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A STUDY ON THE MILD SOLUTION OF SPECIAL RANDOM IMPULSIVE

FRACTIONAL DIFFERENTIAL EQUATIONS

SAYOOJ ABY JOSE1,2, VARUN BOSE C. S.3, BIJESH P. BIJU4, AND ABIN THOMAS5

Abstract. In this article, we deal with mild solution of special random impulsive fractional differential

equations. Initially, we present the existence of the mild solution via Leray-Schauder fixed point

method. After that, we establish the exponential stability of the system. Finally, we give examples to

illustrate the effectiveness of the theoretical results.

1. Introduction

Impulsive differential Equations are very adaptive Mathematical model that replicate the evolution of

large classes of real process. Recently, in the fields of science and technology, we use fractional differential

equations and impulsive fractional differential equations as a great mathematical tool in modelling. The

stabilities like continuous dependence Mittag – Leffler Stability, Hyers Ulam stability and Hyers-Ulam-

Rassins stability for fractional differential equations and impulsive fractional differential equations made

curiosity in the mind of many researchers in the field of mathematics [10, 8, 14].

For impulsive differential systems, most researchers concentrate on the problems related to fixed time

impulses [5, 21, 29]. But the actual jumps happen mostly at random points. The solutions of the random

impulsive differential equations are a stochastic process. Now a day, the characteristics of solutions

to some integer order differential equations with random impulses have been analysed [25, 2, 15, 28].

Anguraj et al. [2] established the existence and exponential stability of semilinear functional differential

equations with random impulses under non-uniqueness. Yong and Wu [28] investigated the solutions

of stochastic differential equations with Random impulse using Lipschitz condition. Wu et al. [26, 27]

discussed the exponential stability and boundedness of differential equations with random impulses.

Sayooj et al.[17] have studied some characteristics of random integro differential equations with non

local conditions. In [16, 18, 19], the author found sufficient conditions for the existence as well as

stability of special random impulsive differential system with non local conditions using contraction

mapping principle and continuous dependence on initial conditions.

Now a days, fractional calculus has a lot of advanced research work has been done. And also it

have proved to be valuable tools in the modeling on many phenomina in various field of science and

engineering [4, 12, 13, 20, 22, 30]. The study about impulsive fractional differential equations have

a great attention, Akram Ben Alissa et al. [1] study the impulsive wave equation and analysis of

this problem from different angles to prove some results about impulsive controlability and obervability

without any geometrical condition on space Ω. In Many researchers studies about the existence, stability

and uniqueness of fractional differential equations without random impulses [5, 9]. In this paper we make
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a first attempt to study the existence and exponential stability results for special random impulsive

fractional differential systems by make use of the Leray – Schauder alternative fixed point theorem.

The main contributions of this work are given below:

↪→ We substantiate sufficient conditions for the existence of solutions for special random impulsive

fractional differential equations entangling the Caputo fractional derivative.

↪→ We prove the results on existence of solutions of special random impulsive fractional differential

equations by the use of the Leray – Schauder alternative fixed point theorem. This problem

helps to solve many complicated random impulsive fractional systems.

↪→ We find exponential stability in the quadratic mean of special random impulsive fractional

differential equations.

↪→ We provide examples of special random impulsive fractional differential systems as well as

random impulsive fractional differential systems. It helps to interpret the effectiveness of the

proposed results.

And the remaining work is constructed as follows: this paper consist of 4 sections. In Section 1 we

present few preliminaries, hypotheses results about fractional derivatives. Section 2 will be concerned

with existence and followed by exponential stability in the quadratic mean of special random impulsive

fractional differential equations in Section 3. The last section is allocated to examples illustrating the

applicability of the imposed conditions.

2. Preliminaries

Consider a real separable Hilbert space X and a non empty set Ω. Let %k be a random variable and %k
maps Ω to Dk, where Dk = (0, dk) for every k ∈ N ( collection of natural numbers ) and 0 < dk < +∞.

Also for i, j = 1, 2, . . . assume that if i 6= j then %i and %j are independent with each other. Also

assume %k follow Erlang distribution. Let % be a real constant, denote <% = [%,+∞), <+ = [0,+∞).

Consider the semilinear functional special random impulsive differential equations of the form

cDa
t x(t) = Ax(t) + f(t, x(t), Ux(t), V x(t)) t 6= ξk, t ≥ t0,

x(ξk) = bk(%k)x(ξ−k ), k = 1, 2, 3, . . . , (2.1)

x(t0) = xt0

cDa
t is the Caputo fractional derivative of order 0 < a < 1. A is the infinitesimal generator of a

strongly continuous semi group of bounded linear operators T(t), T ∈ X. The function f : <% ×X ×
X × X → X, bk : Dk → X for each k ∈ N; ξ0 = t0 and ξk = ξk−1 + %k for each k ∈ N. Obviously

0 < t0 = ξ0 < ξ1 < ξ2 < ξ3 · · · < ξk < . . . ;x(ξk−) = limt↑ξk x(t) according to their path with the norm

‖x‖ = supt0≤u≤t | x(u) | for every t satisfying t ∈ [t0, T ].

