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A NOVEL IVGTT MODEL INCLUDING INTERSTITIAL INSULIN

JUN JIN, JIAXU LI∗, RUI XU, LEI YU, AND ZHEN JIN∗

Abstract. Minimal Model (MM) is the top-scoring model for assessing physiological characteristics

to diagnose the potential or onset of type 2 diabetes mellitus (T2DM) through the intravenous glucose

tolerance test (IVGTT) for the past four decades. Nevertheless it has been arguable that MM method

either overestimates glucose effectiveness (GE) or underestimates insulin sensitivity (IS) in some cases

by both biologists through in vivo experiments and mathematicians by analysis and/or simulations.

We propose a novel model including the interstitial insulin according to physiology and adapted from

the well accepted Sturis’ model for the glucose-insulin metabolic system suitable to the IVGTT setting.

Our model consistently overcomes the aforementioned defects in a subgroup of subjects. In addition,

the variable X for insulin action in MM might be appropriately interpreted as an increment of insulin

in the interstitial space in response to the bolus stimulus, rather than being proportional to the

interstitial insulin as believed.

1. Introduction

Quantitatively assessing physiological characteristics, e.g., insulin sensitivity (IS) and glucose effec-

tiveness (GE), is essential to diagnose the progression and/or onset of type 2 diabetes mellitus (T2DM)

and develop drug for treatment. The gold standard for the assessment of IS is Hyperinsulinemic Eu-

glycemic Glucose Clamp test originally proposed by DeFronzo et al.[11], which is direct and accurate,

and widely accepted [32]. But it is very invasive, expensive, time consuming, and the subjects suffer. A

much less invasive protocol as a result is the intravenous glucose tolerance test (IVGTT). The IVGTT

data sampled at the time marks, for example, -10, -1, 0, 2, 3, 5, 7, 10, 13, 17, 21, 25, 30, 35, 40, 45, 50,

60, 70, 80, 90, 100, 120, 160 and 180 min after a rapid bolus intravenous glucose infusion, is used to

estimate the parameter values of a differential equation model so that the aforementioned physiological

characteristics can be assessed through these parameters. Many such models have been proposed at

least as early as 1975 [28, 4, 5, 15, 33, 36, 27], but the top-scoring model widely used in experiments

in both laboratory and clinic research is the minimal model (MM) developed by Bergman, Cobelli, and

their colleagues a few years later [4, 5] for the past 40 years [2]. Commercial software include MIN-

MOD, MINMOD Millennium [34, 7], and a software implemented in MLab [21] by Civilized Software

Inc. (Silver Spring, MD 20906) are available. MM has been used by many biologists in their experiments

[20].

The MM is given by Bergman et al. [4]:{
G′(t) = −[Sg +X(t)]G(t) + SgGb,

X ′(t) = −p2X(t) + p3[I(t)− Ib]+,
(1.1)
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with the initial condition G(0) = G0 and X(0) = 0, where G(t) and I(t) are respectively plasma

glucose and insulin concentration, Sg is the GE index, the positive parameter p2 and p3 are used to

calculate the IS index Si = p3/p2, and G0 is the initial value of the plasma glucose concentration value.

[I(t)−Ib]+ = I(t)−Ib if I(t)−Ib ≥ 0; [I(t)−Ib]+ = 0 if I(t)−Ib < 0, where Gb and Ib denote the basal

glucose and insulin level, respectively. The state variable X with initial condition X(0) = 0 was called

insulin action in the original paper [4] and later was believed to be proportional to remote insulin (i.e.

insulin in interstitial compartment) by, for example, Pacini and Bergman [34], Ader et al. [1], Bergman

et al. [3] and, even recently, Bergman [2].

While along with the resounding success has been achieved by MM, several drawbacks and limitations

in MM have been pointed out by both biologists and applied mathematicians [13, 39, 9, 15, 32, 37, 18,

14, 23]. Finegood and Tzur [13] pointed out that the estimation of Sg through MM may be not correct,

later Caumo and Cobelli [8] elucidated that the inaccuracy is due to “the second hidden compartment”.

Cobelli et al. [9] furthermore showed that MM overestimates Sg and underestimates Si. Patarrao et

al. [37] believed that “many limitations of minimal model analysis stem from the fact that the model

oversimplifies the physiology of glucose homeostasis”. Recently, Ha et al. [18], Fosam et al. [14] and

Koh et al. [23] showcased that MM systematically underestimates Si in African American females

comparing with non-Hispanic white females, which unveiled the paradox in predicting the risks of

T2DM in different ethnic groups. In particular, Ha et al. [18] pointed out that the presence of a strong

first insulin secretion phase leads to an underestimation of insulin sensitivity.

