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DYNAMICS OF A DISCRETE PREDATOR-PREY SYSTEM WITH FEAR

EFFECT AND DENSITY DEPENDENT BIRTH RATE OF THE PREY SPECIES

DEBASIS MUKHERJEE

Abstract. This paper analyses a discrete predator-prey system with fear effect and density dependent

birth rate of the prey species. The fixed points of the system are determined and their stability is

examined. The criterion for Neimark-Sacker bifurcation and flip bifurcation is developed. The chaotic

orbit at an unstable fixed point can be stabilized by applying the state feedback control method.

Numerically, we illustrate our analytical findings and observe the complex behaviour of the system

that leads to stable state to chaotic one.

1. Introduction

In recent years, it is observed that the predator-prey interaction is not only governed by direct

killing of prey by the predator, but also the indirect effect such as fear caused by the predator. The

fear factor influences the birth rate of prey [1]. Based on the fact of fear effect on the prey’s growth

rate, several research works are explored [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. In predator-prey interaction,

it is commonly assumed that the birth rate of the prey species is constant. But in a real ecological

system, a birth rate of the prey species is dependent on the density of prey. In [11], the authors

considered density dependent birth rate of the prey species and discussed the dynamical behaviour of

the predator-prey system. Aforesaid studies are mainly confined on continuous predator-prey models

with two variables. Although, discrete time models are more appropriate than the continuous system

when the populations have nonoverlapping generations and virtually remain constant over a generation.

From a biological point of view, a discrete time model is applied to investigate the taxonomic group of

organisms and species with the passage of time. There are some biological situations where a discrete

time system is applicable. For example, fish populations reproduce at specific time moments or for insect

populations, for which nonoverlapping generations are occurring in real ecosystems. Other examples

include monocarpic plants and semelparous animals which have nonoverlapping populations and their

births take place in usual breeding seasons. Moreover, dynamics of discrete time predator-prey system

can exhibit a richer set of patterns than those found in continuous systems [12, 13, 14, 15]. Also discrete

time models can exhibit chaotic dynamics [12, 13]. So chaos control becomes an interesting topic of

research in discrete dynamical system. We will show chaos control by the state feedback control strategy.

In [15], the authors observed flip bifurcation and Neimark-Sacker bifurcation in a discrete predator

prey system with Holling type III functional response. Santra et al. [16] analysed a discrete predator-

prey model with Crowley-Martin functional response where prey population takes refuge. They showed

the effects of refuge on the stability of the system in the discrete domain. Furthermore, they ob-

tained period doubling bifurcation and Neimark-Sacker bifurcation. Elettreby et al. [14] addressed the

complex behaviour of a discrete prey-predator model considering mixed functional response of Holling
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type I and III. Din [13] investigated the complex nature and chaos prevention in a discrete model of

prey-predator interaction and found period doubling and Neimark-Sacker bifurcation for larger range

of bifurcation parameter. Seno [17] remarked that the dynamics of discrete prey-predator system is

consistent with continuous counterpart. Agiza et al. [12] discussed the dynamics of a discrete-time

prey-predator model with Holling type II response function. They derived bifurcation diagrams, phase

portraits and Lyapunov exponents for various system parameters. They also computed the fractional

dimension of a strange attractor of the model.

In this paper, we propose a discrete predator-prey system with fear effect and density dependent birth

rate of the prey species. We study the existence and stability of different fixed points. After then, we

identify the system parameters that give Neimark-Sacker bifurcation and flip bifurcation.

The paper is formatted as follows. In Section 2, we present a discrete model of predator-prey

interaction with fear effect and the density dependent birth rate of the prey species. Dynamical analysis

of different fixed points is described in Section 3. Chaos control is shown in Section 4. In Section 5, the

behaviour of the system is demonstrated when values of parameters are changed. A short discussion is

given in Section 6.

2. Discrete model

Now, we present the following discrete time predator-prey model:
xn+1 = xn

[
r

(b+ cxn)(1 + kyn)
− α− βxn −

pyn
1 + hxn

]
,

yn+1 = yn

[
−d+

pqxn
1 + hxn

] (2.1)

where xn and yn represent population densities of prey and predator respectively, and r, b, c, k, α, β, p, q,

h, d are positive constants. Here r denotes the birth rate of the prey which is affected by the fear factor

1/(1 + kyn) where k is the level of fear factor. The birth rate r is modified by the density of prey in

the form of Beverton-Holt function [18] as r/(b + cxn) where, b and c are positive parameters. α is

the natural mortality rate of prey. β represents the intraspecific competition among the prey species.

p, h, q, d represent consumption rate, handling time, q conversion efficiency and the death rate of the

predator respectively.