Ux(t) =

∫ t

t0

K (t, r)x(r)dr,K ∈ C[D ,<+],

V x(t) =

∫ T

t0

H (t, r)x(r)dr,H ∈ C[D0,<+],

where D = {(t, r) ∈ <2 : t0 ≤ r ≤ t ≤ T},D0 = {(t, r) ∈ <2 : t0 ≤ t, r ≤ T}. Let {Bt, t ≥ 0} be the

simple counting process generated by {ξn}, this implies {Bt ≥ t} = {ξn ≤ t}, also Ft is the notation

for the σ− algebra generated by {Bt, t ≥ 0}. The probability space denoted as (Ω, P, {Ft}). And the

Hilbert space of all {Ft}− measurable square integrable random variables with values in X is denoted

as L2 = L2(Ω, {Ft}, X).
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Let B represent Banach space B([t0, T ],L2), the family of all {Ft}- measurable random variable

ψ with the norm

‖ψ‖2 = sup
t∈[t0,T ]

E‖ψ(t)‖2

Definition 2.1. The fractional integral of the order a with the lower limit 0 for a function f is defined as

Iaf(t) =
1

Γ(a)

∫ t

0

f(r)

(t− r)1−a dr, t > 0, a > 0,

provided the right-hand side is pointwise defined on [0,∞), where Γ is a gamma function.

Definition 2.2. The Riemann–Liouville derivative of order a with the lower limit 0 for a function

f : [0,∞)→ R can be written as

LDaf(t) =
1

Γ(n− a)

dn

dtn

∫ t

0

f(r)

(t− r)a+1−n dr, t > 0, n− 1 < a < n.

Definition 2.3. The Caputo derivative of order a for a function f : [0,∞)→ R can be written as

cDaf(t) =L Da

[
f(t)−

n−1∑
k=0

tk

k!
f (k)(0)

]
, t > 0, n− 1 < a < n.

Definition 2.4. A semigroup {T(t), t ≥ t0} is said to be uniformly bounded if ‖T(t)‖ ≤ W for all t ≥ t0,

where W ≥ 1 is some constant. If W = 1, then the semigroup is said to be contraction semigroup.

Definition 2.5. For a given T ∈ (t0,+∞), a stochastic process {x(t) ∈ B, 0 < t0 ≤ t ≤ T} is called a

solution to the equation (2.1) in (Ω, P, {Ft}), if

(i) x(t) ∈ B is Ft- adapted;

(ii)

x(t) =

+∞∑
k=0

[ k∏
i=1

bi(%i)T(t− t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t), t ∈ [t0, T ],

where T ∈ (t0,+∞),

n∏
j=m

(·) = 1 as m > n,

k∏
j=i

bj(%j) = bk(%k)bk−1(%k−1) . . . bi(%i), and

IA(·) is the index function.

Remark: The proof of mild solution similar to [3, 23, 29], so we omit it.

Hypotheses. Some hypotheses which are used for proving the main results are given below;

(H1) There exist a continuous non-decreasing function H : <+ → (0,∞) and L1, L2, L3 ∈
L1([%, T ],<+) so that

E‖f(t, ζ1, ζ2, ζ3)‖2 ≤ L1(t)H
(
E‖ζ1‖

)2
+ L2(t)H

(
E‖ζ2‖

)2
+ L3(t)H

(
E‖ζ3‖

)2
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(H2) E

{
maxi,k

{∏k
j=i ‖bj(%j)‖

}}
is uniformly bounded if,

E

{
max
i,k

{∏k
j=i ‖bj(%j)‖

}}
≤ Θ, for each %j ∈ Dj , j ∈ N,Θ > 0 a constant

(H3) Define L ,K∗ and H∗ such that,

L = max{L1,L2,L3},

K∗ = sup
t∈[t0,T ]

∫ t

t0

|K (t, r)|2dt <∞, and

H∗ = sup
t∈[t0,T ]

∫ T

t0

|H (t, r)|2dt <∞.

Our existence and exponential stability theorems are based on the succeeding theorem, which is a

version of the topological transversal theorem.

Lemma 2.1. Let E be a convex subset of a Banach space X, and assume that 0 ∈ E. Let F : E → E

be a completely continuous operator, and let

U(F ) = {x ∈ E : x = λFx for some 0 < λ < 1},

then either U(F ) is unbounded or F has a fixed point.

3. Existence

Here, we presents the results on existence of solutions of special random impulsive fractional differ-

ential equations by make use of the Leray – Schauder alternative fixed point theorem.

Theorem 3.1. Assume (H1), (H2), and (H3) hold, then the system (2.1) has mild solution x(t), defined

on [t0, T ], provided the following inequality is satisfied:

Γ

∫ T

t0

L (r)dr <

∫ ∞
γ1

dr

H(r)
, (3.1)

where Γ = 2W2 max{1,Θ2} (T−t0)2a−1(1+K∗+H∗)
(2a−1)Γ(a) , γ1 = 2W2Θ2E‖ϕ‖2 and WΘ ≥ 1√

2
.

Proof. Let Ψ be an operator from B to B and the arbitrary positive number T ∈ (t0,∞):

Ψx(t) =

+∞∑
k=0

[ k∏
i=1

bi(%i)T(t− t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t), t ∈ [t0, T ]
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First we deduce the solution of the integral equation and assume λ ∈ (0, 1):

x(t) = λ

+∞∑
k=0

[ k∏
i=1

bi(%i)T(t− t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t), t ∈ [t0, T ]

Hence by (H1), (H2) and (H3)

‖x(t)‖2 ≤ λ2

[ +∞∑
k=0

[∥∥∥∥ k∏
i=1

bi(%i)

∥∥∥∥‖T(t− t0)‖‖xt0‖

+
1

Γ(a)

k∑
i=1

∥∥∥∥ k∏
j=i

bj(%j)

