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A MATHEMATICAL MODEL OF QUORUM QUENCHING IN BIOFILMS AND

ITS POTENTIAL ROLE AS AN ADJUVANT FOR ANTIBIOTIC TREATMENT

VIKTORIA FREINGRUBER, CHRISTINA KUTTLER, HERMANN J EBERL, AND MARYAM GHASEMI

Abstract. We extend a previously presented mesoscopic (i.e. colony scale) mathematical model of

the reaction of bacterial biofilms to antibiotics. In that earlier model, exposure to antibiotics evokes

two responses: inactivation as the antibiotics kill the bacteria, and induction of a quorum sensing based

stress response mechanism upon exposure to small sublethal dosages. To this model we add now quo-

rum quenching as an adjuvant to antibiotic therapy. Quorum quenchers are modeled as enzymes that

degrade the quorum sensing signal concentration. The resulting model is a quasilinear system of seven

reaction-diffusion equations for the following dependent variables: the volume fractions of up-regulated

(protected), down-regulated (unprotected) and inert (inactive) biomass [particulate substances], and

the concentrations of a growth promoting nutrient, antibiotics, quorum sensing signals, and quorum

quenchers [dissolved substances]. The biomass fractions are subject to two nonlinear diffusion effects:

(i) degeneracy, as in the porous medium equation, where biomass vanishes, and (ii) a super-diffusion

singularity as it attains its theoretically possible maximum. We study this model in numerical simula-

tions. Our simulations suggest that for maximum efficacy quorum quenchers should be applied early

on before quorum sensing induction in the biofilm can take place, and that an antibiotic strategy that

by itself might not be successful can be notably improved upon if paired with quorum quenchers as

an adjuvant.

1. Introduction

Bacterial biofilms are groups of microorganisms that attach to an immersed surface called substratum

and are enclosed in a self-produced extracellular polymeric substance (EPS). This gel-like surrounding

protects biofilms against eradication which makes them beneficial in various fields such as waste water

treatment [53]. On the other hand in medicine and food processing where bacterial proliferation can

cause serious problems such as bacterial infections, failure of medical implants or downstream prolifer-

ation of pathogens, it is important to control bacterial biofilms [33, 38, 41]. A feature of biofilms that

distinguishes them from planktonic cells is their resistance against chemical and mechanical washout

[48]. Thus, finding a way to eradicate biofilms as effectively as possible is an active research area. Vari-

ous reasons have been suggested for the increased resistance of biofilm bacteria against antibiotics, such

as its heterogeneous structure that allows the formation of microenvironments with different growth

conditions within a colony, protection by EPS that limits penetration of antibiotics such that inner
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layers of the biofilm can not be reached and remain active after treatment, and formation of persister

cells that are extremely resistant to antibiotics [1, 5, 38, 48, 50]. Heterogeneity in and of biofilms occurs

due to diffusion gradients that drive life in biofilms, and Quorum Sensing (QS).

QS is a type of cell-cell communication, used to coordinate gene expression and group behavior [27].

Bacteria produce and sense signalling substances; when a critical signal concentration is reached, the

cells become induced, and undergo changes in gene expressions. However, induction does not always

occur homogeneously. Depending on environmental conditions and physical properties of biofilms like

their thickness, the inner region of the biofilms might be up-regulated whereas the outer layers are down-

regulated. The signal substance is also called ”autoinducer” because of a positive feedback loop in the

underlying gene regulatory system upregulating its own production. Our focus in this study is on Gram-

negative bacteria [55], which often use acyl homoserine lactones (AHL) as signal molecules. Besides such

spatial heterogeneity there are other ways, by which QS can influence the biofilm’s resistance against

antibiotics, namely regulation of virulence factors, and control of EPS production [31]. Furthermore, it

has been shown experimentally that a low concentration of antibiotics can increase the QS activity and

make the biofilms even more resistant [3, 46]. In this case the antibiotic acts as a stressor and QS, being

used as a stress response mechanism, changes the biofilm’s behavior [28, 44], for example QS leads to

more cooperation between cells which can induce resistance against antibiotics.

One strategy to increase the susceptibility of biofilms is to disturb the QS mechanism. Disruption of

QS can be done in several ways such as inhibiting QS signal production, blocking the QS receptors of

cells, or accelerating the degradation of QS signals. The last possibility is also referred to as ”Quorum

Quenching” (QQ) [34], while the former two will be referred to as ”Quorum sensing inhibition” later

in this paper. QQ molecules appear naturally and are used by microbial species to gain an advantage

in competitive environments. Concerning an AHL-based QS system these molecules can be categorised

mainly into two distinct groups of AHL-degrading molecules, the acyl-homoserine lactonase (AHL-

lactonase) and the acyl-homoserine lactone acylase (AHL-acylase) [11]. AHL-lactonase degrades AHL

by hydrolysing its lactone bond and AHL-acylase degrades AHL by hydrolysing the amide linkage

between the fatty acid chain and the homoserine lactone moiety [11].

Several mathematical models have been suggested using different mathematical concepts to describe

biofilm development. The model that we use for our study is formulated in the framework that was

originally proposed in [15]. The underlying model, which is able to reflect the ecological-mechanical

duality of biofilms, was extended later to consider QS and biofilm response to antibiotics [17, 20, 25, 31].

The biofilm growth model that we use as a foundation of our work, is a nonlinear density dependent

reaction-diffusion model for biomass, which is coupled with a semi-linear reaction-diffusion equation

for nutrients. The nonlinearity of the biomass equation stems from two interacting nonlinear diffusion

effects: (i) porous medium degeneracy as the dependent variable biomass volume fraction approaches

zero, and (ii) super-diffusion singularity as this dependent variable in the diffusion coefficient approaches

the known maximum density. The interplay of these two nonlinear effects assures that the solution of

the biomass equation is bounded by the maximum cell density regardless of growth activity [35], and

that spatial expansion of the biofilm does not take place if there is enough space for new biomass to

be accumulated. Moreover, it shows that interfaces between the biofilm and the liquid phase are not

stationary and change over time. Eventually neighbouring colonies can combine into a bigger colony,

in which case their interfaces may merge and dissolve.
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Mechanisms of resistance of biofilms to antibiotics have been studied extensively by proposing several

mathematical models and approaches [5, 8, 9, 42, 51]. However, the focus in these studies is on physical

protection.

To understand the mechanism of QS in biofilms and investigate how biofilm properties and envi-

ronmental conditions influence the time of QS induction, some studies propose mathematical models

[6, 7, 24, 29, 57]. Other modelling studies focus on examples of QS induction changing biofilm behavior,

rather than on QS induction itself [20, 25, 57].

In [31], the authors studied the effect of QS on biofilm response to exposure to antibiotics. They

suggested a model which accounts for the stress response mechanism and showed through computer

simulations how a low, sub-lethal concentration of antibiotics can upregulate the QS activity as a stress

response and thus increase the biofilm’s resistance.

Using QQ to assist in the eradication of biofilms is quite a new strategy, and the range of mathematical

models is still very limited. In [54] a quorum sensing inhibition model was introduced. The authors in

that study expanded the quorum sensing models introduced in [39] and [56] and developed a complex

ODE model considering the whole AHL production process and all three possibilities of quorum sensing

inhibition. It is shown in [23] that quorum quenching can improve the efficiency of quorum sensing

inhibition and vice versa. However, their simulations show that when the therapy strategies are not

combined, quorum sensing inhibitors can reduce the signal molecule by 35% and QQ can reduce it

by almost 100%. To the best of our knowledge, the effects of quorum quenching or quorum sensing

inhibition on a bacterial community has only been studied in [54]. The authors use a complex multiscale

approach to capture the mechanisms involved.

Our main objective is to introduce a model that captures the interplay between QS signals and QQ

enzymes on the population level, and its role in the temporal and spatial behavior of biofims, as well

as the stress response mechanism. For this purpose, we develop further the spatio-temporal model that

was proposed in [31] and account for the effect of QQ on QS disruption. The resulting model will

include three biomass volume fractions: down-regulated active, up-regulated active and inert (inactive)

biomass, and nutrients, antibiotics, AHL and QQ concentration as dissolved substrates. Due to the

complexity of the suggested model, we will identify the key parameters that affect the interaction of QS

and QQ, and study the efficiency of QQ interference with biofilm stress response to sublethal antibiotics

concentrations by computer simulations.