After the creation of MM, deeper understanding for the action of interstitial insulin on blood sugar

removal became much clearer. For example, an endothelial barrier delays the transcapillary transport

of insulin from plasma to interstitial space [42] and capillary endothelium poses a barrier that delays

the onset of muscle insulin action [49]. Factors that impede insulin access to muscle could contribute

to increase insulin resistance [49]. In this paper, we propose a novel IVGTT model taking interstitial

insulin as an explicit state variable based on the recent advanced physiology and the formulation from

Sturis’ model in [46]. We demonstrate that the aforementioned drawbacks could be rectified in some

subgroup of animal subjects.

We organize this paper as follows. We present the model formulation in details in next section,

followed by a section showing this model is well posed. Then in Section 4, we utilize Latin Hypercube

Sampling method to generate pure random parameter values in the parameter space and then analyze

the correlations of the profiles from MM, the new model and the nine available IVGTT data. We also

elucidate that the new model would not produce ruinous dynamics when the model parameter values

are within physiological ranges. We will discuss our findings in the last section.

2. Formulation of the novel IVGTT model adapted from a physiological model

A well known model describes the general glucose-insulin metabolism was formulated by Sturis et al.

[46], which contains three state variables for the plasma glucose (G), the plasma insulin (Ip) and the

interstitial insulin (Ii) and three auxiliary variables mimicking time delays. Through this model, Sturis

et al. [46] successfully elucidated and well accepted that the ultradian oscillation of insulin secretion

in physiological settings is intrinsically caused by time delays and the transfer of insulin between the

plasma compartment and interstitial compartment. A number of models in this area have been stemmed

from Sturis’ model, particularly the metabolic feedback loop involving more organs [47], with explicit

time delays [26, 24], and consequent attempts for algorithms of the artificial pancreas for type 1 diabetes

(T1DM) by Wu et al. [50], Huang et al. [19], Kissler et al. [22] and Song et al. [44]. These, in addition

to physiological observation by Prigeon et al. [39], allow us to confidently adapt the insulin in the

interstitial compartment as an independent state variable as in Sturis’ model and the explicit time
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delay in the model in [26] to formulate a novel model suitable for the IVGTT environment for our

aforementioned aims.

Figure 1. Diagram of the model (2.1).

Refer to the model diagram in Figure 1 for the glucose and insulin regulations, we denote G(t), Ip(t)

and Ii(t) as the concentrations of the plasma glucose, plasma insulin and interstitial insulin at time t,

respectively. According to the procedure of IVGTT, we assume that the glucose bolus is infused into

the vein in the time interval [0, t0], where t0 = 2 or 3, and then our model is defined in [t0,∞). Insulin

is secreted from pancreatic β-cells. Summarized by Straub and Sharp [45], glucose-stimulated biphasic

insulin secretion in the IVGTT setting includes the KATP channel-dependent pathways, and KATP

channel-independent pathways, respectively. The first phase of insulin secretion is resulted from the

exocytosis of immediately releasable β-cell granules followed by the second phase of due to the KATP

channel-independent pathways acting in synergy with the KATP channel-dependent pathway. In the

same way as Bergman et al. [4], De Gaetano and Arino [15], Li et al. [25] and Panunzi et al. [36],

we model the first phase quick insulin release by the initial condition Ip(t0) = Ip0 taken at the time

mark t0. The subsequent long lasting and a larger amount insulin release in the second phase exhibits

an explicit time delay in the same manner as in the physiological setting. Together we mimic the

slower secretion through liver to plasma compartment by σf(G(t− τ)) with time delay τ > 0 and the

maximum insulin secretion σ > 0. The insulin transfer relates to the biological action of insulin in the

slowly equilibrating interstitial space, obeying a passive diffusion process determined by the difference

between the concentration levels in the plasma and interstitial compartments, for which, we adapt the

structure in Sturis’ model for insulin transfer between the plasma and interstitial space is described by

the term E (Ip(t)− Ii(t)) with the diffusion transfer rate E > 0 between the two compartment. Different

from the saturating responses of both insulin-dependent and insulin-independent glucose uptakes in the

environment of the daily life [46, 26], under the three-hour short clinic setting of IVGTT, the response

of β-cells to the bolus glucose injection into the vein is to release the insulin in the readily-releasable-

pool abruptly followed by a large amount secretion [38, 10]. Thus, taking the same modeling approach
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as MM and most of the subsequent work [15, 16, 35, 27, 40, 41], we also assume the hepatic glucose

production (HGP) to be a constant (b > 0), the insulin-independent glucose utilization to be a linearly

dependent term SgG(t), and the insulin-dependent glucose removal in interstitial space to be a term

of bi-linear dependence, SiG(t)Ii(t), where Sg stands for the GE index and Si stands for the IS index.