∥∥∥∥∫ ξi

ξi−1

(t− r)a−1‖T(t− r)f(r, x(r), Ux(r), V x(r))‖dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1‖T(t− r)f(r, x(r), Ux(r), V x(r))‖dr
]
I[ξk,ξk+1)(t)

]2

≤ 2

[ +∞∑
k=0

[∥∥∥∥ k∏
i=1

bi(%i)

∥∥∥∥2

‖T(t− t0)‖2‖xt0‖2
]

+ 2

[ ∞∑
k=0

1

Γ(a)

k∑
i=1

∥∥∥∥ k∏
j=i

bj(%j)

∥∥∥∥∫ ξi

ξi−1

(t− r)a−1‖T(t− r)f(r, x(r), Ux(r), V x(r))‖dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1‖T(t− r)f(r, x(r), Ux(r), V x(r))‖dr
]
I[ξk,ξk+1)(t)

]2

≤ 2W2Θ2

∥∥∥∥xt0∥∥∥∥2

+ 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

∥∥∥∥f(r, x(r), Ux(r), V x(r))

∥∥∥∥2

dr,

‖x(t)‖2 ≤ 2W2Θ2

∥∥∥∥ϕ∥∥∥∥2

+ 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

∥∥∥∥f(r, x(r), Ux(r), V x(r))

∥∥∥∥2

dr,

and

E‖x(t)‖2 ≤ 2W2Θ2E
[
‖ϕ‖2

]
+ 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

E
[
‖f(r, x(r), Ux(r), V x(r))‖2

]
dr

≤ 2W2Θ2E
[
‖ϕ‖2

]
+ 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

[
L1(r)H

(
E‖x(r)‖2

)
+ L2(r)H

(
E‖Ux(r)‖2

)
+ L3(r)H

(
E‖V x(r)‖2

)]
dr,

sup
t0≤υ≤t

E‖x(υ)‖2 ≤ 2W2Θ2E‖ϕ‖2

+ 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

L (r)(1 +K∗ +H∗)H

(
sup

t0≤υ≤r
E‖x(υ)‖2

)
dr,

≤ 2W2Θ2E‖ϕ‖2

+ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t0

L (r)H(ω(r))dr
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where

ω(t) = sup
t0≤υ≤t

E
[
‖x(υ)‖2

]
, t ∈ [t0, T ].

Moreover, for any t ∈ [t0, T ],

ω(t) ≤ 2W2Θ2E
[
‖ϕ‖2

]
+ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t0

L (r)H(ω(r))dr.

Represent by the right hand side of the above inequality as V (t), then

ω(t) ≤ V (t) for t ∈ [t0, T ], V (t0) = 2W2Θ2E‖ϕ‖2 = γ1

and

V ′(t) = 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)
L (t)H(ω(t))

≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)
L (t)H(ω(t)), t ∈ [t0, T ].

Then

V ′(t)

H(V (t))
≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)
L (t), t ∈ [t0, T ]

Apply the change of variable and integrate the previous inequality from t0 to t,

we get ∫ V (t)

V (t0)

dr

H(r)
≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t0

L (r)dr

≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ T

t0

L (r)dr

<

∫ ∞
γ1

dr

H(r)
=

∫ ∞
V (t0)

dr

H(r)
.

By the mean value theorem and the above inequality, there is a constant Υ such that V (t) ≤ Υ,

and therefore ω(t) ≤ Υ. Where as supt0≤υ≤T E‖x(υ)‖2 = ω(t) hold for each t ∈ [t0, T ], we have

supt0≤υ≤T E‖x(υ)‖2 ≤ Υ, where Υ depends on the function L and H and on T, therefore

E‖x(t)‖2 = sup
t0≤υ≤T

E‖x(υ)‖2 ≤ Υ

In the following steps, we will show that Ψ is continuous and completely continuous.

Step 1: We show that Ψ is continuous.

For every t ∈ [t0, T ] and consider {xn} be a convergent sequence of elements of x ∈ B, then

Ψxn(t) =

+∞∑
k=0

[ k∏
i=1

bi(%i)T(t− t0)ϕ(0)

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t− r)a−1T(t− r)f(r, xn(r), Uxn(r), V xn(r))dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1T(t− r)f(r, xn(r), Uxn(r), V xn(r))dr

]
I[ξk,ξk+1)(t).
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So

Ψxn(t)−Ψx(t) =

+∞∑
k=0

[
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t− r)a−1T(t− r)
[
f(r, xn(r), Uxn(r), V xn(r))

− f(r, x(r), Ux(r), V x(r))

]
dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1T(t− r)
[
f(r, xn(r), Ux(r), V x(r))

− f(r, x(r), Ux(r), V x(r))

]
dr

]
I[ξk,ξk+1)(t),

and

E‖Ψxn −Ψx‖2 ≤W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

E‖f(r, xn(r), Uxn(r), V xn(r))

− f(r, x(r), Ux(r), V x(r))‖2dr.

So Ψ is continuous.

Step 2: We show that Ψ is completely continuous operator.

Represent

Θm = {x ∈ B | ‖x‖2 ≤ m}

where m ≥ 0.

Step 2.1: We prove that Ψ maps to Θm into an equicontinuous family.