2. Mathematical Model

2.1. Model assumptions. We develop further a mathematical model that was introduced in [31] to

study the QS stress response mechanism of biofilms that are exposed to a sublethal small doses of

antibiotics. New in the developed model is to include also Quorum Quenching (QQ) to investigate how

disturbing QS can affect the resistance of a biofilm to antibiotics. The model is based on the following

assumptions:

(1) The computational domain Ω is divided into two regions: (1) the aqueous phase, Ω1(t), in

which the total biomass density, M is zero, i.e. Ω1(t) = {(x, y) ∈ Ω ⊂ R2 : M(x, y, t) = 0};
(2) the region of biofilms, Ω2(t), with positive density of biomass Ω2(t) = {(x, y) ∈ Ω ⊂ R2

: M(x, y, t) > 0} that is surrounded by the liquid phase [15, 16]. The regions Ω1(t) and Ω2(t)

are separated by the biofilm/water interface Γ(t) = ∂Ω1(t)∩∂Ω̄2(t) which is not stationary and

might change as the biofilm grows.
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(2) Biofilm growth is controlled by a dissolved nutrient, which is transported in the liquid phase

by Fickian diffusion. Following [49], we assume that in the biofilm itself (Ω2) the diffusion

coefficient is smaller than in the aqueous phase, due to the increased diffusive resistance of

EPS. We also assume that the biofilm decays naturally. New biomass is produced by cell

division. In this process nutrients are consumed at a rate proportional to the rate at which

biomass is produced. The bacterial growth rate is proportional to the local biomass density

and depends on the local nutrient concentration in a nonlinear fashion: if nutrient is available

in abundance, 0th order kinetics (i.e. constant rate) apply [i.e. we have a saturation effect], if

nutrient becomes limited the growth rate is proportional to the available nutrient concentration,

i.e. we are in the 1st order reaction regime. The transition between both regimes is modeled

in the usual manner by Monod kinetics. EPS is not explicitly modeled but subsumed in the

biomass fraction, as is common in biofilm modeling. This corresponds to the assumption that

the EPS-to-cell ratio is constant, cf. [40]. Biomass is assumed to not spread notably if locally

space is available to accommodate new cells, but if the volume fraction occupied by biomass

(active or inert) approaches the maximum cell density (one after non-dimensionalization) spatial

movement of biomass takes places. Both these effects are modeled as a single density dependent

diffusion mechanism.

(3) Quorum sensing. Bacterial cells can secret and sense AHL to communicate with each other.

We define two distinct active types of biomass in the sense of AHL concentration: down-

regulated biomass and up-regulated biomass. When the local AHL concentration passes a

critical threshold value, changes in gene expressions occur and down-regulated cells convert

into up-regulated cells. Back transformation from the up- to the down-regulated state occurs

if the AHL concentration locally drops below the critical threshold [20, 25]. Down-regulated

cells produce AHL at lower rates than up-regulated cells (by about one order of magnitude),

see [22] for an experimental study for the bacterial species Pseudomonas putida. AHL signals

are subject to abiotic decay at a constant rate that depends on environmental conditions. Up-

regulated cells are assumed to be more resistant to antibiotics than down-regulated cells (as

shown in an experimental study, [37]), and are assumed to have a slightly slower growth rate due

to the resources required to maintain increased resistance against antibiotics, as such processes

are metabolically costly [45]. In the presence of antibiotics as stressor, more AHL is produced

due to a stress response mechanism. AHL is dissolved and transported by diffusion in the

surrounding aqueous phase and in the biofilm, there however at a reduced rate.

(4) Antibiotics are modeled as dissolved substrates which diffuse in the surrounding liquid and

in the biofilm, however at different rates. They remove both types of active biomass (i.e. up-

regulated and down-regulated), but as per our assumption up-regulated biomass is killed slower,

i.e. it is more resistant. Beyond the above-mentioned improved resistance of up-regulated cells

further effects like an increased biofilm production (see [10]) and by that a better physical

protection against antibiotics may play a role. Active cells that are killed by antibiotics become

inert (i.e. still occupy some volume), which we include in the model as third biomass volume

fraction. We assume that antibiotics are degraded in the action against bacteria, and also

underlie natural abiotic decay following the assumption made by [13, 17].

(5) The production of AHL is counteracted by quorum quenching, which consequently delays

and damps the QS up-regulation. We assume that QQ molecules are a dissolved substrate and

added to the system externally through the top boundary. They react with the signal molecules
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and inactivate them. In our model, we introduce quorum quenchers that act like enzymes

degrading the QS signal. Even for the AHL type QS signals, there are many different sources

of enzymatic degradation known, not only bacteria but also eukaryotes [32]. In this reaction

they are catalysts and not degraded themselves. QQ molecules diffuse in the liquid and biofilm

regions at different rates. As the simplest possible assumption they loose viability abiotically,

at a constant rate, potential further biotic processes are left out here.

Vis-a-vis the underlying model of [31] the last assumption on quorum quenching is newly added in

this study.

2.2. Governing equation. According to the assumptions and based on the basic biofilm growth model

introduced originally in [15], the mathematical model is formulated as a system of differential mass

balance equations for the fractions of space occupied by the bacterial biomass types (down-regulated A,

up-regulated B, inert I), and the concentrations of growth-limiting nutrient substrate N , AHL signal

molecule S, antibiotics C, and quorum quenchers Q over the spatial domain Ω ⊂ R2. The biomass

densities are then I × Mmax, A × Mmax, B × Mmax where Mmax[gm−3] is the maximum biomass

density, in terms of mass COD (Chemical Oxygen Demand) per unit volume. All these together give

the governing equation as:

∂I

∂t
= ∇(D(M)∇I) + βA

Cn1A

Kn1

C + Cn1
+ βB

Cn1B

Kn1

C + Cn1︸ ︷︷ ︸
inactivation of active biomass

∂A

∂t
= ∇(D(M)∇A) + µA

NA

KN +N︸ ︷︷ ︸
growth of down-regulated biomass

− βA
Cn1A

Kn1

C + Cn1︸ ︷︷ ︸
inactivation by antibiotics

+ ψ
τn2B

τn2 + Sn2︸ ︷︷ ︸
downregulation

−ω Sn2A

τn2 + Sn2︸ ︷︷ ︸
upregulation

− kAA︸︷︷︸
natural decay

∂B

∂t
= ∇(D(M)∇B) + µB

NB

KN +N︸ ︷︷ ︸
growth of up-regulated biomass

− βB
Cn1B

Kn1

C + Cn1︸ ︷︷ ︸
inactivation by antibiotics

− ψ τn2B

τn2 + Sn2︸ ︷︷ ︸
downregulation

+ω
Sn2A

τn2 + Sn2︸ ︷︷ ︸
upregulation

− kBB︸︷︷︸
natural decay

∂N

∂t
= ∇(DN (M)∇N)− νA

NA

KN +N
− νB

NB

KN +N︸ ︷︷ ︸
nutrient uptake

——continued on next page

(2.1)
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∂C

∂t
= ∇(DC(M)∇C)− δA

Cn1A

Kn1

C + Cn1
− δB

Cn1B

Kn1

C + Cn1︸ ︷︷ ︸
antibiotic degradation

− θC︸︷︷︸
abiotic decay

∂S

∂t
= ∇(DS(M)∇S) + σ0(A+B)︸ ︷︷ ︸

base level signal production

+ µS(A+B)
C

ḰC + C︸ ︷︷ ︸
increased signal production in response to antibiotics

+ σS
Sn2

τn2 + Sn2
B︸ ︷︷ ︸

increased signal production by up-regulated cells

− νQQ
S

KQ + S︸ ︷︷ ︸
QS-QQ interaction

− γsS︸︷︷︸
abiotic decay

∂Q

∂t
= ∇(DQ(M)∇Q)− γqQ︸︷︷︸

abiotic decay

where all variables are explained in the Table 1: Here we use M := I + A + B for the total volume

Table 1. Description of the variables in the model (2.2)

Variable Definition Dimension

I Inert biomass volume fraction −
A Down-regulated biomass volume fraction −
B Up-regulated biomass volume fraction −
N Nutrient concentration gm−3

C Antibiotic concentration gm−3

S Signal molecule concentration nM

Q Concentration of quorum quencher gm−3

fraction occupied by biomass. As per the previous studies [15, 20, 25, 31] etc., the diffusion coefficient

for all biomass fractions is nonlinearly density dependent and is defined as D(M) = d Mα

(1−M)β
[m2d−1].