3. Fixed points and their nature

In this section, we determine the fixed points and their dynamics. Evidently, System (2.1) has three

fixed points E0 = (0, 0), E1 = (x̄, 0) and E∗ = (x∗, y∗) where

x̄ =
−{c(1 + α) + βb}+

√
{c(1 + α) + βb}2 − 4βc{b(1 + α)− r}

2βc
,

and 
x∗ =

1 + d

pq − h(1 + d)
,

y∗ =
−D +

√
D2 − 4pk(b+ cx∗)(1 + hx∗){(b+ cx∗)(α+ βx∗ + 1)− r}

2p(b+ cx∗)

(3.1)

where D = (b+ cx∗){p+ k(1 + hx∗)(α+ βx∗ + 1)}. Now E1 is feasible if b(1 + α) < r; E∗ is feasible if

pq > h(1 + d) and (b+ cx∗)(α+ βx∗ + 1) < r.
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To determine the nature of the fixed points, we compute the Jacobian matrix at each fixed point.

The Jacobian matrix at an arbitrary fixed point (x, y) is given by

J(x, y) =


br

(b+cx)2(1+ky) − α− 2βx− py
(1+hx)2 −x{ rk

(b+cx)(1+ky)2 + p
1+hx}

pqy
(1+hx)2 −d+ pqx

1+hx


Proposition 1. The fixed point E0 = (0, 0) of system (2.1) is stable if b(α − 1) < r < b(α + 1) and

0 < d < 1.

Proof. The characteristic equation at E0 is∣∣∣∣ r
b − α− λ 0

0 −d− λ

∣∣∣∣ = 0.

Thus the eigenvalues are λ1 = r
b − α and λ2 = −d. Then the fixed point E0 is locally asymptotically

stable if |λi| < 1, i = 1, 2. Now |λ1| =
∣∣ r
b − α

∣∣ < 1 then α− 1 < r
b < α + 1. Also, |λ2| = |−d| < 1 then

−1 < d < 1. As d is the death rate of predator, this implies that 0 < d < 1. This completes the proof.

Proposition 2. Assume that b(1 + α) < r holds. Then, the fixed point E1 = (x̄, 0) of system (2.1) is

stable if the following inequalities are fulfilled:

α+ 2βx̄− 1 <
br

(b+ cx̄)2
< α+ 2βx̄+ 1 and d− 1 <

pqx̄

1 + hx̄
< d+ 1.

Proof. The characteristic equation at E1 is∣∣∣∣∣∣∣
br

(b+cx̄)2 − α− 2βx̄− λ −x̄( rk
b+cx̄ + p

1+hx̄ )

0 −d+ pqx̄
1+hx̄ − λ

∣∣∣∣∣∣∣ = 0.

Hence, the eigenvalues are

λ1 =
br

(b+ cx̄)2
− α− 2βx̄, λ2 = −d+

pqx̄

1 + hx̄
.

The fixed point E1 is locally stable if |λi| < 1, i = 1, 2. Now |λ1| < 1 is equivalent to

α+ 2βx̄− 1 <
br

(b+ cx̄)2
< α+ 2βx̄+ 1

and |λ2| < 1 is equivalent to

d− 1 <
pqx̄

1 + hx̄
< d+ 1.

This completes the proof.

We remark that the above stability conditions imply that the predator goes to extinction while prey

is there.

Proposition 3. Assume that pq > h(1 + d) and (b+ cx∗)(α+βx∗ + 1) < r hold. Then, the fixed point

E∗ = (x∗, y∗) of system (2.1) is stable if the following inequalities are fulfilled:

pqx∗y∗

(1 + hx∗)2

[
rk

(b+ cx∗)(1 + ky∗)2
+

p

1 + hx∗

]
+

br

(b+ cx∗)2(1 + ky∗)
< 1+α+2βx∗ +

py∗

(1 + hx∗)2
, (3.2)

α+2βx∗+
py∗

(1 + hx∗)2
− br

(b+ cx∗)2(1 + ky∗)
< 1+

pqx∗y∗

2(1 + hx∗)2

[
rk

(b+ cx∗)(1 + ky∗)2
+

p

1 + hx∗

]
. (3.3)



