth of grazer negatively correlates with τ , and less light is needed for the grazer’s persistence as

τ increases. It has been recognized that the producer is low quality food at high light level due to the

Conservation Law of Matter. The similar phenomenon is observed in Fig 1(a) that system (2.1) has

no positive equilibria for large K. Of course, the extremely low light intensity leads to a very limited
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Figure 1. The bifurcation diagrams on τ − K plane. The red curve is determined

by K = K1(τ); the blue curve stands for K = K2(τ); the magenta curve is given by

K = K4(τ); the green one is K = K+
3 (τ); the black one is Hopf bifurcation curve at E2.

(a) Parameter values are given in (3.1). (b) ê = 0.655, a = 0.3 and other parameter

values are the same as those in (3.1).

quantity of the producer which drives the grazer to go extinct as well. Moreover, the existence of P3

reflects that the grazer can go extinct at an intermediate light intensity when τ is too large.

The above discussions show that system (2.1) can have sustainable oscillations without delay. Does

the appearance of limit cycles is substantially impacted by τ? The simulation in Fig 1(b) illustrates it

does, where ê = 0.655 and a = 0.3, and other parameters in (3.1) remain fixed. Dynamics exhibited here

are almost identical as in Fig 1(a), except that Hopf bifurcation curve intersects the curve K = K2(τ) at

two distinct points, denoted by P0 and P1. In this case, both producer and grazer densities keep stable

for τ = 0, and they change periodically only when τ is greater than a certain value. Thus, we assert

that τ plays a significant role in the oscillatory behavior of solutions. See Appendix for an example on

how τ affects the stability of the positive equilibrium E2.

In view of Fig 1(a) and (b), system (2.1) undergoes a saddle-node bifurcation when E2 and E3 (or

E3 and E4) collide into one positive equilibrium. This phenomenon is presented in Fig 2.

3.1.2. The bifurcation diagrams of the grazer over τ . To reveal how the grazer’s dynamics depend on

τ under different light intensities, we choose four levels of solar energy: K = 0.3, K = 0.7, K = 0.87,

K = 1.3, and sketch the change of existence and stability of non-trivial equilibria in Fig 3. At low

light (K = 0.3), the grazer declines at a stable equilibrium until it dies out. When light intensity is

intermediate (K = 0.7), the variation of the grazer density is complex. The grazer density slowly reduces

until τ = 1.278 where a supercritical Hopf bifurcation occurs at E2 such that E2 loses its stability, and

the grazer density changes periodically for 1.278 < τ < 21.308. At τ = 21.308, a periodic solution

disappears and E2 regains stability, the grazer density continues to decline. Two new equilibria merge

through a saddle-node bifurcation at τ = 75.6630, then system has two stable equilibria simultaneously,

both of which decrease as τ increases. As τ increases further, the grazer eventually becomes extinct.

At high light (K = 0.87), whether the grazer density exhibits sustainable oscillations or declines at

a stable equilibrium depends on the initial point. At τ = 0.0527, periodic solutions disappear through

an infinite period bifurcation, after that the grazer density keeps at a stable equilibrium whatever its

initial density is, and then gradually decreases when τ increases. When τ increases to τ = 123.0325,



STOICHIOMETRIC PRODUCER-GRAZER MODEL WITH MATURATION DELAY 33

0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9
0.78

0.8

0.82

0.84

0.86

0.88

0.9

K

x+
y

 

 

E
2

E
3

Bifurcation
point

0.8 1 1.2 1.4 1.6
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

K

x+
y

 

 
E

4

E
3

Bifurcation
point

(a) (b)

Figure 2. The saddle-node bifurcation portraits. Solid and dot curves represent the

existence and non-existence of equilibria, respectively. (a) The saddle-node bifurcation

related to E2 and E3 at τ = 38.4432. (b) The saddle-node bifurcation related to E3

and E4 at τ = 10.

the grazer becomes extinct. For extremely high light (K = 1.3), the trend of the grazer density is

similar to that in the case of low light, except that the persistence interval of τ becomes small. Of

course, we have known that the extinction mechanisms are opposite in low light and in very high light.

The above observations show that both moderate and high light enrichment can produce sustainable

producer-grazer oscillations.

3.1.3. The solution behavior over different delays and initial states. Note that unstable E2 and LAS E4

can coexist under certain conditions, such as in regions D3 and D4 in Fig 1. In this case, system (2.1)

presents a bistable phenomenon: a stable periodic solution and a stable positive equilibrium, thus the

eventual steady state depends on the initial point. Let K = 0.84 and other parameters be the same

as those in (3.1). For initial points satisfying x + y < p, solutions converge to a periodic solution at

τ = 0; as τ increases, the solution finally goes to E4, shown in Fig 4(a) and (b). Moreover, whatever

the initial values are constant, periodic or monotone functions, when they satisfy x + y < p, solutions

may converge to E4 if the periodic solutions collide with the critical line x+ y = p. With initial values

satisfying x + y > p, solutions directly converge to E4 for both τ = 0 and τ > 0 as shown in Fig 4(c)

and (d). This tendency is kept when the initial values are constant, periodic or monotone functions

satisfying x+ y > p.