In D(M), the parameter d [m2d−1] denotes the biomass motility coefficient which is positive and much

smaller than the diffusion coefficients of dissolved substrates in liquid. The nonlinear effects represented

by D(M) are: (i) a porous medium degeneracy, i.e. D(M) vanishes as M ≈ 0 and (ii) a super diffusion

singularity as M approaches unity. The porous medium degeneracy, Mα, guarantees the finite speed

for biofilm/water interface propagation if the biomass density is small, 0 < M � 1, and it is also

responsible for the formation of a sharp interface between the biofilm and the surrounding liquid. The

second effect (ii) at 0 � M < 1 enforces the solution to be bounded by unity as it was shown by

Efendiev et al. [35]. This is counteracted by the degeneracy as M = 0 at the interface. Consequently,

M squeezes in the biofilm region and approaches its maximum value 1. Hence, the interaction of both



A MODEL OF QUORUM QUENCHING IN BIOFILMS. 125

non-linear diffusion effects with the growth term is needed to describe spatial biomass spreading [16].

It is known that in models of this type, as in the porous medium equation, the biomass gradients at

the interface between Ω1 and Ω2 can blow up and that accordingly regions with M ≈ 0 and M ≈ 1 can

be very close together.

All reaction terms in the model (2.2) are described in detail in [31] except for the interaction between

QS and QQ. The reaction of quorum sensing molecules with quorum quenching molecules is modeled

with Michaelis-Menten kinetics [12, 52, 54] in which νQ is the maximum QS-QQ reaction rate, and KQ

is the Michaelis constant for QS-QQ reaction. It is assumed that signal molecules do not have any effect

on QQ acting as enzymes, and decay of QQ is described by a constant rate.

The computational domain to study the mathematical model (2.2) in our simulation experiments is

a rectangle of size Ω = [0, L]× [0, H]. We assume dissolved substrates nutrient, antibiotics, and quorum

quenchers are added through the top boundary of the domain y = H and AHL are removed through

this segment. Thus, a Robin condition is posed for dissolved substrates at y = H. We also assume the

biofilm colonies are formed on a substratum at the bottom boundary, y = 0 which is impermeable to

biomass and dissolved substrates. At the lateral boundaries, x = 0 and x = L, a symmetry boundary

condition, i.e. the homogeneous Neumann condition, is applied for all dependent variables. This allows

us to view the domain as a part of a continuously repeating (and repeatedly symmetrically mirrored)

larger domain. At the top boundary, y = H, we pose a homogeneous Neumann condition for the

biomass fraction. Thus the boundary conditions on domain Ω = [0, L]× [0, H] are defined as:



At x = 0, L and y = 0 :

∂nI = ∂nA = ∂nB = 0,

∂nN = ∂nC = ∂nS = ∂nQ = 0,

At y=H:

∂nI = ∂nA = ∂nB = 0,

N + λ∂nN = N∞,

C + λ∂nC = C∞,

S + λ∂nS = 0,

Q+ λ∂nQ = Q∞

(2.2)

where C∞, N∞ and Q∞ are the antibiotics, nutrient and QQ bulk concentration; we assumed that the

bulk concentration for AHL is 0, which forces a flux of signals out of the system there. ∂n denotes

the outward normal derivative. The parameter λ [mm] can be interpreted as an (externally enforced)

concentration boundary layer thickness. This concentration boundary layer is linked to the convective

contribution of external bulk flow to substrate supply and removal. According to [18] a small bulk

flow velocity implies a thick concentration boundary layer, while a thin concentration boundary layer

represents fast bulk flow, see also [14]. Hence, 1/λ [mm−1] is a measure for the mass transfer from the

external bulk phase into the computational domain.

We refer to Appendix A for existence of a bounded solution for this model. It closely follows the

approach taken for similar models [19]. It is based on a regularisation of the density dependent biomass

diffusion coefficient to overcome the challenges posed by the degeneracy at M = 0 and the singularity

at M = 1.
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3. Numerical methods and simulation setting

For the numerical treatment and further result discussions, the whole system is non-dimen-sionalized

with choices x̃ = x/L, t̃ = tµA for the independent variables, where L is a characteristic length scale

of the computational domain and 1
µA

is the characteristic time scale for growth of biomass species A.

The concentration variables N, C, S and Q are non-dimensionalized as Ñ = N
N∞

, C̃ = C
C0

, S̃ = S
τ , and

Q̃ = Q
Q∞

where N∞ and Q∞ are the bulk concentrations for nutrient and QQ respectively and C0 = δA
µA

.

Note that the volume fractions I, A and B are already defined as dimensionless variables. Note that,

for the sake of simplicity and easier biological and physical interpretation, we will make our choices of

parameters based on the dimensional values and describe simulation results in terms of those and drop

the ”tilde” from our notation. For the detailed description of the nondimensionalization procedure we

refer to [31].

For the spatial discretization, we introduce a uniform grid of N×M grid cells over the domain Ω, and

discretize the partial differential equations using a Finite Volume Method where fluxes across grid cell

boundaries are obtained from arithmetic averaging. Upon introducing a lexicographical grid ordering

one obtains the discrete-in-space, continuous-in-time system of 7 ·N ·M ordinary differential equations

(see Appendix B for the details).

dI
dt = DII + R1IA + R2IB + bI

dA
dt = DAA + R1AA + R2AB + bA

dB
dt = DBB + R1BA + R2BB + bB

dN
dt = DNN + R1NA + R2NB + bN

dC
dt = DCC + R1CA + R2CB + R3CC + bC

dS
dt = DSS + R1SA + R2SB + R3SS + bS

dQ
dt = DQQ + R1QQ + bQ

(3.1)

The matrices DI,A,B,N,C,S,Q are block matrices of size NM × NM that depend on the dependent

variables I,A,B. They are symmetric, and weakly diagonally dominant with non-positive main diagonals

and non-negative off-diagonals and contain the spatial derivative terms of each equation. The matrices

R1,2(I,A,B,N,C,S)
, R3(C,S)

, and R1(Q)
are diagonal matrices of size NM ×NM which contain the reaction

terms of each equation. The vectors bI,A,B,N,C,S,Q are of size NM and contain contributions from the

imposed boundary conditions for each biomass species and dissolved substrates. By the posed boundary

conditions for biomass species the entries of bI,A,B are zero. For substrates due to the Robin boundary

conditions at the top, the entries bN,C,S,Q are zero for all grid cells (i, j) with j < M , and for j = M

they are obtained from the boundary conditions.

The introduced model in (2.2) is a stiff problem due to the different time scales between the substrate

and biomass equations. This can be exacerbated by non-linear diffusion effects if the biomass approaches

unity somewhere. However, it is proved in Appendix A that the biomass density remains below unity, i.e.

the singularity is not attained. This allows using a high order time adaptive, error controlled numerical
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Figure 1. The geometry of initial inoculation Ω2(0) of substratum by biofilm. In our

simulations initially the colonies are down-regulated, i.e. entirely of type A.

method. For the time integration of the resulting ODE system, the embedded Rosenbrock-Wanner

method ROS3PRL [43] is used which was previously proposed and used to solve similar problems

[29, 30].

Initially, three down-regulated semispherical colonies are placed equidistantly on the substratum, cf.

Figure 1. The initial value of the nutrient N is 1; the initial values for I,B,C, S,Q are set at zero. The

simulations stop when a specified simulation time is reached. The parameters and their values used in

computer simulations are summarized in Table 2.

For a better interpretation of the computer simulations of the model, we will provide two-dimensional

visualizations of the simulations and define the following quantitative lumped measures:

U(t) =

∫
Ω

U(x, y, t)dxdy

where U = A,B, S,Q represents dimensionless quantities. These output parameters give the total

amount of active biomass fraction and dissolved substrates in the considered computational domain.

Further quantities of interest will be calculated from those.