DYNAMICS OF A DISCRETE PREDATOR-PREY SYSTEM 53

Proof. The characteristic equation at E∗ is∣∣∣∣∣∣∣
br

(b+cx∗)2(1+ky∗) − α− 2βx∗ − py∗

(1+hx∗)2 − λ −x∗
[

rk
(b+cx∗)(1+ky∗)2 + p

1+hx∗

]
pqy∗

(1+hx∗)2 1− λ

∣∣∣∣∣∣∣ = 0,

which is now written in the form λ2 − ηλ+ γ = 0, where

η =
br

(b+ cx∗)2(1 + ky∗)
− α− 2βx∗ − py∗

(1 + hx∗)2
+ 1,

and

γ =
br

(b+ cx∗)2(1 + ky∗)
− α− 2βx∗ − py∗

(1 + hx∗)2
+

pqx∗y∗

(1 + hx∗)2

[
rk

(b+ cx∗)(1 + ky∗)2
+

p

1 + hx∗

]
.

For stability of E∗, we use Jury Criterion which is given by |η| < 1 + γ < 2. This condition has two

parts, namely (i) γ < 1, and (ii) −1 − γ < η < 1 + γ. By the formula for γ given above, Part (i) is

precisely (3.2). For Part (ii), the left inequality is nothing by (3.3), while the right inequality reduces

to

0 <
pqx∗y∗

(1 + hx∗)2

[
rk

(b+ cx∗)(1 + ky∗)2
+

p

1 + hx∗

]
which is always true when the interior fixed point exists. From the above analysis, we infer that E∗ is

stable under the conditions of the theorem, and the proof is completed.

3.1. Bifurcation around the interior fixed point. In discrete context, the Neimark-Sacker bifurca-

tion is the counterpart of the Hopf bifurcation that takes place in continuous systems. It was explored

by Neimark [19] and alone by Sacker [20]. Hopf bifurcation generates limit cycles in the phase plane in

the continuous models. Alternately, Neimark-Sacker bifurcation produces dynamically invariant cycles.

Subsequently, we may get isolated periodic orbits as well as trajectories that cover the invariant circle

densely. Biologically, Neimark-Sacker bifurcation implies that all the populations can oscillate around

some mean values.

Flip bifurcation is another type of bifurcation which is also recognized as period doubling bifurcation

and it occurs when a small changes in bifurcation parameters give rise to a new system that bifurcate

twice the period as the original system. This bifurcation indicates the loss of stability of a periodic

orbit.

System (2.1) has at most one unique fixed point E∗, hence the system does not admit fold bifurcation.

So we are interested in examining the Neimark-Sacker bifurcation and flip bifurcation in the sequel.

Proposition 4. System (2.1) admits Neimarck-Sacker bifurcation at E∗ if the following conditions are

satisfied:

br

(b+ cx∗)2(1 + ky∗)
+

pqx∗y∗

(1 + hx∗)2

[
rk

(b+ cx∗)(1 + ky∗)2
+

p

1 + hx∗

]
= α+2βx∗ +

py∗

(1 + hx∗)2
+1, (3.4)

and
pqx∗y∗

(1 + hx∗)2

[
rk

(b+ cx∗)(1 + ky∗)2
+

p

1 + hx∗

]
< 4. (3.5)

Proof.. If the Jacobian matrix J(E∗) has two complex conjugate eigenvalues with modulus 1,

Neimark-Sacker bifurcation appears [21]. This requires that det(J(E∗)) = γ = 1 and −2 < tr(J(E∗)) =

η < 2. Replacing η and γ (see the proof of Proposition 3), the first condition (γ = 1) is precisely (3.4);

and the second condition on η is (3.5). This completes the proof.
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Proposition 5. System (2.1) admits a flip bifurcation at E∗ if the following conditions are satisfied:

2

[
1 +

br

(b+ cx∗)2(1 + ky∗)

]
+

pqx∗y∗

(1 + hx∗)2

[
rk

(b+ cx∗)(1 + ky∗)2
+

p

1 + hx∗

]
= 2

[
α+ 2βx∗ +

py∗

(1 + hx∗)2

]
.