Let t1, t2 ∈ [t0, T ] and x ∈ Θm. Whenever t0 < t1 < t2 < T , by (H1), (H2), (H3) and condition (3.1),

we obtain

Ψx(t2)−Ψx(t1) =

+∞∑
k=0

[ k∏
i=1

bi(%i)T(t2 − t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξ

ξi−1

(t2 − r)a−1T(t2 − r)f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t2

ξk

(t2 − r)a−1T(t2 − r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t2)

−
+∞∑
k=0

[ k∏
i=1

bi(%i)T(t1 − t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t1 − r)a−1T(t1 − r)f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t1

ξk

(t1 − r)a−1T(t1 − r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t1)

=

+∞∑
k=0

[ k∏
i=1

bi(%i)T(t2 − t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t2 − r)a−1T(t2 − r)f(r, x(r), Ux(r), V x(r))dr
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+
1

Γ(a)

∫ t2

ξk

(t2 − r)a−1T(t2 − r)f(r, x(r), Ux(r), V x(r))dr

][
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

]
+

+∞∑
k=0

[ k∏
i=1

bi(%i)
[
T(t2 − t0)− T(t1 − t0)

]
xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

[
(t2 − r)a−1T(t2 − r)− (t1 − r)a−1T(t1 − r)

]
f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t1

ξk

[
(t2 − r)a−1T(t2 − r)− (t1 − r)a−1T(t1 − r)

]
f(r, xn(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t2

t1

(t2 − r)a−1T(t2 − r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t1).

Moreover

E‖Ψx(t2)−Ψx(t1)‖2 ≤ 2E‖I1‖2 + 2E‖I2‖2,

where

I1 =

+∞∑
k=0

[ k∏
i=1

bi(%i)T(t2 − t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t2 − r)a−1T(t2 − r)f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t

ξk

(t2 − r)a−1T(t2 − r)f(r, x(r), Ux(r), V x(r))dr

][
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

]
and

I2 =

+∞∑
k=0

[ k∏
i=1

bi(%i)
[
T(t2 − t0)− T(t1 − t0)

]
xt0

1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

[
(t2 − r)a−1T(t2 − r)− (t1 − r)T(t1 − r)

]
f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t1

ξk

(t2 − r)a−1T[(t2 − r)− (t1 − r)a−1T(t1 − r)]f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t2

t1

(t2 − r)a−1T(t2 − r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t1)

Besides,

E‖I1‖2 ≤ E
[ +∞∑
k=0

[ k∏
i=1

‖bi(%i)‖‖T(t2 − t0)‖‖xt0‖

+
1

Γ(a)

k∑
i=1

k∏
j=i

‖bj(%j)‖
∫ ξi

ξi−1

(t2 − r)a−1‖T(t2 − r)‖‖f(r, x(r), Ux(r), V x(r))‖dr

+
1

Γ(a)

∫ t2

ξk

(t2 − r)a−1‖T(t2 − r)‖‖f(r, x(r), Ux(r), V x(r))‖dr
][
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

]]2

≤2W2Θ2E‖xt0 |2E(I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1))
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+ 2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)
E

∫ t2

t0

‖T(t2 − r)‖‖f(r, x(r), Ux(r), V x(r))‖dr

× E(I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1))

≤2W2Θ2E‖xt0‖2E
(
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

)
+ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t2

t0

L (r)H(E‖x(r)‖2)dr

× E
(
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

)
≤2W2Θ2E‖xt0‖2E

(
I[ξk,ξk+1)(t2)− I[ξk, ξk+1)(t1)

)
+ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t2

t0

L ∗H(E(m))drE
(
I[ξk,ξk+1)(t2)− I[ξk,ξk+1)(t1)

)
→ 0, as t1 → t2.

where L ∗ = sup
{
L (t) : t ∈ [t0, T ]

}
.

E‖I2‖2 ≤E
[ +∞∑
k=0

[ k∏
i=1

‖bi(%i)‖‖T(t2 − t0)− T(t1 − t0)‖‖xt0‖

+
1

Γ(a)

k∑
i=1

k∏
j=i

‖bj(%j)‖
∫ ξi

ξi−1

‖(t2 − r)a−1T(t2 − r)

− (t1 − r)a−1T(t1 − r)‖‖f(r, x(r), Ux(r), V x(r))‖dr

+
1

Γ(a)

∫ t1

ξk

‖(t2 − r)a−1T(t2 − r)− (t1 − r)a−1T(t1 − r)‖‖f(r, x(r), Ux(r), V x(r))‖dr

+
1

Γ(a)

∫ t2

t1

(t2 − r)a−1‖T(t2 − r)‖‖f(r, x(r), Ux(r), V x(r))dr‖
]
I[ξk,ξk+1)(t1)

]2

≤3Θ2‖T(t2 − t0)− T(t1 − t0)‖2E‖xt0‖2

+ 3 max{1,Θ2}(t1 − t0)
1

Γ(a)
E

∫ t1

t0

‖(t2 − r)a−1T(t2 − r)

− (t1 − r)a−1T(t1 − r)‖2‖f(r, x(r), Ux(r), V x(r))‖2dr

+ 3W2 (T − t0)2a−1

Γ(a)(2a− 1)
E

∫ t2

t1

‖f(r, x(r), Ux(r), V x(r))‖2dr

≤3Θ2‖T(t2 − t0)− T(t1 − t0)‖2E‖xt0‖2

+ 3 max{1,Θ2}(t1 − t0)
1

Γ(a)

∫ t1

t0

‖(t2 − r)a−1T(t2 − r)

− (t1 − r)a−1T(t1 − r)‖2L ∗H(m)dr

+ 3W2 (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t2

t1

L ∗H(m)dr

→ 0 as t1 → t2.