The bolus glucose is infused in at t = 0 min and takes t0 minutes, typically t0 = 2 or 3, to complete.

Thus our model is given as follows
G′(t) = b− SgG(t)− SiG(t)Ii(t),

I ′i(t) = E (Ip(t)− Ii(t))− diiIi(t),
I ′p(t) = σf(G(t− τ))− E (Ip(t)− Ii(t))− dpiIp(t),

(2.1)

with initial condition G(t) = φ(t) > 0, φ ∈ C([t0− τ, t0]), Ip(t0) = Ip0 > 0, Ii(t0) = Ii0 > 0, where Ip0 is

the plasma insulin data at t0, and Ii0 is the corresponding interstitial insulin concentration. The initial

function

φ(t) =

{
Gb, for t ∈ [t0 − τ, 0),

Gb + t−10 (G0 −Gb)t, for t ∈ [0, t0],
(2.2)

where G0 is the glucose data at the time mark t0 when the bolus glucose infusion is completed. Ac-

cording to [17] and [26], the term f(G(t − τ)) = (G(t − τ))γ/(αγ + (G(t − τ))γ) models the insulin

secretion stimulated by glucose G with time delay τ > 0, half saturation α > 0, and γ > 1. Positive

constant parameters dpi and dii stand for the rates of insulin degradation in plasma and interstitial

space, respectively.

The model (2.1) is a generalization of the model in [27], which strengthens the stability properties

for the models in [36] and [35].

It is easy to show that the model (2.1) assumes a unique positive equilibrium E0. In physiological

observation, the dynamics of glucose, plasma insulin and interstitial insulin will return to their basal

level after the test (180 min). We can therefore assume that the unique equilibrium point is at the basal

level, that is,

E0 = (Gb, Ipb, Iib) = (Gb, Ib,M1Ib),

where M1 = E/(E + dii). This allows us to further express three model parameters in terms of other

parameters,
b = (Sg + SiM1Ib)Gb,

σ = E(1−M1 + dpi)Ib/f(Gb),

dii = E(1−M1)/M1,

(2.3)

which reduces the total number of parameters to be estimated from ten to seven.

Notice that 0 < M1 = E/(E + dii) < 1. The relation Iib = M1Ib is in agreement with that the

interstitial insulin concentration is a fraction of the concentration of the plasma insulin at equilibrium.

The fraction is shown to be about M1 ≈ 0.60 according to [39, 42, 43]. So we assume throughout this

paper that

Iib < Ipb. (2.4)

Remark 2.1. In MM, the initial condition of the insulin action X(0) = 0. This could hint X(t) might be

interpreted as the increment of the interstitial insulin caused by the stimulus of abrupt glucose increase.

We will discuss this in the last section in more details. In Model (2.1), the initial condition of the

interstitial insulin concentration Ii0 is positive but a fraction of the plasma insulin at the basal state.

Remark 2.2. Clearly the best way to verify the assumption of the state variable X in MM is through a

carefully designed in-vivo or in human experiment by clinicians and biologists. However this had been
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overlooked in the past. We utilize the economic in-silico approach to perform the verification through

a delay differential equation (DDE) model and its analysis.

3. Global stability of the equilibrium of the novel model

We first ensure that the model (2.1) manifests ideal qualitative behaviours. By Lemma 1 in [27], the

proof of the following proposition is straightforward.

Proposition 3.1. All solutions of model (2.1) exist for all t > t0 and are strictly positive and bounded,

that is,

0 < Ip(t) + Ii(t) ≤MI
.
= max {Ip(t0) + Ii(t0), σ/min{dpi, dii}} , for t > t0,

and

0 < G(t) ≤ GM = max {G(t0), b/Sg} , for t > t0.

Now we show that the equilibrium E0 is globally asymptotically stable by employing a suitable

Lyapunov function.