It is pointed out by [17, Theorem 17] that under the following parameter values:

P = 0.025, ê = 0.8, b = 1.2, d = 0.25, θ = 0.04,

q = 0.004, c = 0.8, a = 0.25, µ = 0.003,
(3.2)

K = 0.585185 is an important threshold value, at which E2 is unstable and system (2.1) without delay

has at least one limit cycle around E2, and E3 and E4 merge into a saddle-node equilibrium E3,4 on

the critical line x + y = p. Besides, solutions always tend to a periodic solution. We are particularly

interested in the asymptotic behavior of solutions with different initial values if τ is incorporated into

the system. Simulation results imply that as τ increases, E3 and E4 leave the critical line x + y = p

and separate, E3 is unstable and E4 gains stability. Both solutions initiating from the regions x+y < p

and x + y > p converge to the periodic solution when τ = 0, but as τ increases, all solutions converge
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Figure 3. The bifurcation diagrams of the grazer density over τ . All other parameter

values are given in (3.1), except that K = 0.3, K = 0.7, K = 0.87 and K = 1.3 that

correspond to (a)-(d), respectively. Solid and dash curves stand for stable and unstable

equilibria, respectively. Black line represents a boundary equilibrium, magenta curve

is E2, green and brown curves are E3 and E4, respectively. Blue and red curves are

the maxima and minima of amplitudes of periodic solutions, respectively.

to E4, see Fig 5. When τ = 0, the periodic solution attracts solutions starting from anywhere of the

phase plane; introducing τ into the model can increase the maxima of periodic solutions, and once the

periodic solution arrives at the critical line x + y = p from the region x + y < p, the solution may

converge to E4.

3.1.4. Joint effect of τ and P on asymptotic dynamics. By decreasing the ratio of P:C in the producer

such that the chemical composition required and captured is unbalanced for the grazer, light enrichment

harms the growth of the grazer and even leads to the extinction. Naturally, we are curious whether we

can change phosphorous to balance the adverse effect of light and significantly facilitate the grazer’s

persistence. Since p = P
θ , where θ reflects the fixed P:C ratio in the grazer, the change of phosphorus

availability can be described by varying p. We exhibit the dynamics of system (2.1) on τ − p plane in

Fig 6.
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Figure 4. Initial values satisfy x + y < p in (a) and (b). (a) The solution starting

from (0.2715, 0.5224) converges to a stable periodic solution when τ = 0 and tends

to E4 when τ = 1. (b) When τ = 1, under distinct initial values (0.2665, 0.5224),

(0.2665 − 0.2 sin(2t), 0.5224 − 0.2 sin(2t)), (0.2665 + 0.3t, 0.5224 + 0.3t) and (0.2665 −
0.5t, 0.5224 − t), all solutions converge to E4. The blue, magenta, green and black

curves correspond to the above initial values, respectively. Initial values are true for

x+ y > p in (c) and (d). (c) Both solutions initiating from (0.3648, 0.6522) tend to E4

for τ = 0 and τ = 1. (d) When τ = 1 and initial values are taken as (0.3648, 0.6522),

(0.3648 + 0.3 sin(2t), 0.6522 + 0.5 sin(2t)), (0.3648 + 0.3t, 0.6522 + 0.3t) and (0.3648 −
0.5t, 0.6522 − t), respectively, E4 keeps an attractor. The blue, magenta, green and

black curves are solutions with the above initial values, respectively.

It can be observed that system (2.1) admits the unique positive equilibrium E2 as τ and p vary

simultaneously. Moreover, when parameter values are in the region between two black vertical lines,

E2 is unstable driven by Hopf bifurcation. The increase of phosphorous availability in an ecosystem

can increase the chance of grazer’s survival. We further claim that increasing phosphorous can weaken

the negative effect of poor-food quality caused by increasing light intensity. This is based on the fact

that the survival region remarkably reduces as K increases to extreme as shown in Fig 1, however,



36 H. ZHANG, H. WANG, AND B. NIU

0 100 200 300 400 500 600
0.4

0.42

0.44

0.46

0.48

t

y(
t)

 

 

τ=3
τ=0

0 100 200 300 400
0.35

0.4

0.45

0.5

0.55

t

y(
t)

 

 

τ=3
τ=0

(a) (b)

Figure 5. (a) The initial point satisfies x + y < p with (0.1636, 0.4469), the solution

converges to a stable periodic solution for τ = 0 and tends to E4 for τ = 3. (b) The

initial point satisfies x+ y > p with (0.2626, 0.5469). For τ = 0, the solution converges

to a stable periodic solution; for τ = 3, the solution eventually tends to E4.

comparing (b) and (c) in Fig 6, we observe this tendency stops when p rises. Phosphorous availability

has little effect on the oscillatory behavior which mainly depends on delay.

3.2. The bifurcation diagrams over K or ê. In this part, we study the relationship between dy-

namical behavior and two other parameters in system (2.1): light-dependent carrying capacity K and

conversion efficiency ê.

3.2.1. The bifurcation diagrams of the grazer over K. The work of [19] and the above discussions have

shown that the light-dependent carrying capacity K is a key factor on the grazer’s fate. We sketch the

bifurcation diagrams of the grazer with respect to K in Fig 7, where τ = 5 in (a) and τ = 100 in (b).

In Fig 7 (a), when 0 < K < 0.2732 and K > 1.3459, system (2.1) has no positive equilibria, which

suggests the grazer cannot survive in such two scenarios. The extinction of grazer for 0 < K < 0.2732 is

caused by the lack of producer, while the grazer can not persist for K > 1.3459 because of a mismatch

between the nutrient content in the producer and the nutrient demand of the grazer. The Rosenzweig’s

paradox of enrichment [27] emerges in system (2.1) as K varies in the interval (0.2732, 0.8186): the

grazer increases steadily for 0.2732 < K < 0.6543. At K = 0.6543, E2 loses its stability and a family of

periodic solutions bifurcate from it, then the amplitude of the periodic solution gradually increases with

K. As K increases to K = 0.8186, the periodic solution bursts into a heteroclinic orbit, and two new

equilibria appear: unstable E3 and stable E4. As K further increases, the grazer density keeping on E4

declines. In other words, higher light intensity leads to lower grazer biomass, which is consistent with the

results in [19]. Finally, the grazer becomes extinct at K = 1.3459 caused by a transcritical bifurcation.