So, Ψ maps Θm into an equicontinuous family of functions.

Step 2.2: We prove that ΨΘm is uniformly bounded.
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By (3.1), ‖x‖2 ≤ m, (H1), (H2) and (H3), we get

‖Ψx(t)‖2 ≤
[ +∞∑
k=0

[ k∏
i=1

‖bi(%i)‖‖T(t− t0)‖‖xt0‖

+
1

Γ(a)

k∑
i=1

k∏
j=i

‖bj(%j)‖
∫ ξi

ξi−1

(t− r)a−1‖T(t− r)‖‖f(r, x(r), Ux(r), V x(r))‖dr

+
1

Γ(a)

∫ t

ξi−1

(t− r)a−1‖T(t− r)‖‖f(r, x(r), Ux(r), V x(r))‖dr
]
I[ξk,ξk+1)(t)

]2

.

≤ 2W2Θ2‖ϕ(0)‖2 + 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

‖f(r, x(r), Ux(r), V x(r))‖2dr.

Thus,

E‖Ψx(t)‖2 ≤ 2W2Θ2E‖ϕ(0)‖2 + 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

E‖f(r, x(r), Ux(r), V x(r))‖2dr.

≤ 2W2Θ2E‖ϕ(0)‖2 + 2W2 max{1,Θ2} (T − t0)2a(1 +K∗ +H∗)

Γ(a)(2a− 1)
‖bm‖L.

Therefore {(Ψx(t)), ‖x‖2 ≤ m} is uniformly bounded, so does {ΨΘm}. Then by the Arzela – Ascoli

theorem, Ψ maps Θm into a precompact set in X.

Step 2.3: We prove that ΨΘm is compact. Let t ∈ (t0, T ] be fixed, and let ε be a real number such

that ε ∈ (0, t− t0) for x ∈ Θm, we establish

(Ψεx)(t) =

+∞∑
k=0

[ k∏
i=1

bj(%j)T(t− t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
j=i

bj(%j)

∫ ξi

ξi−1

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

+
1

Γ(a)

∫ t−ε

ξk

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t), t ∈ (t0, t− ε).

Being T(t) is a compact operator, the set

Hε(t) = {(Ψεx)(t) : x ∈ Θm}

is precompact in X for each ε ∈ (0, t− t0). Furthermore, for each x ∈ Θm, we attain

(Ψx)(t)− (Ψεx)(t) =

+∞∑
k=0

[
1

Γ(a)

∫ t

ξk

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t)

−
+∞∑
k=0

[
1

Γ(a)

∫ t−ε

ξk

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t).

By making use of (H1), (H2), (H3), condtion 4.1, and ‖x(B)‖2 ≤ m, we obtain

E‖(Ψx)(t)− (Ψεx)(t))‖2t ≤ W2 (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t−ε
L ∗H(m)dr.

Hence, there exist precompact sets arbitrarily close to the set {(Ψx)(t) : x ∈ Θm} is precompact in X.

So, Ψ is completely continuous operator.
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Furthermore, the set U(Ψ) = {x ∈ B : x = λΨx for some 0 < λ < 1} is bounded. Hence, by lemma

2.1, the operator Ψ has a fixed point in B. So, system (2.1) has a mild solution. �

4. Exponential stability in the quadratic mean

This section, we establish the exponential stability of a second moment of mild solution of system.

For an Ft - adapted process, Ψ(t) : [0,∞)→ R is almost continuous in t. In order to attain the stability,

we suppose that f(t, 0) ≡ 0 for any t ≤ t0 thus the system (2.1) accept a trivial solution. Furthermore,

E‖Ψ‖2t → 0 as t→∞.

Definition 4.1. System (2.1) is said to be exponentially stable in the quadratic mean if there exist

positive constants K1 > 0 and ν > 0 such that

E‖x(t)‖ ≤ K1E‖ϕ‖2e−ν(t−t0), t ≥ t0.

Now we introduce the following hypothesis used in our discussion:

(H4) µH(ψ) ≤ H(µψ) for all ψ ∈ R+, where µ > 1.

(H5) ‖T(t)‖ ≤ We−ξ(t−t0), t ≥ 1.

Theorem 4.1. Assume that the hypothesis of Theorem 2.1 and (H4) − (H5) hold. If the following

inequality is satisfied, then the system (2.1) is exponentially stable in the quadratic mean:

Γ∗
∫ T

t0

L (r)dr <

∫ ∞
γ2

dr

H(r)
, (4.1)

where Γ∗ = 2W2 max{1,Θ2} (T−t0)2a−1(1+K∗+H∗)
Γ(a)(2a−1) , γ2 = 2W2Θ2E‖ϕ‖2, and WΘ ≥ 1√

2
.