4. Numerical Simulations

The derivation of model (2.2) in section 2.2 was based on converting the assumptions detailed in

section 2.1 into mathematical language. A first qualitative validation of the model formulation is to

confirm that simulations of the model give results that agree with what one could deduct directly in a

straightforward manner from the assumptions in simple thought experiments, i.e. to ascertain that the

model assumptions and the model output are compatible and that no unforeseen effects are observed

in simple scenarios. We will conduct several such model validation simulations in the next sections

4.1.1-4.1.4.

After that, in section 4.2 we will conduct more targeted simulation experiments. We focus here on

the role of the parameters of the quorum quenching process that is the new addition of the present

study. More specifically, we focus on the parameters that encode the environmental conditions that are

under the control of an experimenter. The focus here is to obtain a better understanding of the role that

quorum quenching might play as an adjuvant to antibiotic therapy. Per our assumptions we expect that

increasing the amount of quorum quenchers and the rate at which they are supplied reduces the quorum
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Table 2. Model parameters for system (2.2) used for computer simulations

Parameter Symbol Value Dimension Source

Growth rate of A µA 6 d−1 [20]

Growth rate of B µB 4 d−1 Assumed

Nutrient monod half saturation KN 4 gm−3 [20]

Antibiotics monod half saturation KC 0.034 gm−3 Assumed

Antibiotics monod half saturation for AHL ḰC 0.034 gm−3 Assumed

Up regulation rate ω 2.5 d−1 Assumed

Down regulation rate ψ 2.5 d−1 Assumed

Decay rate of A by antibiotics βA 30 d−1 Assumed

Decay rate of B by antibiotics βB 3 d−1 Assumed

Substrate uptake rate for A and B νA,B 104 gm−3d−1 Assumed

Decay rate of AHL γs 0.12 d−1 [21]

Threshold of AHL τ 10, 20 nM [20]

AHL production induced by antibiotics µS 55000 nMd−1 [20]

Basic production rate of AHL σ0 5500 nMd−1 [20]

Production rate of AHL after QS induction σS 55000 nMd−1 Assumed

Antibiotics degradation rate (A) δA 4× 103 gm−3d−1 Assumed

Antibiotics degradation rate (B) δB 4× 103 gm−3d−1 Assumed

Decay rate of antibiotics θ 0.001 d−1 Assumed

Biomass motility coefficient d 10−12 m2d−1 [16]

Exponent of Hill function for removal by antibiotics n1 2.5 − Assumed

Degree of polymerisation n2 2.5 − [25]

Biofilm/water diffusivity ratio of each substrate ρN,C,S 0.1 − Assumed

Nutrient and antibiotics diffusion coefficient in water D0
N,C 10−4 m2d−1 [20]

AHL diffusion coefficient in water D0
S,Q 0.00007758 m2d−1 [20]

Lysis rate kA,B 0.1 d−1 Assumed

Concentration boundary layer thickness λ 0.5 mm Assumed

Michaelis constant for QS-QQ reaction KQ 100 nM [12, 52, 54]

Max. reaction rate QS-QQ νQ 8640 nM [12, 52, 54]

QQ concentration in bulk Q∞ 10 nM −
Decay rate of QQ γq 0.12 d−1 Assumed

sensing signal and thus the bacteria’s protection mechanism against antibiotics, so that a given amount

of antibiotics administered will become more effective. What is not a priori clear is whether there are

limitations to this, i.e. whether from a certain point on further increase of quenchers supplied does not

lead to further noticeable additional gain. It is also not clear a priori whether there is a threshold that

must be exceeded for quorum quenchers to be effective.

4.1. Model Validation Experiments.

4.1.1. Illustrative simulation. To illustrate the interplay of QS and QQ, the results of an exemplary

simulation are shown in Fig.2. The bulk concentration of QQ is in one case set to Q∞ = 10[gm−3],

in the other one no QQ are added (base case scenario). The QS induction threshold is chosen as

τ = 10[nM ]. Antibiotics are added at t = 10. QQ is added from the beginning, t = 0. Both are turned

off at the end of simulation. Before adding antibiotics, the total value of active biomass, A(t) +B(t), is

the same in the system with and without QQ. However with QQ the biofilm is mostly down-regulated,
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Figure 2. Biomass volume fractions A(t), B(t), signal concentration S(t) in simula-

tions with and without QQ. Antibiotics are administered at t = 10, QQ at t = 0 in

one case, and absent in the other. Q∞ = 10 [nM ], C∞ = 2 [gm−3]. S = 1 is the QS

induction threshold.

because the AHL concentration does not exceed the induction threshold. This means the biofilm is

less resistant so that it can be removed over the simulation time. Without QQ the biofilm is mostly

up-regulated at the time antibiotics are added. We observe in Fig.2 that bluethe AHL concentration

increases upon the onset of treatment, however, in the case with QQ it is always below the threshold.

This, of course, is what one expects, providing a first qualitative validation of our model formulation

that reflects correctly the assumptions on which it was built.

Visualizations of the spatial structure of relative fraction of active biomass, R := A+B
I+A+B , and

concentration of AHL at t = 12 are given in Fig.3. As QQ prevents QS upregulation, conversion of

biomass of type A to B does not occur and antibiotics can kill bacterial cells effectively which results in

the development of homogeneous biofilm with near zero density of active cells, see Fig.3(a). However,

without QQ, QS up-regulation occurs before adding antibiotics and the biofilm consists of more up-

regulated biomass which is more resistant to antibiotics. In the case without QQ added, we observe a

clear heterogeneous biomass distribution. Active biomass is largest in the inner region of the biofilm.

There are two possible reasons for this: (i) upregulation initiates from the inner region of biofilm, which

means that the bacteria there are more resistant to antibiotics. (ii) antibiotics diffuse into the biofilm

from the aqueous surrounding and decay as they inactivate biomass. This leads to lower antibiotics

concentrations in the inner regions as a consequence of the interplay of diffusion and reaction. The

spatial distribution of AHL concentration is given in Fig.3(c). Although the AHL concentration is low,

in the down-regulated regime, we observe a clear AHL gradient in S from inside out. For the parameter

set at hand QQ is effective in that it reduces the signal to the down-regulated range. It is interesting

to point out that we have here a counter diffusion phenomenon: signals are produced in the inner layer
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(a) (b) (c)

Figure 3. Relative fraction of active biomass, R := A+B
I+A+B with QQ (a) and without

(b), at t = 12. AHL distribution with QQ (c).

and diffuse toward the aqueous phase, whereas quorum quenchers that neutralised the signal diffuse

in the opposing direction. However, since there is no inactivation of quorum quenchers by interaction

with signal or biomass, after t = 12 quorum quenchers have been in the system long enough to have

completely penetrated the biofilm for our parameter set and no noteworthy gradients of Q are observed.

The heterogeneity in the biofilm therefore is controlled by almost Fickian diffusion (of the signal) and

therefore can be explained directly by maximum principles.

4.1.2. Biofilm growth and disinfection versus timing of exposure to quorum quenching. An important

aspect of biofilm control strategies is the timing such that best performance is achieved. In the case

of QQ based strategies, this means maximum QS disruption. To investigate this question, we add a

specific amount of QQ, 10[gm−3], at three different times: at the beginning (before adding antibiotics),

at t = 10 (together with the antibiotics), and t = 15 (after adding antibiotics). The results are reported

in Fig.4. Adding QQ initially keeps the concentration of AHL below the QS threshold and upregulation

does not occur before adding antibiotics. At the time of exposure to antibiotics, upregulation takes

place due to the stress response mechanism but at the end of the simulation interval only a very small

amount of bacterial cells remains active. The values of active biomass species in the two other cases

are larger because the biofilm is already up-regulated when the treatment starts and in our parameter

regime, QQ is not strong enough to reduce the AHL concentration below the threshold. Noteworthy

here is that there is no significant difference between the results of adding QQ at t = 10 and t = 15

at the end of simulation (t = 20). This finding shows that over the considered time interval and by

the amount of applied QQ, adding QQ early on, before the biofilm can develop, is the most effective

approach in terms of fast removal of bacterial cells.

For a better understanding of the importance of timing of exposure to QQ, we added QQ at four

different times and recorded the value of up-regulated biomass at t = 10, results are shown in Table

(3). The later QQ is added, the more up-regulated biomass is present at the time of treatment.