It can also be seen that E2 and E3 disappear at K = 0.985 through a saddle-node bifurcation.

According to Fig 7 (b), we observe that the grazer survives only for 0.5680 < K < 0.9501. As K

varies from 0.5680 to 0.6586, the grazer density rises at stable E2, then two new equilibria, E3 and E4,

appear that coexist with E2 as 0.6586 < K < 0.7272, where the grazer density will increase if its initial

value is small, but it will decrease if its initial value is large. At K = 0.7272, E2 collides with E3 and

then disappears. The grazer continues to persist until K = 0.9501.
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Figure 6. The bifurcation diagrams on τ − p plane. The red curve is determined

by τ = 1
µ ln cêK

d(a+K) ; the blue curve stands for p(τ) = b
c [1 −

x∗(τ)
K ][a + x∗(τ)] + x∗(τ)

with x∗(τ) = ad
cêe−µτ−d ; the green one is p(τ) = 1

4bcK

[
(b+ deµτ

ê )2K2 + 2ab(b+ deµτ

ê ) +

(ab)2
]
; the magenta curve represents p(τ) = d(K+a)

cê eµτ . The black vertical line is Hopf

bifurcation line. There are periodic solutions bifurcating from E2 when parameter

values are in the region between two vertical lines. Parameter values are given in (3.1)

except p varies and (a) K = 0.7, (b) K = 2, (c) K = 4.

Comparing with Fig 4 in [19], we find that in the absence or presence of a small delay in system

(2.1), the grazer density changes following a similar route, but the ranges of light intensity supporting

the grazer’s persistence are different. The persistence window of light intensity seems narrowed by the

maturation delay. From the mathematical point of view, delay indeed can induce richer dynamics, for

example, the saddle-node bifurcation occurring at E2 and E3. According to Fig 7, we observe that the

increase of delay will reduce the survival chance of the grazer, and sustainable oscillations disappear for

a very large delay.

3.2.2. The bifurcation diagrams over ê and K. Mathematical models often assume the food assimilation

of the grazer is a constant. In reality, the conversion efficiency depends on a variety of factors such as cell

morphology and colony architecture [7]. Some studies have pointed out that the paradox of enrichment
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Figure 7. The bifurcation diagrams of the grazer with respect to K. All other pa-

rameter values are given in (3.1) and τ is fixed at τ = 5 for (a) and τ = 100 for (b).

All curves have the same interpretations as those in Fig 3.

shares such an assumption, see [1, 6, 11] and references therein. How does the conversion efficiency

affect the dynamics of system (2.1)? Motivated by this question, we draw a bifurcation diagram in

Fig 8(a) to illustrate the existence and stability of positive equilibria on ê−K plane. The coexistence

region of producer and grazer is bounded by red and magenta curves. The coexistence window of light

intensity becomes wider as ê increases. However, the grazer’s extinction still occurs when the light

intensity is too high or too low.
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Figure 8. (a) The two-dimensional bifurcation diagram on ê−K plane. Take τ = 5

and other parameter values given in (3.1), except that ê varies. The red curve is

determined by K(ê) = x∗(ê); the blue curve stands for K(ê) = x∗(ê)/[1 − c(p −
x∗(ê))/b(a + x∗(ê))]; the magenta curve is given by K(ê) = cêp

d e
−µτ − a; the green

one is K = K+
3 (ê); the black one is Hopf bifurcation curve at E2. Here, x∗(ê) =

ad/(cêe−µτ − d) and K+
3 (ê) is defined in (2.9). (b) The bifurcation diagram of the

grazer with respect to ê. The curves have the same meanings as those in Fig 3.



STOICHIOMETRIC PRODUCER-GRAZER MODEL WITH MATURATION DELAY 39

At medium light, increasing ê can generate or remove positive equilibria, destabilize the system.

For example, a bifurcation diagram describing the grazer density over ê is depicted in Fig 8(b) with

K = 0.7. Here, system (2.1) has a stable boundary equilibrium for ê < 0.4252. As ê varies from

0.4252 to 0.4861, system (2.1) has three positive equilibria: E2, E3 and E4, where two stable equilibria

coexist. Bistability implies that the grazer density converges to which one stable equilibrium depending

on its initial value. At ê = 0.4861, unstable E3 and stable E4 disappear simultaneously through a

saddle-node bifurcation. As ê further increases, the grazer density rises steadily until ê = 0.5726, where

stable E2 loses its stability to a periodic solution. The amplitude of the periodic solution increases as

ê increases. In conclusion, the grazer goes extinct if the conversion efficiency is less than 0.4252 and

persists for 0.4252 < ê < 0.7. However, we want to claim that the persistence of the grazer can be

threatened when the limit cycle has too large amplitude because the low point will be so small that

a tiny perturbation/stochasticity will drive it to extinction. Consistent with intuition, increasing the

conversion efficiency of a grazer is generally beneficial for its survival, and our study further indicates

subtle dependence of the grazer’s dynamics on the conversion efficiency.

3.3. Period doubling route to chaos. We have presented some theoretical and numerical results

under assumption (A) in the above discussions. Actually, system (2.1) with f(x) = cx
a+x can exhibit

more complicate dynamics when ignoring the assumption, for example, the period doubling bifurcation

route to chaos. We choose the following values of parameters to describe such phenomenon.