Proof. Let Ψ be defined in Theorem 2.1. Making use of hypotheses (H1)− (H5), we get

‖x(t)‖2 ≤ λ2

(
+∞∑
k=0

[∥∥∥∥ k∏
i=1

bi(%i)

∥∥∥∥‖T(t− t0)‖‖xt0‖

+
1

Γ(a)

k∑
i=1

∥∥∥∥ k∏
j=i

bj(%j)

∥∥∥∥∫ ξi

ξi−1

(t− r)a−1‖T(t− r)f(r, x(r), Ux(r), V x(r))‖dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1‖T(t− r)f(r, x(r), Ux(r), V x(r))‖dr
]
I[ξk,ξk+1)(t)

)2

≤ 2

+∞∑
k=0

[∥∥∥∥ k∏
i=1

bi(%i)

∥∥∥∥2

‖W2e−2k(t−t0)‖‖xt0‖2I[ξk,ξk+1)(t)

]

+ 2

 ∞∑
k=0

 1

Γ(a)

k∑
i=1

∥∥∥∥ k∏
j=i

bj(%j)

∥∥∥∥∫ ξi

ξi−1

(t− r)a−1‖We−ξ(t−r)f(r, x(r), Ux(r), V x(r))‖dr

+
1

Γ(a)

∫ t

ξk

(t− r)a−1W2e−ξ(t−r)‖f(r, x(r), Ux(r), V x(r))‖dr
]
I[ξk,ξk+1)(t)

)2
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≤ 2

max
k

{ k∏
j=i

‖bj(%j)‖2
}2

W2e−2k(t−t0)‖xt0‖2

+ 2

max
i,k

{
1,

k∏
j=i

‖bj(%j)‖
}2

·

· 1

Γ(a)

+∞∑
k=0

∫ t

t0

(t− r)a−1We−ξ(t−r)‖f(r, x(r), Ux(r), V x(r))‖dr · I2
[ξk,ξk+1)(t)

≤ 2W2Θ2e−2k(t−t0)‖xt0‖2

+ 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

e−2ξ(t−r)‖f(r, x(r), Ux(r), V x(r))‖2dr,

‖x(t)‖2 ≤ 2W2Θ2e−2ξ(t−t0)‖ϕ‖2

+ 2W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)

∫ t

t0

e−2k(t−r)‖f(r, x(r), Ux(r), V x(r))‖2dr,

zE‖x(t)‖2 ≤ 2W2Θ2e−2k(t−t0)E‖ϕ‖2

+ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t0

e−2ξ(t−r)L (r)H
(
E‖x(r)‖2

)
dr,

= 2W2Θ2e−2ξ(t−t0)E‖ϕ‖2

+ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)
e−2k(t−t0)

∫ t

t0

e2ξ(r−t0)L (r)H
(
E‖x(r)‖2

)2
dr.

Thus,

e2ξ(t−t0)E‖x(t)‖2

≤ 2W2Θ2E‖ϕ‖2 + 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t0

e2ξ(t−r)L (r)H
(
E‖x(r)‖2

)2
dr.

Furhtermore,

sup
t0≤υ≤t

e2ξ(υ−t0)E‖x(t)‖2

≤ 2W2Θ2E‖ϕ‖2

+ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t0

L (r)H

(
sup

t0≤υ≤t
e2ξ(υ−t0)E‖x(r)‖2

)
dr.

Take

ω1(t) = sup
t0≤υ≤t

e2ξ(υ−t0)E‖x‖2, t ∈ [t0, T ].

Also, for any t ∈ [t0, T ], we have

ω1(t) ≤ 2W2Θ2E‖ϕ‖2 + max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t0

L (r)H
(
ω1(r)

)
dr.
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Denote the right hand side of the above inequality V1(t), we obtain

ω1(t) ≤ V1(t), t ∈ [t0, T ],

V1(t0) = 2W2Θ2E‖ϕ‖2 = γ2

and

V ′1 (t) ≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)
L (t)H

(
ω1(t)

)
≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)
L (t)H

(
V1(t)

)
, t ∈ [t0, T ].

That is,

V ′1 (t)

H
(
V1(t)

) ≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)
L (t), t ∈ [t0, T ].

Apply the change of variable and integrate the previous inequality from t0 to t, we get∫ V1(t)

V1(t0)

dr

H
(
r
) ≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ t

t0

L (r)dr

≤ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)

∫ T

t0

L (r)dr

<

∫ ∞
γ2

dr

H
(
r
) =

∫ ∞
V1(t0)

dr

H
(
r
) , t ∈ [t0, T ].

By the mean value theorem and above inequality there exist a constant Υ1 such that V1(t) ≤ Υ1,

and therefore ω1(t) ≤ Υ1. Whereas supt0≤υ≤t e
2ξ(υ−t0)E‖x‖2 = ω1(t) holds for each t ∈ [t0, T ], we have

supt0≤υ≤t e
2ξ(υ−t0)E‖x‖2 ≤ K1, where Υ1 depends on the function L and H.

Therefore,

e2ξ(t−t0)E‖x‖2 = sup
t0≤υ≤T

e2ξ(υ−t0)E‖x‖2 ≤ Υ1.

As in the previous theorem, we will prove that Ψ is completely continuous operator through the follow-

ing steps.

Step 1: We show that Ψ is continuous.

For every t ∈ [t0, T ] and consider {xn} be a convegent sequence of element of x ∈ B, we obtain

E‖Ψxn(t)−Ψx(t)‖2

≤ W2 max{1,Θ2} (T − t0)2a−1

Γ(a)(2a− 1)
e−2k(t−t0)

∫ t

t0

e2ξ(r−t0)E‖f(r, xn(r), Uxn(r), V xn(r))

− f(r, x(r), Ux(r), V x(r))‖2dr
→ 0, as n→∞.

So Ψ is continuous.

Step 2: We show that Ψ is completely continuous operator.

Represent

Θm1
= {x ∈ B | ‖x‖2 ≤ m1}
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where m1 ≥ 0.

Step 2.1: We prove that Ψ maps Θm1
into an equicontinuous family.

Let x ∈ Θm1
and t1, t2 ∈ [t0, T ]. If t0 < t1 < t2 < T , then by making use of (H1) − (H5) and

condition (3) and pursuing the similar process of Step 2.1 of Theorem 3.1, we obtain

E‖Ψx(t2)−Ψx(t1)‖2 → 0 as t2 → t1.