Theorem 3.2. If there exist positive constants A1, B1 and C1 such that the following assumptions (H1)
and (H2) hold:

(H1) τ < min

{
A1R+A1

K
2
−B1

L
2

B1C
,
E + dpi − L

2

C +D

}
,

(H2)

[
C1(E + dii)−B1Dτ +

A1K

2

] [
E + dpi − τ(C +D)− L

2

]
− (B1 + C1)

2

4B1
E2 > 0,

where

L = σ
(γ + 1)2

4γα

(
γ − 1

γ + 1

) γ−1
γ

and R = Sg + SiIib,K = SiGM , C = RL/2, D = KL/2 and GM is the maximum value of G(t), then

the equilibrium Eb of the system (2.1) is globally asymptotically stable.

Proof. Assume that the condition (H1) and (H2) are satisfied. Let (G(t), Ip(t), Ii(t)) be any positive

solution. Let

V1(t) =
A1

2
(G(t)−Gb)2 +

B1

2
(Ip(t)− Ipb)2 +

C1

2
(Ii(t)− Iib)2,

and

V2(t) = B1C

∫ t

t−τ

∫ t

z

(G(s)−Gb)2dsdz +B1D

∫ t

t−τ

∫ t

z

(Ii(s)− Iib)2dsdz.

where A1, B1, C1 > 0. Define

V (t) = V1(t) + V2(t). (3.1)

We shall show that dV (t)/dt < 0 along any positive solution of the system (2.1) and thus the unique

equilibrium point is globally asymptotically stable. We leave the details in Appendix A. �

In Section 4, we will apply Theorem 3.2 to show the global stability in seven of the nine IVGTT

experiments by determining the coefficients of the Liapunov function.

Remark 3.1. If the parameters E = 0 and dii = 0, then the system (2.1) is reduced to the model (1) in
[27], then the conditions (H1) and (H2) become
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(H1)′ τ < min

{
2A1R+A1K −B1L

B1RL
,
2dpi − L

L(R+K)

}
,

(H2)′ (A1 −B1Lτ) [2dpi − τL(R+K)− L] > 0.

Comparing with the conditions in Theorem 3 in [27], the two theorems might not imply each other.

4. Studies of the time courses X(t) and Ii(t) with IVGTT data

4.1. Data. We obtained nine individual data sets in IVGTT from literature [3, 34, 15, 36, 21] (see Table

1). We respectively fit MM (1.1) and the model (2.1) with these data to estimate the model parameters

and then compare the profiles {X(tk)} from MM (1.1), the insulin profiles {Ip(tk)} and {Ii(tk)} from

the model (2.1), and the IVGTT the data {I(tk)} for each subject and analyze their correlations, where

{tk}, k = 1, 2, 3, · · · , are the time marks at which the data were sampled. We compare the indices

of the IS and GE from MM (1.1) with that from the model (2.1) and then we observed noticeable

improvement for a subgroup of subjects (dogs) in [3] labeled by Fig32A, Fig32B and Fig32C in this

paper.

4.2. Method of generating the time courses. We first obtain the original parameter values and IS

and GE indices Si and Sg of MM from the report for the subject 2 by MINMOD Millennium [6], and

from [3] for the subject Fig32A, Fig32B and Fig32C. To obtain the estimated indices Si and Sg for the

other subjects (6, 7, 8, 27, MLabEx) that are not available in the literature, we implemented MM (1.1)

in Python, referenced from the details of the commercial IVGTT MM software implemented in MLab

by Civilized Software Inc., Silver Spring, MD 20906 [21]. We implemented the model (2.1) in Python.

Then, we employ Latin Hypercube Sampling (LHS) method [31] to estimate the parameter values for

both models. All the parameter values are shown in Table 3 and the corresponding time courses are

demonstrated in Figure 2 for the subject 2 and Figure 3 for the other subjects.

LHS is an effective sampling technique for generating a nearly random sample of the parameter values

from a multidimensional parameter space. The property of the stratified sampling ensures that LHS

requires fewer samples to represent the real distribution than simple random sampling [29]. To ensure

the randomness in parameter search by LHS, we search the parameter space for Sg, Si, p2 and p3 in the

logarithmic manner for MM, while the searches of other parameter values are linear for our model (2.1).

Among these samplings of parameter sets, we choose the parameter set that minimizes the deviation

between the model profile and the IVGTT data characterized by the coefficient of determination (R-

squared):

R2 = 1−
∑n
i=1 (yexp(ti)− ysim(ti))

2∑n
i=1 (yexp(ti)− yexp)

2

where yexp(ti) and ysim(ti) are the IVGTT data and simulated profiles at time ti, respectively.