P = 0.025, ê = 0.8, b = 1.2, d = 0.25, θ = 0.048,

K = 2, µ = 0.004, a = 0.25, c = 0.81.
(3.3)

Fixing τ = 10, we find that when 0.0125 < q < 0.1490, there is at least one positive equilibrium

E5 = (x5, y5) with x5 = 0.1677, and

y5 =
1

2

[
b

c
(a+ x5) + p−

√
M

]
, M =

[
b

c
(a+ x5) + p

]2
− 4b

c

(
p− qx5

θ

)
(a+ x5).

Moreover, system (2.1) takes place the chaos routed by period doubling near E5 as q decreases in the

interval [0.0238, 0.034], see Fig 9(a). Here we choose the component x of E5 as a Poincáre section,

and draw the change of the solution on the Poincáre section over q. When q > 0.032, E5 is LAS.

When 0.0288 < q < 0.032, E5 loses its stability to a stable periodic solution with period 1. When

0.0263 < q < 0.0288, the period-1 solution loses its stability to a stable periodic solution with period 2.

As 0.0238 < q < 0.0263, the period-2 solution loses its stability to a stable periodic solution with period-

4, etc., and finally, E5 becomes chaotic. At q = 0.0238, the chaotic attractor suddenly disappears, which

may be caused by the collision between the attractor and a periodic solution on the basin boundary

of the attractor [23]. As 0.0207 < q < 0.0238, the solution converges to a stable period-1 solution. As

q < 0.0207, the solution converges to a boundary equilibrium. The periodic solutions with period 1, 2

and 4 are shown in Fig 10, respectively.

When the solution always satisfies x+ y < p, there is no period doubling route to chaos near E5, see

Fig 9(b). Here, the maxima and minima of the solutions are drawn. It can be seen that E5 is LAS for

q > 0.032, then it loses its stability to a period-1 solution that is similar to Fig 10(a) or (b), we do not

show it here.

For system (2.1) without delay, the period doubling route to chaos is not observed in this paper.

As far as we know, chaotic dynamics from LKE model without or with delay is scarce, while it has

been frequently displayed in communities consisting of two or more species, see [20, 31, 29, 30] For

the LKE model incorporating the maturation time of the grazer and the restriction of carbon and

phosphorus elements in the producer, we see that the decrease of the minimal P:C in the producer can
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Figure 9. The bifurcation diagrams of the grazer with respect to q. (a) The solution

on Poincáre section of system (2.1) with delay and the minimum function in the second

equation. (b) The solution of system (2.1) with delay and min

{
1,
p− y(t− τ)

x(t− τ)

}
= 1.

Here the red line is E5 with the dash part being unstable and the solid part being LAS.

cause chaotic oscillations of the producer-grazer population by many times binary decisions. This will

make it impossible to predict the long-term population trajectories in time.

4. Biological applications

In the previous sections, we have observed richer dynamics in system (2.1) through theoretical and

numerical analysis. In this section, we will describe the implications of some interesting qualitative

dynamical behaviors in population prediction.

Time delays often destabilize an internal equilibrium and produce regular oscillations in population

size for prey-predator systems, see [8, 9, 12]. However, Fig 4(a) shows that, a properly large maturation

delay can make the limit cycle vanish and drive the solution to converge to an equilibrium, which

implies that a suitable delay can stabilize a prey-predator system. Moreover, for a small delay, the

Rosenzweig’s paradox of enrichment induced by light intensity occurs in our model, which is similar to

the existing studies on LKE model in [17, 37]. While large delay impedes such phenomenon, and results

in the coexistence of two different LAS positive equilibria, see Fig 7. With an intermediate light input,

a transition of population size from one coexistence state to another one may occur.

It seems that the periodic oscillations are harmful for the ecological balance of a predator-prey sys-

tem, but this dynamical behavior corresponds to predictable evolution in population, see [11] and the

references therein for more applications. Therefore, analyzing periodic behavior of system (2.1) is an

important part in this paper. Somehow surprisingly, in the presence of time delay, numerical analysis

on the periodic solutions near the critical line x+y = p exhibits the period-doubling route to chaos, see

subsection 3.3. The chaotic behaviour is related to the irregular fluctuations and variability in nature,

which can be caused by many environmental factors. In this paper, we find that the stoichiometric

producer-grazer system can be chaotic via period-doubling route. Furthermore, such chaos can also

be controlled as Fig 9(a) shows that chaotic oscillations will disappear when the minimum P:C ratio

in producer continues to decrease. This provides an appropriate interpretation regarding the irregu-

lar fluctuations in producer and grazer with stoichiometry. Although there are numerous results on
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Figure 10. System (2.1) has a stable period-1 solution when (a) q = 0.0315, (b)

q = 0.0295. (c) System (2.1) has a stable period-2 solution when q = 0.0275. (d)

System (2.1) has a stable period-4 solution when q = 0.0259. The black line is x+y = p.

the dynamics of population models with delays, the chaotic dynamics is uncommon, and the insights

concerning the onset and control of chaos require further exploration.

For our model with a small delay, two types of solutions coexist that converge to a limit cycle, or a

LAS positive equilibrium when they have different initial values, see Fig 11. Moreover, the amplitude

of the periodic solution increases over delay, and once the periodic solution collides with the critical

line x+ y = p, some unclear events take place such that the periodic solution vanishes and the solution

finally goes to an equilibrium, see Figs 4 and 5. The biological implication behind that may be as

follows. The periodic behavior is sensitive to the initial population size, the increased maturation time

can lead the change of population size. Thus, with these population sizes being the new initial point,

the solution finally converges to a stable constant state that is robust under tiny perturbation.