So, Ψ maps to Θm1
into an equicontinuous family of functions.

Step 2.2: We prove that ΨΘm1 is uniformly bounded.

By the condition (3.1) and (H1)− (H5), we get

‖Ψx(t)‖2 ≤ 2

[
max
k

{ k∏
j=i

‖bj(%j)‖2
}]
W2e−2k(t−t0)‖xt0‖2

+ 2

[
max
i,k

{
1,

k∏
j=i

‖bj(%j)‖
}]2

×
(

1

Γ(a)

+∞∑
k=0

∫ t

t0

(t− r)a−1We−ξ(t−r)‖f(r, x(r), Ux(r), V x(r))‖dr
)
I[ξk,ξk+1)(t)

2.

So

E‖Ψx(t)‖2 ≤ 2W2Θ2e−2k(t−t0)E‖xt0‖2

+ 2W2 max{1,Θ2} (T − t0)2a−1(1 +K∗ +H∗)

Γ(a)(2a− 1)
e−2k(t−t0)

×
∫ t

t0

e2ξ(r−t0)L ∗H(m)dr,

where L ∗ = sup{L (t) : t ∈ [t0, T ]}. Being e−2k(t−t0) → 0, the right hand side of the previous inequality

tends to 0 as t→∞. ie,

‖(Ψx)‖2 → 0 t→∞.

Therefore {(Ψx(t)), ‖x‖2B ≤ m1} is uniformly bounded, thus {ΨΘm1
} is uniformly bounded.

Step 2.3: We prove that ΨΘm1 is compact.

Let t ∈ (t0, T ] be fixed and ε be a real number such that ε ∈ (0, t− t0), for x ∈ Θm1
, we establish

(Ψεx)(t) =

+∞∑
k=0

[ k∏
i=0

bj(%j)T(t− t0)xt0

+
1

Γ(a)

k∑
i=1

k∏
i=i

bj(%j)

∫ ξi

ξi−1

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr
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+
1

Γ(a)

∫ t−ε

ξk

(t− r)a−1T(t− r)f(r, x(r), Ux(r), V x(r))dr

]
I[ξk,ξk+1)(t), t ∈ (t0, t− ε).

Being T(t) is a compact operator, the set

Hε(t) = {(Ψεx)(t) : x ∈ Θm1
}

is precompact in X for each ε ∈ (0, t− t0).

Using (H1)− (H5), condition (3), and ‖x‖2 ≤ m1, we obtain

E‖Ψxn(t)−Ψx(t)‖2

≤ W2 (T − t0)2a−1

Γ(a)(2a− 1)
e−2k(t−t0)

∫ t

t−ε
e2ξ(r−t0)L ∗H

(
E‖x(r)‖2

)
dr.

Hence, there exist precompact sets arbitrarily close to the set {(Ψx)(t) : x ∈ Θm1
}. Thus the set

{(Ψx)(t) : x ∈ Θm1} is precompact in X. So, Ψ is a completely continuous operator.

Furthermore, the set U(Ψ) = {x ∈ B : x = λΨx for some 0 < λ < 1} is bounded. Hence,

by Lemma 2.1, the operator Ψ has a fixed point in B. So the system 2.1 has a mild solution and

E‖Ψ(t)‖2 → 0 as t→∞. Hence the proof. �

5. Applications

Example 5.1. Consider random impulsive fractional differential equations,
cDa

t z(t, x) = zxx(x, t) + F1(t, z(t, x)) t 6= ξk, t ≥ %
z(x, ξk) = q(k)%kz(x, ξ

−
k ) as x ∈ 4̂

z(t, 0) = z(t, π) = 0

z(t0, x) = z0(x), x ∈ ∂4̂

(5.1)

Consider 4̂ ⊂ <n be a bounded domain with smooth boundary ∂4̂, X = L2(4̂), %k be random variable

defined on Dk ≡ (0, dk) for k ∈ N, dk ∈ (0,+∞) . Also assume that %k follow Erlang distribution and

if i 6= j then %i and %j are independent with each other for i, j = 1, 2, . . . . Here q is a function of k,

ξk = ξk−1 + %k for k ∈ N, t0 ∈ <+.

Let A be an operator on X by Az =
∂2z

∂x2
with the domain

D(A) =

{
z ∈ X | z and

∂z

∂x
are absolutely continuous,

∂2z

∂x2
∈ X, z = 0 on ∂4̂

}
Thus A generates a strongly continuous semigroup S(t) which is self adjoint,compact and analytic.

Furthermore the operator A can be represented by

Az =

∞∑
n=1

n2 < z, zn > zn, z ∈ D(A)

Here zn(ζ) =
√

2
πSin(nζ), n = 1, 2, . . . , forms the orthonormal set of eigenvectors of A. Also for every

z ∈ X,S(t)z =
∑∞
n=1 e

(−n2t) < z, zn > zn, which holds ‖S(t)‖ ≤ e(−π2(t−t0)), t ≥ t0. Therefore S(t) is
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a semigroup.