4.1.3. The effect of QQ on periodic administration of antibiotics. In medical and industrial settings,

administering antibiotics periodically is a realistic and practically implementable, but not necessarily

an optimal biofilm control strategy. Important is here how long the periods of exposure are, and how

long the periods between them during which no antibiotics are supplied. If the latter is too long the

bacteria might be fully recovering, if it is too short the second dose might be ineffective.
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Figure 4. Biomass volume fraction A(t), B(t), AHL S(t) with and without QQ.

Antibiotics are added at t = 10 and QQ at three differentent times t = 0, t = 10, and

t = 15. Q∞ = 10 [gm−3], C∞ = 2 [gm−3]. S = 1 is the QS induction threshold.

Table 3. Amount of up-regulated biomass B at t = 10, in dependence of the time

QQ are administered.

Time of adding QQ B(t)|t=10

0 0.1468066116E-02

2 0.1541007139E-02

5 0.6240219094E-02

10 0.7814844603E-01

We already showed above that adding QQ early on can keep the biofilm down-regulated and suscep-

tible to antibiotics. We explore now whether QQ can improve an otherwise inefficient way of antibiotics

administration. For this purpose we assumed that a limited amount of QQ, 10[gm−3], is added at t = 0

and antibiotics are added at t = 10 periodically (with period 5). Antibiotics are on during the fist

quarter of a treatment period and off over the remaining three quarters, whereas QQ is continuously

added.

The total amount of active biomass and AHL are plotted in Fig.5. We observe that without QQ,

AHL exceeds the induction threshold and the biofilm consists mostly of up-regulated biomass, which

is more resistant but grows slower than down-regulated cells would. After adding the antibiotics the

biomass volume fraction decreases only slightly and it will recover after antibiotics supply is turned off.

At the beginning of the second cycle, even more biomass is available that cannot be removed during the
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Figure 5. Biomass volume fractions A(t) and B(t), AHL S(t) with and without QQ.

Antibiotics are administered at t = 10 periodically and QQ is added continuously

starting at t = 0. Q∞ = 10 [nM ], C∞ = 2 [gm−3]. S = 1 is the QS induction

threshold.

following treatment cycles. Upon adding QQ at t = 0, QS up-regulation is prohibited before starting

the treatment. Thus, down-regulated biofilm is treated by antibiotics which is more susceptible and

its value is reduced significantly after the first cycle of treatment. The given time for re-establishment

of the biofilm is not large enough so total value of active biomass volume fractions decreases at the

end of each cycle. At the beginning of treatment, the concentration of AHL increases instantaneously

nevertheless it is below the threshold in the case with QQ, see Fig.5.

4.1.4. Effect of quorum quenching on the stress response mechanism. A crucial assumption underlying

our model is taking into account the response of QS to antibiotics as stressor. Considering QS as a

stress response mechanism enables our model to describe resistance of biofilm to a small dosage of

antibiotics. It was shown in [31] that this is the result of QS upregulation and production of a more

protected biofilm. To study the effect of QQ on this mechanism is the objective of this section. For this

purpose, four cases are considered:

(1) without QQ and without the stress response mechanism

(2) without QQ and with the stress response mechanism

(3) with the stress response mechanism and QQ activation at t = 0

(4) with the stress response mechanism and QQ activation at t = 8, the time of adding antibiotics

A low dosage of antibiotics, 10 times the half saturation concentration C∞ = 0.34 [gm−3] is added to

the system at t = 8 and the switching threshold is set to τ = 20[nM ]. To turn off the stress response

mechanism, the corresponding parameter µS [nMd−1] is set to zero. The total values of biomass volume

fractions and AHL for these four cases are given in Fig.6. Without QQ, for µS = 0 the bacteria are
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Figure 6. Biomass volume fractions A(t), B(t), AHL S(t) without and with QQ

(added at two different times t = 0 and t = 8). C∞ = 0.34 [gm−3] and S = 1 is the

QS induction threshold.

swiftly and completely eradicated by the antibacterial agent. Consequently, the concentration of AHL

reduces. In the same system but with accounting for the stress response mechanism upon exposure to

antibiotics, the AHL concentration increases and surpasses the threshold almost everywhere resulting

in the formation of a more protected biofilm. By adding QQ at either t = 0 or t = 8, it counteracts

the response of QS to antibiotics and does not allow the AHL concentration to surpass the threshold

of QS upregulation. Nevertheless, the biofilm is eradicated earlier if QQ is added at t = 0 because of

the production of down-regulated biomass.

4.2. Numerical Results: The effect of environmental conditions. New in our current model,

vis-a-vis the model in [31] on which it is based is the quorum quenching mechanism. Therefore, it is

important to investigate the role of the parameters that affect quorum quenching. These are primarily:

• νQ: signal inactivation rate, the higher it is the more effective is QQ

• KQ: quenching half saturation signal concentration: the higher it is, the smaller is S/(KQ+S),

i.e. less effective is QQ

• γq: quencher decay rate, the higher it is, the faster are quenchers degraded, the less effective is

QQ

• Q∞: bulk concentration of quenchers, the higher it is the more effective is QQ

• λ: controls how fast quenchers are added to the system (see also the discussion below in the

next subsection)

• DQ: diffusion coefficient of quenchers, controls how fast quenchers spread in the domain; in

the absence of reactions with the signal or the biomass that degrade quenchers a homogeneous

distribution is reached quickly, so that this parameter plays only a small role
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More specifically, γq, Q∞ determine which value of Q will be attained. The rate at which the signal

is degraded by quenching depends proportionally on Q, and on νQ. So, changing Q via γq, Q∞ has

similar effect as changing νQ and only one of those factors needs to be investigated. KQ controls how

quenching depends on the signal concentration but the effect is limited: The smaller KQ is, the less

important it will be since S/(KQ + S) ≈ 1. For large KQ (much higher than the signal concentrations

that are attained, KQ � S =⇒ KQ +S ≈ KQ), quenching activity ∼ S
KQ

depends proportionally on S.

Q∞, λ are entirely controlled by the experimental setup, νQ,KQ, γq likely depend on the biological

characteristics of a specific system and probably also on the experimental setup.

Under this light, owing to the high computational cost of a full fledged sensitivity analysis, we

only include one of the parameters γq, Q∞, νQ that directly (and in a very similar manner) affect the

quenching rate. More specifically we choose Q∞ that is entirely controlled by the experimenter. We

also include the parameter λ that is related to the role of external mass transfer.

4.2.1. External mass transfer. The effect of the fluid flow velocity on the supply of nutrients, antibi-

otics, QQ to the system, and on the removal of autoinducers from the system is considered in our

model indirectly by the external concentration boundary layer thickness λ[mm]. Large values of λ[mm]

correspond to slow bulk flow while low values of λ[mm] mimick fast flows. By increasing the external

mass transfer, i.e. decreasing the value of λ[mm] more QQ is delivered; see also [18, 31] for a dis-

cussion of boundary conditions. On the other hand, at smaller λ[mm] more AHL is washed out and

more antibiotics are provided which regulates the QS upregulation. Thus, it is not straightforward to

predict whether increasing the external mass transfer can prevent or delay QS upregulation. To study

this question, we varied the value of λ[mm] from 0 to 2[mm] and computed the total value of biomass

volume fractions, AHL, and QQ. The results are plotted in Fig.7 and snapshots of biofilm structure and

AHL concentration are given in Figs.8-11. The results are also compared to the base case without QQ.

We assume in these simulations that antibiotics are added at t = 10 and QQ is added continuously,

from the onset at t = 0, as in our earlier illustrative simulations in section 4.1.1. Before antibiotics

are added, a smaller value of λ[mm] means more nutrient supply, which makes the biofilm bigger.