In fact, our model may work as a theoretical interpretation for the switch of plankton abundances

between a relatively stable state and oscillations in one year. There have been some reports reflecting

such changes in view of different types of time series of plankton abundances. For instance, Fig 5 in [26]

shows that abundances of some microplankton like Dinoflagellates, or some zooplankton like Decapods

and Pteropods, may oscillate in several months and become relatively stationary in the remaining
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period. When the plankton species coexist at a constant state, sudden change of some limiting factors

can lead the population size to change, for instance, the increase of temperature or light intensity from

April to May causes the significant increase of the abundances of Synechococcus, Dinoflagellates and

Copepods, see Fig 5 in [26].

It is worth mentioning that the coexistence of a stable constant steady state and a stable limit cycle

in plankton systems has been studied in [40], where that is induced by Bautin bifurcation, while in this

paper, it is the joint effect of delay and stoichiometry.
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Figure 11. The solutions of system (2.1) with different initial values: the blue one has

an initial value as (0.2715, 0.4659), and the initial value of the red one is (0.2715, 0.45).

Here, K = 0.84, τ = 0.5 and other parameters are the same as those in (3.1).

5. Discussion

A series of newly emerging stoichiometric population models have captured biological features of

light- and nutrient-dependent species growth, but they usually neglected the time taken for various

physiological processes, such as the maturation time of the grazer. Following LKE model formulated in

[19] and rigorous analysis of this model in [17, 37], we formulate a DDE model and analyze the impact of

the maturation delay on dynamical behavior. Bifurcation analysis not only reproduces similar behavior

as those in [19, 17, 37], but also generates more exciting dynamics beyond the ODE results. For

instance, delay drives a positive equilibrium to lose its stability to a stable limit cycle whose amplitude

increases as delay increases. Further increasing delay allows the limit cycle to collide with the critical

line x + y = p, then the solution starting from a neighborhood of an unstable positive equilibrium

converges to a different positive equilibrium instead of the stable limit cycle, see Figs 4 and 5. Due

to delay and the Liebig’s law of the minimum, there are period-2, period-4 solutions and the period

doubling route to chaos, see Figs 9(a) and 10.

Through rigorously mathematical analysis, we provide stability conditions for boundary equilibria

and existence conditions for positive equilibria. Various bifurcation phenomena are presented including

transcritical bifurcation, saddle-node bifurcation and Hopf bifurcation. We also obtain two types of

coexistence: between two stable positive equilibria, between a stable positive equilibrium and a stable

limit cycle. Taking biologically relevant parameter values, we conduct simulations to demonstrate

theoretical results. Bifurcation analysis is further carried out to explain the joint effects of delay and

light, delay and phosphorus on asymptotic dynamics. The increase of delay can decrease the survival
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region of the grazer on τ − K plane. When the system admits a small delay, Rosenzweig’s paradox

of enrichment holds for an intermediate light intensity, while such phenomenon disappears for a large

delay. Increasing phosphorus does not change sustainable oscillatory behavior, but it can elevate the

survival chance of the grazer. Moreover, the bifurcation diagrams of the grazer over maturation time,

conversion efficiency and the minimal P:C ratio are sketched to illustrate their impacts on asymptotic

dynamics. We further explain periodic solution, chaos and coexistence of a limit cycle and an positive

equilibrium form the biological point of view in section 4. These behaviors in population models are

not the first studied, and some results have been applied to control the harmful algal bloom [8], manage

fisheries [15], and keep the population to evolve in order [30]. We expect that our results can be used

in the development of ecological stoichiometry.

There are some problems worthy of further study. The first is the non-negativity and boundedness of

solutions. In this paper, we only obtain the conditional non-negativity of solutions and the boundedness

of x component. Due to the nonsmoothness induced by Liebig’s law of the minimum, we need phase

plane fragmentation and parameter space partitioning, but the delay makes phase space to be infinite-

dimensional, thus it is extremely challenging to achieve the goal. We pose this as an open mathematical

question.

Another perspective is a full analysis of Hopf bifurcation and all possible codimension-two bifurcations

occurring at positive equilibria on the critical curve. Note that a positive equilibrium on the curve has

two different governing equations on two sides of the curve, thus the Fréchet derivative of the functional

differential equation at the equilibrium does not exist. Hence, one cannot obtain the linear stability

of the equilibrium by the distribution of corresponding eigenvalues. As pointed out in [17], bifurcation

phenomena may widely exist near the equilibrium on the critical curve for the stoichiometric models,

however, the minimum functions make eigenvalue analysis, normal form method and center manifold

theory [14, 10, 13] inapplicable. Therefore, novel mathematical approaches are needed to rigorously

treat such special bifurcations that widely exist in many emerging non-smooth dynamical systems.
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Appendix

Here, we study the stability of positive equilibria that are not on the critical line y = p − x. To

simplify the analysis, let E∗ = (x∗, y∗) be one positive equilibrium of system (2.1). Linearizing system

(2.1) at E∗ yields

dx(t)

dt
= x∗Fx(x∗, y∗)x(t) + x∗Fy(x∗, y∗)y(t),

dx(t)

dt
= −dy(t) +Qxt(y

∗, x∗, y∗)x(t− τ) +Qyt(y
∗, x∗, y∗)y(t− τ),

(5.1)

where one of the following cases is true:

(i) Fx =
c

a+ x∗
h
′
(x∗), Fy = − c

a+ x∗
, Qxt =

cêay∗

(a+ x∗)2
e−µτ , Qyt =

cêx∗

a+ x∗
e−µτ .