Consider that the following assumptions:

(i) f : <% ×X → X, is a continuous function defined by

f(t, z)(x) = F1(t, z(x)) t0 ≤ t ≤ T, 0 ≤ x ≤ π

and also ∃ a continuous non-decreasing function H : <+ → (0,∞)X and L ∈ L1([%, T ],<+)

therefore

E‖f(t, z)‖2 ≤ L (t)H
(
E‖z‖2

)
(ii) E

{
maxi,k

{∏k
j=i ‖bj(%j)‖

}}
is uniformly bounded

if,

E

{
max
i,k

{∏k
j=i ‖bj(%j)‖

}}
≤ θ, for each %j ∈ Dj , j ∈ N, θ > 0 a constant

(iii)

Γ

∫ T

t0

L (r)dr <

∫ ∞
γ1

dr

H(r)
, (5.2)

where Γ = 2W2 max{1,Θ2} (T−t0)2a−1

(2a−1)Γ(a) , γ1 = 2W2Θ2E‖ϕ‖2 and WΘ ≥ 1√
2
.

Assume that assumptions (i),(ii) and (iii) are satisfied, then the problem (5.1) becomes a random

impulsive fractional differential equation. From all the above facts, in view of Theorem 3.1, we conclude

that (5.1) has a mild solution.

Remark 5.2. Let the conditions of Example 5.1 along with (H4) − (H5) be hold. If the following

inequality is satisfied,

Γ∗
∫ T

t0

L (r)dr <

∫ ∞
γ2

dr

H(r)
, (5.3)

where Γ∗ = 2W2 max{1,Θ2} (T−t0)2a−1

Γ(a)(2a−1) , γ2 = 2W2Θ2E‖ϕ‖2, and WΘ ≥ 1√
2
. Then the mild solution z

of the Example 5.1 is exponentially stable in the quadratic mean.

Example 5.3. Consider special random impulsive fractional differential equations,
cDa

t zt(t, x) = zxx(x, t) + F1(t, z(t, x)) +
∫ T

0
F2(θ, z(tsinθ, x))dθ t 6= ξk, t ≥ %

z(x, ξk) = q(k)%kz(x, ξ
−
k ) as x ∈ 4̂

z(t, 0) = z(t, π) = 0

z(t0, x) = z0(x), x ∈ ∂4̂

(5.4)

Consider 4̂ ⊂ <n be a bounded domain with smooth boundary ∂4̂, X = L2(4̂), %k be random variable

defined on Dk ≡ (0, dk) for k ∈ N, dk ∈ (0,+∞) . Also assume that %k follow Erlang distribution and

if i 6= j then %i and %j are independent with each other for i, j = 1, 2, . . . . Here q is a function of k,

ξk = ξk−1 + %k for k ∈ N, t0 ∈ <+.

Let A be an operator on X by Az =
∂2z

∂x2
with the domain

D(A) =

{
z ∈ X | z and

∂z

∂x
are absolutely continuous,

∂2z

∂x2
∈ X, z = 0 on ∂4̂

}
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Thus A generates a strongly continuous semigroup S(t) which is self adjoint, compact and analytic.

Furthermore the operator A can be represented as

Az =

∞∑
n=1

n2 < z, zn > zn, z ∈ D(A)

Here zn(ζ) =
√

2
πSin(nζ), n = 1, 2, . . . , forms the orthonormal set of eigenvectors of A. Also for every

z ∈ X,S(t)z =
∑∞
n=1 e

(−n2t) < z, zn > zn, which holds ‖S(t)‖ ≤ e(−π2(t−t0)), t ≥ t0. Therefore S(t) is

a semigroup.

Consider that the following assumptions:

(i) f : <% ×X → X, f1 : <% ×X → X is a continuous function defined by

f(t, z)(x) = F1(t, z(x)) t0 ≤ t ≤ T, 0 ≤ x ≤ π

f1(θ, x(t+ θ))dθ =

∫ T

0

F2(θ, z(tsinθ, x))dθ

and also function f and f1 satisfies the Lipschitz condition.

(ii) E

{
maxi,k

{∏k
j=i ‖bj(%j)‖

}}
is uniformly bounded

if,

E

{
max
i,k

{∏k
j=i ‖bj(%j)‖

}}
≤ θ, for each %j ∈ Dj , j ∈ N, θ > 0 a constant

(iii)

Γ

∫ T

t0

L (r)dr <

∫ ∞
γ1

dr

H(r)
, (5.5)

where Γ = 2W2 max{1,Θ2} (T−t0)2a−1(1+K∗+H∗)
(2a−1)Γ(a) , γ1 = 2W2Θ2E‖ϕ‖2 and WΘ ≥ 1√

2
.

Assume that assumptions (i), (ii) and (iii) are satisfied, then the problem (5.1) becomes a random

impulsive fractional differential equation. From all the above facts, in view of Theorem 3.1, we conclude

that 5.4 has a mild solution.

Remark 5.4. Let the conditions of Example 5.3 along with (H4) − (H5) be hold. If the following

inequality is satisfied,

Γ∗
∫ T

t0

L (r)dr <

∫ ∞
γ2

dr

H(r)
, (5.6)

where Γ∗ = 2W2 max{1,Θ2} (T−t0)2a−1(1+K∗+H∗)
Γ(a)(2a−1) , γ2 = 2W2Θ2E[‖ϕ‖2], and WΘ ≥ 1√

2
. Then the mild

solution z of the Example 5.3 is exponentially stable in the quadratic mean.

6. Conclusion

In this article we mainly focused on the existence and stability of the random impulsive fractional

differential equations via Leray-Schauder fixed point method. Firstly, we established the existence of

mild solution and continued to prove the exponential stability of the system. Finally, we provided an

application to assist of our theory. In future, we will study controllability of random impulsive fractional

differential system via fixed point approach.
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