Conversely, after the time at which antibiotics has been first added, an increased nutrient and an

increased antibiotics supply compete. The biofilm that was largest at the onset of treatment remains

largest after the treatment although active biomass is totally removed for all tested values of λ after

t = 15. At the beginning and before adding antibiotics the total values of biomass volume fractions

are the same in the system with and without QQ, but after adding antibiotics the value of the active

biomass in the system with QQ reduces more because the biofilm is mostly down-regulated and can be

removed faster. In the system with QQ, increasing the external mass transfer brings more QQ into the

system and also increases the AHL washout. Thus, the AHL concentration stays below the threshold

for all values of parameter λ. Nevertheless, for λ = 0 an instantaneous spike in the signal is found upon

adding antibiotics which exceeds the QS threshold (shown by dashed line). Noteworthy here is having

another spike at the beginning and a different trend in the temporal behavior of AHL compared with

the case without QQ. By increasing λ the total value of AHL increases if QQ is deactivated while with

QQ, AHL has the maximum value for λ = 0. The reason for the instantaneous jump at t ≈ 0.1 is

the low concentration of QQ that cannot prevent QS and the time course of AHL has the same trend

as in the case without QQ. As time passes, Q(t) increases and the interaction between QS and QQ

begins and the maximum value of AHL that was correspondent to λ = 2[mm] becomes minimum. The

different behavior is caused by the small positive feedback due to a mostly down-regulated biofilm in
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Figure 7. Biomass volume fractions A(t), B(t), AHL S(t) and QQ (Q(t)) in a system

with (solid lines) and without QQ (dashed lines). QQ is added at t = 0 and antibiotics

at t = 10, C∞ = 2 [gm−3]. S = 1 is the QS induction threshold. Panel for S(t) in the

third row shows the total value of AHL in a system with QQ.

the system with QQ. By decreasing λ, the production of AHL by antibiotics and biomass species and

decay of AHL by QQ and through washout increases. However, under the given parameter conditions,

the increase in the production of AHL is more than that in the decay of AHL. Thus with QQ, total

value of AHL is maximum for λ = 0, see Figs.7.

Visualizations of the spatial structure of the biofilm for different values of λ at t = 13 are depicted

in Fig.8. The biofilm size decreases as λ increases due to the nutrient limitation. For λ = 2[mm] we

observe that for both cases with and without QQ, an inactivation occurs only in a small inner region

of the biofilm due to the limitation in antibiotics supply. Nevertheless, the inactive zone is larger if

QQ is added. For λ = 1[mm], the distribution of active and inactive cells in the biofilm is relatively

homogeneous in the system with QQ because the biofilm is homogeneously down-regulated. However,

without QQ the QS upregulation makes the inner parts of the biofilm up-regulated which are more

resistant to antibiotics. Moreover, due to the penetration limitation, antibiotics do not reach the inner
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regions of biofilm very well. Thus, we note gradients of active biomass from the center to the outer

regions and formation of niches in the inner core of the biofilm where bacteria are protected. For the

other two values of λ, the gradients are smaller and so is the fraction of active biomass in the system

without QQ. While with QQ, as AHL concentration is below the threshold and there is enough nutrient,

biofilm grows and becomes disinfected homogeneously, see Figs. 8-9.

To investigate how the concentration of AHL changes spatially in the systems with and without QQ,

we plot a visualization of AHL concentration at t = 13 for these two cases in Figs 10-11. We observe

that by increasing λ in the system with QQ, the concentration of AHL decreases and has the maximum

value within the biofilm. However, without QQ increasing λ decreases the washout of AHL and makes

the gradient of the AHL concentration less steep.

4.2.2. Limitation of quorum quenching bulk concentration. As discussed above, besides λ there are other

parameters in our model that affect the interaction between QS and QQ. These are: νQ, KQ, γQ, DQ,

and Q∞. Among these parameters only Q∞ can be entirely controlled externally by an experimenter,

the others depend primarily on the biological characteristics of a specific system and probably also on

the experimental setup.

Our main objectives in this sections are to investigate whether the concentration at which QQ is

added can change the QS behavior of a biofilm that is already up-regulated at the time when antibiotics

are administered, and to find a range of QQ concentration under which quenching is efficient for the

simulation setup investigated here. For this purpose we vary the QQ bulk concentration from Q∞ =

0.5[gm−3] to Q∞ = 50[gm−3] over a specific time interval. We assume that antibiotics and QQ both are

added at t = 10. The time course of biomass volume fractions and AHL is given in Fig.12. By increasing

the QQ bulk concentration, the signal concentration S(t) drops down below the threshold earlier, which

causes a back transformation from up-regulated to down-regulated biomass. Hence, the antibiotics kill

bacteria more effectively and less active cells remain at t = 20. Furthermore, the results show that

quenching is not effective below a specific QQ concentration (Q∞ = 10[gm−3] in the current study) and

changing the QQ bulk concentration around very small values does not result in a notable difference in

the amount of active bacterial cells A(t) +B(t). Nevertheless, increasing the bulk concentration of QQ

unlimitedly does not necessarily improve the quenching because of the saturation phenomenon in the

QS-QQ interaction.

This suggests that to obtain an optimum result in terms of inhibiting or delaying the QS upregulation,

a particular range of QQ bulk concentration should be used that varies depending on the simulation

setup and other parameter values. In our study 10 < Q∞ ≤ 30[gm−3] leaves the minimum active cells

at the end of the experiment. Noteworthy here is a small rise in A(t) at t ≈ 15 for Q∞ = 10[gm−3]

and 10 < t < 15 for Q∞ = 30, 50[gm−3]. The reason for this behavior is that after adding QQ it takes

a while for Q(t) to diffuse within the liquid and biofilm and QS inhibitions to begin. This initiation

time is smaller for higher concentrations of QQ, see Fig.12. Nevertheless, the value of A at the time of

stopping the treatment is almost zero in all cases.

5. Discussion

It is well-known nowadays, that bacteria may use their quorum sensing system to control several

mechanisms which may help themselves to defend against antibiotics treatment. This may concern

a direct resistance of a part of the bacterial population against antibiotics, or an indirect enhanced

protection against treatment, e.g. by mechanical protection of the biofilm ([48, 49]). Additionally, more
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λ = 0 λ = 0.5[mm]

Figure 8. Biofilm at t = 13 with (top) and without (bottom) QQ for various λ.

Shown is the relative fraction of active biomass, R := A+B
I+A+B .

λ = 1[mm] λ = 2[mm]

Figure 9. Biofilm at t = 13 with (top) and without (bottom) QQ for various λ.

Shown the relative fraction of active biomass, R := A+B
I+A+B .

and more bacterial species develop resistances against antibiotics in general, which creates a big need for

alternative treatment methods against pathogenic bacteria. Thus QQ, avoiding QS-upregulation and
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λ = 0 λ = 0.5[mm]

Figure 10. AHL concentration at t = 13 with (top) and without (bottom) QQ for

various λ.

λ = 1[mm] λ = 2[mm]

Figure 11. AHL concentration at t = 13 with (top) and without (bottom) QQ for

various λ.

by that pathogeneity of the bacteria, can be seen as alternative to the classical antibiotics treatment
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Figure 12. Biomass volume fractions A(t), B(t), and AHL S(t). Antibiotics and QQ

are added at t = 10 with bulk concentration C∞ = 2 [gm−3] and various Q∞. S = 1

is the induction threshold.

(e.g. [2]). One could argue now for complete replacement of antibiotics by QQ, but the combina-

tion may be even more successful, as combination therapies are applied in different contexts: combining

different antibiotics or combining completely different types of therapies as for tumour treatment. More-

over, sometimes combining different therapies even better avoids the development of resistances against

treatments.

Especially due to the important role of the biofilm around the bacterial cells and colonies, spatial

effects are very important to be taken into account. This does not only concern the spatial arrangement

of the neighbouring bacterial cells or microcolonies, but also the biofilm acting as a physical barrier and

reducing the accessibility by all chemical substances, AHL, antibiotics and QQ.

As already taken into account in [31], the model approach provides some options as e.g. the con-

sideration of QS as a stress response, in this case the presence of antibiotics as stressor, leading to an

increased AHL production. This may result in a larger proportion of the more-resistant up-regulated

biomass fraction, thus an effect counteracting the application of antibiotics. Especially at that point,

the additional application of a QQ process or substance, applied at a suitable time point or time in-

terval, may help a lot. A typical question in this context is of course how to choose a good, if not the

best possible time schedule as treatment strategy, and to check if varying it makes a big difference at

all. This could be shown e.g. in Section 4.1.1: There is not much difference in the total biomass, if

QQ was added first or not until the antibiotic treatment was started. In both cases, the biomass was

reduced significantly after the antibiotic was added. Thus, the combined treatment strategy can be
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very successful. But one can also observe that not all situations which prove to be helpful in the model,

can be applied realistically: As it could be seen in Section 4.1.2, the addition of QQ would work most

efficiently if applied at the very beginning. But in practical life, one may only know after a while that

bacteria are present and a treatment should be started.