(ii) Fx =
c

a+ x∗
h
′
(x∗), Fy = − c

a+ x∗
, Qxt = −cê(p− y

∗)y∗

(a+ x∗)2
e−µτ , Qyt =

cê(p− 2y∗)

a+ x∗
e−µτ ,

and h
′
(x∗) = b(K−a−2x∗)

Kc . Therefore, the corresponding characteristic equation is

λ2 + a1(τ)λ+ a2(τ)λe−λτ + a3(τ) + a4(τ)e−λτ = 0, (5.2)
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with
a1(τ) = d− x∗Fx(x∗, y∗), a2(τ) = −Qyt(y∗, x∗, y∗), a3(τ) = −dx∗Fx(x∗, y∗),

a4(τ) = x∗
[
Fx(x∗, y∗)Qyt(y

∗, x∗, y∗)− Fy(x∗, y∗)Qxt(y
∗, x∗, y∗)

]
.

When τ = 0, Eq. (5.2) reads

λ2 + [a1(0) + a2(0)]λ+ a3(0) + a4(0) = 0. (5.3)

Obviously, E∗ is LAS provided that a1(0) + a2(0) > 0 and a3(0) + a4(0) > 0. System (2.1) undergoes

a Hopf bifurcation at E∗ as a1(0) + a2(0) = 0 and a3(0) + a4(0) > 0.

In what follows, we assume that a1(0) + a2(0) > 0 and a3(0) + a4(0) > 0 always hold and investigate

the stability change of positive equilibria induced by τ .

One can check that λ = 0 is not a root of (5.2) for all τ > 0. Assume that λ = iω (ω > 0) is a root

of (5.2) for some τ > 0. Substituting it into (5.2) and separating the real and imaginary parts, we have

cosωτ = −a1(τ)a2(τ)ω2 + a4(τ)(a3(τ)− ω2)

a24(τ) + a22(τ)ω2
,

sinωτ =
a1(τ)a4(τ)ω − a2(τ)ω(a3(τ)− ω2)

a24(τ) + a22(τ)ω2
.

This leads to

F (ω, τ) := ω4 + [a21(τ)− a22(τ)− 2a3(τ)]ω2 + [a23(τ)− a24(τ)] = 0. (5.4)

Set

∆̃(τ) = [a21(τ)− a22(τ)− 2a3(τ)]2 − 4[a23(τ)− a24(τ)].

It is simple to see that if

(H1) a21(τ)− a22(τ)− 2a3(τ) < 0, a23(τ) > a24(τ) and ∆̃(τ) > 0,

is satisfied, then (5.4) has two differential positive roots given by

ω±(τ) =
1√
2

[
a22(τ) + 2a3(τ)− a21(τ)±

√
∆̃(τ)

]1/2
. (5.5)

Moreover, if

a21(τ)− a22(τ)− 2a3(τ) < 0, a23(τ) > a24(τ) and ∆̃(τ) = 0,

is true, then ω+(τ) = ω−(τ). If a23(τ) < a24(τ) is true, then only ω+(τ) can exist. Otherwise, (5.4) has

no positive roots.

Let the set I be

I = {τ > 0 : (H1) or a23(τ) < a24(τ) is satisfied}.
When I is nonempty and ω(τ) > 0 solves (5.4) for some τ ∈ I, we can define θ ∈ [0, 2π) by

cos θ(τ) = −a1(τ)a2(τ)ω2(τ) + a4(τ)(a3(τ)− ω2(τ))

a24(τ) + a22(τ)ω2(τ)
,

sin θ(τ) =
a1(τ)a4(τ)ω(τ)− a2(τ)ω(τ)(a3(τ)− ω2(τ))

a24(τ) + a22(τ)ω2(τ)
.

Consequently, ω(τ)τ = θ(τ) + 2nπ and iω(τ∗) is a purely imaginary root of (5.2) if and only if τ∗ is the

zero of functions Sn(τ) with

Sn(τ) = τ − θ(τ) + 2nπ

ω(τ)
, τ ∈ I, n ∈ N0 = N ∪ {0}.

It can be proved that Sn(τ), n ∈ N0 are continuous and differentiable on I, see [5] for details. Then the

result established by [5] is followed.
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Lemma 5.1. (i) Assume Sn(τ∗) = 0 for some τ∗ ∈ I and n ∈ N0. Then Eq. (5.2) has at least a pair

of simple purely imaginary roots λ = ±iω(τ∗).

(ii) Let

δ(τ∗) = sign

{
dReλ

dτ

∣∣∣
λ=iω(τ∗)

}
= sign

{
∂F (ω(τ∗), τ∗)

∂ω

}
sign

{
dSn(τ)

dτ

∣∣∣
τ=τ∗

}
.

This pair of simple purely imaginary roots cross the imaginary axis from left to right if δ(τ∗) > 0 and

from right to left if δ(τ∗) < 0.

Remark 5.1. Note that Sn(τ) > Sn+1(τ) for all τ ∈ I, which implies that if S0(τ) = 0 has no root in

I, then Sn(τ) = 0 has no root in I for all n ∈ N0. Therefore, the real parts of roots of (5.2) remain

unchanged for τ ≥ 0.

Remark 5.2. A direct calculation yields that at τ = τ∗ ∈ I,

∂F (ω(τ∗), τ∗)

∂ω
= ±2ω(τ∗)

√
∆̃(τ∗).

Therefore, if ω(τ∗) = ω+(τ∗), then δ(τ∗) = sign
{

dSn(τ)
dτ

∣∣∣
τ=τ∗

}
; if ω(τ∗) = ω−(τ∗), then δ(τ∗) =

−sign
{

dSn(τ)
dτ

∣∣∣
τ=τ∗

}
.