(3.6)

Proof. System (2.1) admits flip bifurcatiopn when a single eigenvalue is −1. Thus the condition for

flip bifurcation can be written in the form 1+η+γ = 0 where γ and η are as in the proof of Proposition

3. This condition is precisely (3.6), and hence completes the proof.

4. Chaos control

Chaos control is a technique of stabilization by means of small perturbation which are used to unstable

periodic orbits for a given system. Sometimes bifurcation and chaotic behaviour are really undesirable

phenomena in discrete dynamical systems, because there may be an extinction of population due to

chaos. So controlling chaos is an important issue. There are different methods for controlling chaos,

e.g., feedback control strategy, hybrid control technique and pole-placement method. By applying

these methods, one can retard or remove the chaotic behaviour due to appearance of bifurcation in

the dynamical systems and rebuilt the stability of the system. In this section, we use mainly the state

feedback control technique [13] to stabilize a chaotic orbit at an unstable fixed point of system (2.1).

Consider the following controlled system related to (2.1):
xn+1 = xn

[
r

(b+ cxn)(1 + kyn)
− α− βxn −

pyn
1 + hxn

]
− u(xn, yn),

yn+1 = yn

[
−d+

pqxn
1 + hxn

] (4.1)

where u(xn, yn) = c1(xn − x∗) + c2(yn − y∗) is a feedback controlling force with c1 and c2 being the

feedback gains and (x∗, y∗) being the unique fixed point of system (2.1). The Jacobian matrix of system

(4.1) evaluated at (x∗, y∗) is given by

J(x∗, y∗) =

(
m11 − c1 m12 − c2
m21 m22

)
where

m11 =
br

(b+ cx∗)2(1 + ky∗)
− α− 2βx∗ − py∗

(1 + hx∗)2
,

m12 = −x∗(
rk

(b+ cx∗)(1 + ky∗)2
+

p

1 + hx∗
),

m21 =
pqy∗

(1 + hx∗)2
,

m22 = 1.

The characteristic equation of the variational matrix J(x∗, y∗) is

λ2 − (m11 +m22 − c1)λ+m22(m11 − c1)−m21(m12 − c2) = 0 (4.2)

Suppose λ1 and λ2 are the roots of equation (4.2), then we have

λ1 + λ2 = m11 +m22 − c1, λ1λ2 = m22(m11 − c1)−m21(m12 − c2). (4.3)

The lines of marginal stability can be derived by the equations λ1 = ±1 and λ1λ2 = 1. These restrictions

ensure that the eigenvalues λ1 and λ2 have moduli equal to 1.
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First suppose that λ1λ2 = 1. Then from (4.3), we find

l1 : c1m22 − c2m21 = m11m22 −m12m21 − 1.

Next assume that λ1 = 1. Then from (4.3), we obtain

l2 : c1(1−m22) + c2m21 = m11 +m22 −m11m22 +m12m21.

Lastly, assume that λ1 = −1 and from. (4.3), we get

l3 : c1(1 +m22)− c2m21 = m11 +m22 + 1 +m11m22 −m12m21.

The stable eigenvalues lie within a triangular region bounded by the lines l1, l2 and l3 in the c1-c2 plane.

5. Numerical Simulation

In this section, we present some numerical simulation to illustrate the usefulness of the obtained

results as well as for giving direction to find desirable bifurcations and chaos of the discrete time system

(2.1).

In Fig. 1, we select the parameter values r = 4.5, k = 1, b = 1, c = 1, p = 4, q = 1, h = 1, α = 0.1, β =

0.1. We draw the bifurcation diagram with respect to the parameter d in the interval (1.5, 2.8). As d

increases, we observe a transition phase from stability to bifurcation within a limit cycle, to a periodic

window and ultimately to chaos.

In Fig. 2, we select the parameter values r = 4.5, k = 1, b = 1, c = 1, p = 4, q = 1, h = 1, α =

0.1, β = 0.01. Here β is decreased from 0.1 to 0.01 from previously chosen parameters in Fig. 1. We

draw the bifurcation diagram with respect to the parameter d in the interval (1.5, 2.8). As d increases,

we observe a transition phase from stability to bifurcation within a limit cycle, to a periodic window

and ultimately to chaos. Here we observe flip bifurcation.

In Fig. 3, we select the parameter values r = 4.5, b = 1, c = 1, p = 1.8, q = 1, h = 1, α = 0.1, β = 0.01.

We draw the bifurcation diagram with respect to the parameter k in the interval (2.1, 2.8). As k

increases, we observe a transition phase from stability to bifurcation within a limit cycle, to a periodic

window and ultimately to chaos.