The provided model approach allows for first examinations of such situations, even in a quantitative

way if ranges of parameter values are known for the species of interest. For our simulation studies,

parameter values were chosen mainly in a range suitable for the the soil bacterium P. putida, but other

Gram-negative bacteria with a lux-type QS system may act in similar ranges and the goal of the present

study focuses on the general behavior, not on very concrete quantitative statements. By that, this very

general approach could even be adapted and used for different chemicals and gene regulation systems

going forward.

Our PDE approach considers both, the time-dynamics as well as the spatial effects and therefore also

describes heterogeneous, realistic situations. It includes both, a refined model component for the growth

of biomass and biofilm, as well as several prototypic QS and QQ phenomena in their time dynamics

and a refined model for the multiple interactions between antibiotics and both, biomass growth and

QS (as analysed already in greater detail in [31]). Some effects even could not be observed without

having this spatial structure included: In Figure 3(c) a situation can be observed, where the AHL

concentration is on a low total level, but nevertheless there is a clear gradient in its concentration

level visible which strongly influences the behavior of bacteria in the biofilm via the nonlinearities. A

homogeneous model would not show here any effect. As mentioned above, the role of stressors which

increase the QS activity, may be important. Figure 6 shows such an example. Although, this effect

might be quantitatively overestimated, it is clearly visible that QQ could be useful when it comes to

controlling the bacteria, even if it is added late. We also considered the external mass transfer and were

able to obtain expectable results, i.e. stronger or weaker effects of QQ if the mass transfer, which is

responsible for supplying nutrients, antibiotics, QQ and removing AHL, was larger or smaller.

Apart from using potential QQ players as treatment, agents acting as quorum quenchers might also

appear in natural settings or might be produced by other cells and organisms [12]. Examples for this are

known from very different species, even plants and animals [2], but not much quantitative information

is available yet. In our model, we introduced a QQ which acts like an enzyme degrading the QS signal.

Even for the AHL-type QS signals, there are many different sources of enzymatic degradation known,

not only bacteria but also eukaryotes [4, 32]. Models of other, maybe more specific quorum quenching

systems, might require different formulations. In the parallel study [26] we investigated in simulations a

mechanism in which quorum quenchers decay when they inactivate signals. This introduced additional

parameters (the QQ degradation rate and a corresponding half saturation concentration). Depending

on the values of these parameters this extended model behaves like the one we presented and discussed

here (small QQ degradation rate), in other parameter ranges (e.g. high QQ degradation rates, small

half saturation concentrations), the QQ mechanism might become ineffective if QQ becomes limited.

Where to apply such models of QQ interactions? Obviously, the present model is mainly suited

for laboratory conditions, where most players can be controlled well and no external conditions, e.g.

limitations in concentrations, need to be accounted for. Taking into account e.g. patients’ needs,

goes beyond this study, as this would involve too many other interactions and side conditions, such as

physiological effects that remain yet to be investigated, making it difficult to study the role of QQ in

medical treatment with the current model.
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Possible extensions of the interaction structure could be to adapt it to more specific bacterial species,

e.g. by adapting the structure of the underlying QS system and the AHL production, or by considering

different activity levels of biomass or other types of interactions between QS and QQ. This may modify

the corresponding interaction terms, but not the general structure of the model system.

Taken together, this prototype model may yield some first insights about the potential combination

of antibiotics and quorum quenching as treatment and better control against pathogenic bacteria, and

can serve as a basis for further studies.

6. Conclusion

We propose a nonlinear model to describe the interaction between quorum sensing and quorum

quenching in biofilms as an inhibitory enzyme that can disrupt quorum sensing upregulation, and the

role of quorum quenching as a potential adjuvant for antibiotic therapy. As quorum sensing increases

the resistance of biofilms to antibiotics through various mechanisms, its prevention can make bacterial

biofilms more vulnerable to chemical treatments. In our study, we investigated the effect of environmen-

tal conditions and time of adding quorum quenching on its influence on quorum sensing upregulation.

The main findings are listed as follows:

• Quorum quenching counteracts the stress response mechanism and hinders the onset of quorum

sensing upregulation. This leaves the biofilms in an unprotected mode of growth for a prolonged

period. However upon turning off the treatment for a very long time, upregulation may occur

and a biofilm in a protected mode is formed.

• Adding quorum quenching at the beginning prevents quorum sensing upregulation and bacte-

ria cannot be synchronized for group behavior. This keeps the biofilm better susceptible to

antibiotics.

• In the case of adding quorum quenching either at the time of adding antibiotics or after that,

a high concentration of quorum quenching should be used to interfere with quorum sensing.

• Increasing the external mass transfer which corresponds to fast fluid velocity increases the

nutrient and antibiotic supply as well as quorum quenching. On the one hand, it increases

washout of signal molecules. Upon quorum sensing disruption, the biofilm is down-regulated,

hence, grows faster and is more vulnerable to antibiotics. By decreasing λ, the AHL production

dominates the QQ-dependent decay of AHL. However, since all bacterial cells are inactivated,

the signal molecules diminish as well.

• In a system without quorum quenching, a periodic application of antibiotics is not efficient

in the sense of removing biofilms. On the other hand, with quorum quenching the quorum

sensing induced upregulation is prevented and a periodic administration of the same amount of

antibiotics as in the case without QQ can remove bacteria.
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Appendix A. Existence of solutions

Let 

∂nI = ∂nA = ∂nB = ∂nN = ∂nC = ∂nS = ∂nQ = 0, at x = 0, L and y = 0

I = A = B = 0, at y = H

N + λ∂nN = N∞, C + λ∂nC = C∞ at y = H

S + λ∂nS = 0, Q+ λ∂nQ = Q∞ at y = H

(A.1)

be the boundary conditions for the PDE system (2.2) and the initial conditions satisfy the following

properties 

A(0, ·) = A0, B(0, ·) = B0, I(0, ·) = I0,

N(0, ·) = N0, C(0, ·) = C0, S(0, ·) = S0, Q(0, ·) = Q0

I0, A0, B0, N0, C0, S0, Q0 ∈ L∞(Ω)

‖A0 +B0 + I0‖L∞(Ω) = 1− δ0 < 1

0 ≤ C ≤ C∞, 0 ≤ N0 ≤ N∞, 0 ≤ S0, 0 ≤ Q0 ≤ Q∞

(A.2)

where 0 < δ0 < 1. We have

Remark A.1. The boundary conditions (A.1) differ from the boundary conditions (2.2) for the compo-

nents I, A, and B at the top boundary. As discussed in [13, 18, 35], solutions of the degenerate problem

(2.2) exist for all t > 0 if Robin or Dirichlet conditions are applied somewhere along the boundary

to keep the biomass density there below unity. Moreover to prevent un-physical boundary condition

effects that occur when the biofilm interface reaches the top boundary, our numerical solutions stop

long before it happens. Thus, solutions that satisfy the homogeneous Neumann condition also satisfy

the homogeneous Dirichlet condition, i.e. solutions to problem (2.2) with boundary conditions (2.2)

and (A.1) are identical and the existence proof covers our simulation periods as our solutions satisfy

both (2.2) and (A.1) simultaneously.

Theorem A.1. The system (2.2) with boundary conditions (A.1) and initial conditions (A.2) possesses

a solution in the sense of distributions in L∞(R+×Ω)×L∞(R+×Ω)×L∞(R+×Ω)×L∞(R+×Ω)×
L∞(R+ × Ω)× L∞(R+ × Ω)× L∞(R+ × Ω). This solution satisfies almost everywhere A ≥ 0, B ≥ 0,

I ≥ 0 and A+B + I < 1, as well as 0 ≤ C ≤ C∞, 0 ≤ N ≤ N∞, 0 ≤ S, and 0 ≤ Q ≤ Q∞.