Applying the above results, we first deal with the stability of E2. Through some calculations, we

have E2 = (x∗, h(x∗)), where

h(x) =
b

c

(
1− x

K

)
(a+ x), x∗ =

ad

cêe−µτ − d
.

Moreover,

a1(τ) = d− bx∗(K − a− 2x∗)

K(a+ x∗)
, a2(τ) = −d, a3(τ) = − dbx∗

K(a+ x∗)
(K − a− 2x∗),

a4(τ) =
dbx∗

K(a+ x∗)

[
K − a− 2x∗ +

a

x∗
(K − x∗)

]
.

It follows that

a1(0) + a2(0) = −bx
∗(0)(K − a− 2x∗(0))

K(a+ x∗(0))
, a3(0) + a4(0) =

abd(K − x∗(0))

K(a+ x∗(0))
,

where x∗(0) = ad
cê−d > 0. The following proposition is immediate.

Proposition 5.2. At τ = 0, if ad
cê−d < K < ad+acê

cê−d , then E2 is LAS; if K > ad+acê
cê−d , then E2 is

a source-type equilibrium; if K < ad
cê−d , then E2 is a saddle-type equilibrium. In particular, a Hopf

bifurcation occurs at E2 when K = ad+acê
cê−d .

For τ > 0, we have

a21(τ)− a22(τ)− 2a3(τ) =

[
bx∗(K − a− 2x∗)

K(a+ x∗)

]2
> 0,

a23(τ)− a24(τ) =
ab2d2

(a+ x∗)2

(
1− x∗

K

)[
4x∗2 + 3ax∗

K
− (a+ 2x∗)

]
.

This means that (5.2) has exactly one pair of purely imaginary roots if

(H2) K >
4x∗2 + 3ax∗

a+ 2x∗
,

is satisfied, and all roots of (5.2) have negative real parts if the inequality of (H2) is reversed.
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Now, we turn to E3 and E4. Denote them as (x∗, h(x∗)), where

h(x) =
b

c

(
1− x

K

)
(a+ x),

and x∗ are two roots of

êce−µτ
[
p− b

c

(
1− x

K

)
(a+ x)

]
− d(a+ x) = 0.

We similarly obtain

a1(τ) = d− bx∗(K − a− 2x∗)

K(a+ x∗)
, a2(τ) = −d+ êbe−µτ

(
1− x∗

K

)
,

a3(τ) =
−dbx∗(K − a− 2x∗)

K(a+ x∗)
,

a4(τ) =
−bx∗

K(a+ x∗)

[
d(a+ x∗)− êbe−µτ (K − a− 2x∗)

(
1− x∗

K

)]
.

Then

a1(0) + a2(0) = êb
(

1− x∗(0)

K

)
− cx∗(0)

a+ x∗(0)
h
′
(x∗(0)),

a3(0) + a4(0) = −cx∗(0)h
′
(x∗(0))

a+ x∗(0)

cêy∗(0)

a+ x∗(0)
− cx∗(0)h

′
(x∗(0))

a+ x∗(0)

cê(p− y∗(0))y∗(0)

(a+ x∗(0))2
,

=
c2êx∗(0)y∗(0)

(a+ x∗(0))2

[
− h

′
(x∗(0))− p− y∗(0)

a+ x∗(0)

]
.

Due to dx + cêe−µτy = cêe−µτp − ad on line l2, we see p−y∗(0)
a+x∗(0)

= d
cê . At E3, the slope of parabola

y = h(x) is larger than zero for all τ ≥ 0, thus, h
′
(x∗(0)) > 0, then a3(0) + a4(0) < 0. Therefore,

E3 is unstable when τ = 0. At E4, again using the slope of parabola y = h(x) and line l2, we find

h
′
(x∗(0)) < 0 and −h′(x∗(0)) − d

cê > 0, then a1(0) + a2(0) > 0 and a3(0) + a4(0) > 0 is confirmed.

Thus, E4 is always LAS when τ = 0.

Considering τ > 0, we have

a21(τ)− a22(τ)− 2a3(τ) >
[bx∗(K − a− 2x∗)

K(a+ x∗)

]2
> 0,

a23(τ)− a24(τ) = −
( bx∗
a+ x∗

)2(
1− x∗

K

)[(
1− 2x∗ + a

K

)
êbe−µτ + d

]
{(

1− x∗
K

)[(
1− 2x∗ + a

K

)
êbe−µτ + d

]
− 2d

(
1− 2x∗ + a

K

)}
.

Noticing that 2x∗ + a > dK+êbKe−µτ

êbe−µτ , we have(
1− 2x∗ + a

K

)
êbe−µτ + d < 0, and a3(τ) 6= a4(τ).

This shows λ = 0 is not an eigenvalue and E3 remains the saddle-type of equilibrium. In addition, (5.2)

has a pair of purely imaginary roots if and only if

(H3)
(

1− x∗
K

)[(
1− 2x∗ + a

K

)
êbe−µτ + d

]
− 2d

(
1− 2x∗ + a

K

)
< 0.

We define
I1 = {τ ≥ 0 : E2 exists, (H2) is true},
I2 = {τ ≥ 0 : E4 exists, (H3) is true},

and conclude the stability of positive equilibria E2, E3 and E4 as follows.

Theorem 5.3. (i) Assume ad
cê−d < K < ad+acê

cê−d .
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(i-1) If I1 is empty or S0(τ) = 0 has no positive root in I1 (is nonempty), then E2 is LAS for τ ≥ 0.