In Fig. 4, we select the parameter values r = 4.5, k = 1, b = 1, c = 1, p = 4, q = 1, h = 1, d = 1, α =

0.1, β = 0.01. and the initial value is (0.1, 0.1). With the above choice of parameters, we find chaotic

behaviour of the system. To avoid the chaotic dynamics, feedback gains c1 = 0.3 and c2 = −1.2. are

chosen. The chaotic orbit is stabilized at the fixed point (1, 0.306246).

6. Discussion

In this article, we have studied the qualitative behaviour of a discrete predator-prey model with fear

effect and density dependent birth rate of the prey species. The predator functional response is taken

as Holling type II. Prey’s birth rate is assumed to be as Beverton-Holt type function [18]. We have

mainly identified the system parameters that affect the dynamics of the system. We have observed

two boundary fixed points and a unique interior fixed point. Stability analysis of these fixed points

is examined by Jury technique. The criterion for Neimark-Sacker bifurcation and flip bifurcation are

used for examining the bifurcations around the positive fixed point. It is identified that the parameter

d, the death rate of predator in the system is more relevant for the appearance of flip bifurcation and

Neimark-Sacker bifurcation whenever it is varied in some appropriate interval. We have also found

Neimark-Sacker bifurcation by varying the parameter k. In investigating bifurcation, we have noted
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Figure 1. Bifurcation diagram for prey and predator populations with d for fixed

values r = 4.5, k = 1, b = 1, c = 1, p = 4, q = 1, h = 1, α = 0.1 and β = 0.1.

that β, the intraspecific competition among the prey species has an important role. It is checked that

smaller values of β may result flip bifurcation while larger values for β may result for Neimark-Sacker

bifurcation. In [1], the authors studied system (2.1) with b = 1, and c = 0 and remarked that the

cost of fear affect the existence of Hopf bifurcation as well as the direction of Hopf bifurcation in the

continuous model. But in our discrete time model (2.1), we observed Neimark-Sacker bifurcation and

chaotic behaviour of the system varying the fear factor. Recently, Kundu et al. [22] analysed similar

type of system with b = 1, c = 0 and h = 0 without obtaining different type of bifurcations and they

also observed that the system with fear effect becomes stable from chaotic dynamics by increasing fear

factor which is not so in our system (see Fig. 3).

The conditions of Proposition 1, shows that when the intrinsic growth rate of prey lies in a certain

interval and the death rate of predator remains below a certain threshold value, both the populations

go to extinction. If the restrictions of Proposition 2 are satisfied, the predator population goes to

extinction while prey population can sustain there. The stable coexistence of all the populations are

possible when all the conditions of Proposition 3 hold. The conditions of Proposition 4 suggests that

Neimark-Sacker bifurcation is possible for system (2.1). But it is difficult to interpret biologically these

conditions. Numerical simulations indicates that E∗ is stable for d < 2.2 and loses its stability at

d = 2.2 and the system undergoes Neimark-Sacker bifurcation when the death rate d exceeds the value

2.2 (see Fig. 1). We have observed that when intraspecific competition among the prey species is low

and the death rate of the predator exceeds the value 2.05, system admits flip bifurcation (see Fig. 2)
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Figure 2. Bifurcation diagram for prey and predator populations with d for fixed

values r = 4.5, k = 1, b = 1, c = 1, p = 4, q = 1, h = 1, α = 0.1 and β = 0.01.

follows from the Proposition 5. We also note that when the fear factor k crosses the critical value 2.15,

the system undergoes Neimark-Sacker bifurcation (see Fig. 3).

The chaotic nature of the system is nicely controlled by the state feedback control strategy (see Fig.

4). Numerical simulation exhibits that feedback control mechanism can dominate chaos to unstable

fixed point strongly and ultimately stability of the system is achieved.

Acknowledgment. The author is grateful to the anonymous reviewer and the Associate Editor for

their helpful comments for improving this paper.
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Figure 3. Bifurcation diagram for prey and predator populations with k for fixed

values r = 4.5, d = 1.6, b = 1, c = 1, p = 1.8, q = 1, h = 1, α = 0.1 and β = 0.01.
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Figure 4. Phase diagram of system (2.1) for r = 4.5, k = 1, b = 1, c = 1, d = 1, p =

4, q = 1, h = 1, α = 0.1 and β = 0.01. with initial values (x0, y0) = (0.1, 0.1) in the left

panel and controlled system (4) for c1 = 0.3 and c2 = −1.2 in the right panel.
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