Proof. In order to show the existence of non-negative solutions, we employ the regularization idea

introduced in [13, 30, 35] and define the regularized, non-degenerate quasi-linear diffusion-reaction
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system 

∂I

∂t
= ∇(Dε(M)∇I) +βA

Cn1A

Kn1
C + Cn1

+ βB
Cn1B

Kn1
C + Cn1

∂A

∂t
= ∇(Dε(M)∇A) +µA

NA

KN +N
− βA

Cn1A

Kn1
C + Cn1

+ψ
τn2B

τn2 + Sn2
− ω Sn2A

τn2 + Sn2
− kAA

∂B

∂t
= ∇(Dε(M)∇B) +µB

NB

KN +N
− βB

Cn1B

Kn1
C + Cn1

−ψ τn2B

τn2 + Sn2 + ω
Sn2A

τn2 + Sn2
− kBB

∂N

∂t
= ∇(DN (M)∇N) −νA

NA

KN +N
− νB

NB

KN +N

∂C

∂t
= ∇(DC(M)∇C) −δA

Cn1A

Kn1
C + Cn1

− δB
Cn1B

Kn1
C + Cn1

− θC

∂S

∂t
= ∇(DS(M)∇S) +σ0(A+B) + µS(A+B)

C

ḰC + C

+σS
Sn2

τn2 + Sn2
B − νQQ

S

KQ + S
− γsS

∂Q

∂t
= ∇(DQ(M)∇Q) −γqQ

(A.3)

where the regular diffusion coefficient is defined as

Dε(M) :=


dεa if M < 0,

d
(M + ε)a

(1−M)b
if 0 ≤M ≤ 1− ε,

dε−b if M > 1− ε,

(A.4)

and show that solutions of the regularized system (A.3) converges to solutions of the original degenerate

problem (2.2) if ε → 0. Since the PDE system (A.3) is regular, the existence of solutions is concluded

using standard arguments, e.g., those in Ladyženskaja et al. [36] and following the positivity criterion

in [13] these solutions denoted by (Iε, Aε, Bε, Nε, Cε, Sε, Qε) are non-negative. In order to show the

boundedness of biomass volume fractions by unity (which is required physically and mathematically),

we add the equations for the biomass volume fractions to obtain

∂Mε

∂t
= ∇(Dε(Mε)∇Mε) + (µAAε + µBBε)

Nε
KN +Nε

− kAAε − kBBε (A.5)

where Mε := Iε +Aε +Bε. Introducing µ = max{µA, µB} and K = min{0,KA,KB} yields

∂Mε

∂t
≤ ∇(Dε(Mε)∇Mε) + µ

NεMε

KN +Nε
(A.6)

Defining the following single-species model with solutions (M̃ε, Ñε, C̃ε, S̃ε, Q̃ε)
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∂M̃ε

∂t
= ∇(Dε(M̃ε)∇M̃ε) + µ

ÑεM̃ε

KN + Ñε

∂Ñε
∂t

= ∇(DN (M̃ε)∇Ñε)− ν
ÑεM̃ε

KN + Ñε

∂C̃ε
∂t

= ∇(DC(M̃ε)∇C̃ε)− δ
C̃n1
ε M̃ε

Kn1

C + Ñn1
ε

− θC̃ε

∂S̃ε
∂t

= ∇(DS(M̃ε)∇S̃ε) + σM̃ε + µ̄S
M̃εC̃ε

ḰC + C̃ε
− νQ

Q̃εS̃ε

KQ + S̃ε
− γsS̃ε

∂Q̃ε
∂t

= ∇(DQ(M̃ε)∇Q̃ε)− γqQ̃ε

(A.7)

gives M̃ε as the upper solution for Mε, i.e., M̃ε ≥ Mε. Using the same arguments in [13, 35, 47], it

can be shown that M̃ε is bounded by unity indicating the boundedness of Mε by a value less than one.

Hence, due to the non-negativity of Iε, Aε, Bε, we conclude that 0 ≤ Iε, Aε, Bε < 1. To complete the

proof, we need to show that solution of the regularized problem (A.3) is convergent to the solutions of

the degenerate problem (2.2) as ε→ 0. This can be done by constructing an upper bound solution and

employing comparison theorem. We refer for the technical details of the procedure to [35, 47].

�

Appendix B. Numerical discretisation

For spatial discretization, we introduce a uniform grid of size N ×M for the rectangular domain

[0, 1]× [0, H/L] and integrate each equation of the resulting nondimensionalized system over each grid

cell. For instance, integrating the equation for A over grid cell with index (i, j) and using the Divergence

Theorem yields

d

dt

∫
vi,j

A dx dy =

∫
∂vi,j

Jnds+

∫
vi,j

R1A(N,C, S)A dx dy +

∫
vi,j

R2A(S)B dx dy, (B.1)

for i = 1, ..., N and j = 1, ...,M . Here, vi,j represents the domain of the grid cell, Jn = D(M)∂nA

denotes the outward normal flux across the grid cell boundary, and

R1A(N,C, S) =
N

KN +N
− βA

Cn1

Kn1

C + Cn1
− ω Sn2

1 + Sn2
− kA

and

R2A(S) = ψ
1

1 + Sn2

stand for the reaction terms. To evaluate the area integrals in (B.1), we evaluate the dependent variables

at the center of the grid cells,

Ai,j(t) := A(t, xi, yj) ≈ A
(
t,

(
i− 1

2

)
∆x,

(
j − 1

2

)
∆x

)
(B.2)

for i = 1, ..., N and j = 1, ...,M with ∆x = 1/N = H/LM ; the value of all other dependent variables at

the center of the grid cells can be evaluated in a similar way. The integrals in (B.1) are evaluated by the

midpoint rule and the line integral is evaluated by considering every edge of the grid cell separately. To
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this end, the diffusion coefficient D(M) in the midpoint of the cell edge is approximated by arithmetic

averaging from the neighbouring grid cell center points, and the derivative of A across the cell edge by

a central finite difference. These result in the following ordinary differential equation for A in cell (i, j):

d

dt
Ai,j =

1

∆x

(
Ji+ 1

2 ,j
+ Ji− 1

2 ,j
+ Ji,j+ 1

2
+ Ji,j− 1

2

)
+R1Ai,j

Ai,j +R2Ai,j
Bi,j , (B.3)

where

R1Ai,j
=

Ni,j
KN +Ni,j

− βA
Cn1
i,j

Kn1

C + Cn1
i,j

− ω
Sn2
i,j

1 + Sn2
i,j

− kA

and

R2Ai,j
= ψ

1

1 + Sn2
i,j

and for the fluxes we have, accounting for the boundary conditions,

Ji,j+ 1
2

=

{
1

2∆x

(
D(Mi,j+1) +D(Mi,j)

)
(Ai,j+1 −Ai,j) for j < M,

− 2
∆xD(0)Ai,M for j = M,

(B.4)

Ji,j− 1
2

=

{
0 for j = 1,

1
2∆x

(
D(Mi,j−1) +D(Mi,j)

)
(Ai,j−1 −Ai,j), for j > 1.

(B.5)

Ji+ 1
2 ,j

=

{
0 for i = N,

1
2∆x

(
D(Mi+1,j) +D(Mi,j)

)
(Ai+1,j −Ai,j) for i < N,

(B.6)

Ji− 1
2 ,j

=

{
0 for i = 1,

1
2∆x

(
D(Mi−1,j) +D(Mi,j)

)
(Ai−1,j −Ai,j) for i > 1,

(B.7)

The spatial discretization of the equations for the other dependent variables I,B,N,C, S,Q follows

the same principle. The major difference is for the substrates for which we have a Robin boundary

condition at the top of the domain instead of homogeneous Neumann condition. We refer the reader to

[30] for a detailed description of the changes to the discretization that this introduces.

Introducing the lexicographical grid ordering

π : {1, ..., N} × {1, ...,M} → {1, ..., NM} , (i, j) 7→ p = (j − 1)N + i (B.8)

and the vector notation I = (I1, ..., INM ), A = (A1, ..., ANM ), B = (B1, ..., BNM ), N = (N1, ..., NNM ),

C = (C1, ..., CNM ), S = (S1, ..., SNM ) and Q = (Q1, ..., QNM ) with

(I, A,B,N,C, S,Q)p := (I, A,B,N,C, S,Q)π(i,j) = (I, A,B,N,C, S,Q)i,j

for i = 1, ..., N , j = 1, ...,M , give the coupled system of 7 ·N ·M ordinary differential equations
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dI
dt = DII + R1IA + R2IB + bI

dA
dt = DAA + R1AA + R2AB + bA

dB
dt = DBB + R1BA + R2BB + bB

dN
dt = DNN + R1NA + R2NB + bN

dC
dt = DCC + R1CA + R2CB + R3CC + bC

dS
dt = DSS + R1SA + R2SB + R3SS + bS

dQ
dt = DQQ + R1QQ + bQ

(B.9)
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