(i-2) For n ∈ N0, denote Jn = {τn : τn ∈ I1, Sn(τn) = 0}. Assume dSn(τ)
dτ

∣∣∣
τ=τn

6= 0 and Jn1
∩Jn2

= ∅
for n1 < n2. Collect these roots in the set

J =
⋃
n∈N0

Jn = {τ0, τ1, ..., τm} with τi < τi+1, 0 ≤ i ≤ m− 1.

E2 is LAS when τ ∈ ([0, τ0)∪(τm,∞))∩I1, and is unstable when τ ∈ (τ0, τm). When τ = τi ∈ J ,

system (2.1) takes place a Hopf bifurcation at E2.

(ii) E3 is unstable whenever it exists.

(iii) If I2 is empty or S0(τ) = 0 has no positive root in I2 (is nonempty), then E4 is LAS for τ ≥ 0.

Moreover, the statement of (i2) is true for E4 when replacing I1 by I2.

We take E2 as an example to show the stability change over τ . Still use the parameter set (3.1),

by calculation, ad
cê−d = 0.2648 and ad+acê

cê−d = 0.7797. The proposition 5.2 indicates that for τ = 0, E2

is LAS as 0.2648 < K < 0.7797 and system (2.1) possesses periodic solutions near E2 as K > 0.7797.

As τ > 0, it can be checked that condition (H2) is satisfied at E2, and then the graph of Sn on I1 is

drawn in Fig 12(a). We see that S0 has two zeros: τ+0 = 1.2367 and τ−0 = 21.3813, and Sn, n ∈ N has

no zeros, so J = J0 = {1.2367, 21.3813}. In addition, we have

dS0(τ)

dτ

∣∣∣
τ=τ+

0

= 0.9059 > 0,
dS0(τ)

dτ

∣∣∣
τ=τ−0

= −14.1271 < 0.

Accordingly, when τ ∈ [0, τ+0 ), E2 is LAS; when τ ∈ (τ+0 , τ
−
0 ), E2 is unstable; when τ ∈ [τ−0 , τ̂), τ̂ is the

zero of K− 4x∗2(τ)+3ax∗(τ)
a+2x∗(τ) , E2 regains its stability; when τ = τ±0 , system (2.1) occurs Hopf bifurcations.

The details are illustrated in Fig 12(b), here, we show the change of amplitudes of solutions over τ .
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Figure 12. (a) The graph of Sn and τ on I1. (b) When K = 0.7, the amplitude of

the solution starting from (0.25, 0.4739). E2 is LAS for τ ∈ [0, τ+0 ); there is a stable

periodic solution for τ ∈ (τ+0 , τ
−
0 ); E2 is LAS for τ > τ−0 . Here, the blue and red curves

represent the maxima and minima of amplitude of periodic solution, respectively; the

magenta curve is the component y in E2 with solid part standing for stable E2 and

dash part standing for unstable E2.
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[15] V. Jiménez López and E. Liz, Destabilization and chaos induced by harvesting: insights from one-dimensional

discrete-time models, J. Math. Biol. 82 (2021), 1-28.

[16] Y. Kuang, J. D. Nagy, and S. E. Eikenberry, Introduction to mathematical oncology, Chapman & Hall/CRC Math.

Comput. Biol. Ser. Press, Boca Raton, FL, 2016.

[17] X. Li, H. Wang, and Y. Kuang, Global analysis of a stoichiometric producer-grazer model with Holling type functional

responses, J. Math. Biol. 63 (2011), 901-932.

[18] Z. Liu and N. Li, Stability and bifurcation in a predator-prey model with age structure and delays, J. Nonlinear Sci.

25 (2015), 937-957.

[19] I. Loladze, Y. Kuang, and J. J. Elser, Stoichiometry in producer-grazer systems: linking energy flow with element

cycling, Bull. Math. Biol. 62 (2000), 1137-1162.

[20] R. M. May, Biological populations with nonoverlapping generations: stable points, stable cycles and chaos, Science

186 (1974), 645-647.

[21] J. A. J. Metz and O. Diekmann, The dynamics of physiologically structured populations, Lect. Notes in Bioinform.,

vol. 68, Springer-Verlag, Berlin, 1986.

[22] S. J. Moe, R. S. Stelzer, M. R. Forman, W. S. Harpole, T. Daufresne, and T. Yoshida, Recent advances in ecological

stoichiometry: insights for population and community ecology, Oikos 109 (2005), 29-39.

[23] E. Ott, Chaos in dynamical systems, second ed., Cambridge University Press, Cambridge, 2002.

[24] A. Peace, H. Wang, and Y. Kuang, Dynamics of a producer-grazer model incorporating the effects of excess food

nutrient content on grazer’s growth, Bull. Math. Biol. 76 (2014), 2175-2197.

[25] M. Rehim and M. Imran, Dynamical analysis of a delay model of phytoplankton-zooplankton interaction, Appl. Math.

Model. 36 (2012), 638-647.

[26] J. B. Romagnan, L. Legendre, L. Guidi, J. L. Jamet, D. Jamet, L. Mousseau, M. L. Pedrotti, M. Picheral, G. Gorsky,

C. Sardet, and L. Stemmann, Comprehensive model of annual plankton succession based on the whole-plankton time

series approach, PLoS One 10 (2015), e0119219.

[27] M. L. Rosenzweig, Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science 171

(1971), 385-387.



STOICHIOMETRIC PRODUCER-GRAZER MODEL WITH MATURATION DELAY 49

[28] J. W.-H. So, J. Wu, and X. Zou, A reaction-diffusion model for a single species with age structure. I travelling

wavefronts on unbounded domains, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 457 (2001), 1841-1853.
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