To determine the parameter values of MM for the other subjects (6, 7, 8, 27 and MLabEx), the

initial value of the glucose level G0 is also taken as a model parameter in addition to the three model

parameters, Sg, p2 and p3. So the parameter space is given by

ΘMM = {Sg, p2, p3, G0} ,

where the ranges of the parameter values are obtained from [7] listed in Table 2. The initial value of

X is set to be zero. Linear interpolation of the sampled insulin data is performed and applied as the

input I(t). The basal insulin level is taken as the insulin data at the time mark 180 min according

to MLab’s implementation. Then we utilize LHS method to generate 1,000,000 independent sets of

random parameter values. Then, the set of parameter values with the best fitting effect for the glucose

data is taken as the parameter values from which the profiles G(t) and X(t) are determined.
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Table 1. Nine IVGTT data. The data of Subject 2 is from [34], Subjects 6, 7 and 8

are from [15], Subject 27 is from [36], Subject labeled by Fig32A, Fig32B and Fig32C

are from [3], and Subject labeled by MLabEx is from [21].
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Table 2. Model parameter ranges. For MM (1.1), all the parameter ranges of MM

are obtained from [7]. For Model (2.1), the ranges of Sg and Si are set slightly larger

than that in [7] and the ranges of other parameter values are cited in the table.

MM Value Range Model (2.1) Value Range Source

Sg (1.2× 10−3, 4.5× 10−2) Sg (1× 10−4, 9.9× 10−2) [15, 7, 27]

p2 (1.3× 10−3, 2.0× 10−1) Si (1× 10−5, 9.9× 10−3) [15, 7]

p3 (5.4× 10−7, 8.0× 10−5) E (0.075, 0.25) [46]

G0 (150, 400) τ (3, 25) [15, 27]

dpi (0, 0.2) [26]

α (100, 200) [48]

γ (2, 5) [48]

Table 3. Parameter values and IS and GE indices Si and Sg of MM and Model (2.1).

Subj 2 Subj 6 Subj 7 Subj 8 Subj 27 Fig32A Fig32B Fig32C MLabEx

MM by MLab:

Si (×10−4) 7.46 0.63 4.02 0.382 0.27 9.10 5.40 1.00 4.21

Sg (×10−2) 0.95 1.40 1.85 2.36 1.33 7.70 4.70 5.20 1.86

G0 246.19 224.42 281.15 238.11 264.00 320.00 249.00 324.00 399.71

p2 (×10−2) 3.86 11.31 5.26 6.77 2.48 13.10 6.20 2.80 7.72

p3 (×10−5) 2.87 0.71 2.12 0.26 0.07 12.00 3.40 0.30 3.25

Model (2.1):

Si (×10−4) 0.65 0.32 2.82 0.60 0.95 13.18 9.35 4.21 4.63

Sg (×10−2) 4.63 2.54 2.04 3.99 0.02 1.91 3.06 2.06 4.50

E 0.10 0.09 0.23 0.10 0.16 0.14 0.23 0.12 0.16

τ 6.06 6.34 9.30 8.72 15.70 3.33 5.31 6.51 21.49

dpi (×10−1) 1.58 1.54 1.33 1.39 0.89 1.64 1.48 0.99 0.40

α 102.20 135.95 106.00 118.34 124.00 177.00 164.27 181.93 140.93

γ 3.08 3.38 2.70 2.15 3.98 2.80 3.00 3.19 2.94

In the initial condition function (2.2) of the model (2.1), t0 = 2 or 3 (min) according to the experi-

ments, and the basal levels of the glucose (Gb) and insulin (Ib) are determined by averaging the data

at the time mark t = 0 and the last data point so that the measure errors for basal concentrations

are reduced. Again we apply LHS method to produce 10,000 independent sets of random values in the

parameter space

Θ(2.1) = {Sg, Si, τ, E, dpi, α, γ} ,

and fit the glucose data for G and plasma insulin data for Ip to estimate the values of the seven

parameters within the ranges given in Table 2.

4.3. Results. We take the subject 2 as an example to show the detailed comparison while summarize

the comparisons of other subjects at the last.

For the subject 2, applying Theorem 3.2 we find a set of coefficients of the Liapunov function

V (t) =(G(t)−Gb)2 + (Ip(t)− Ipb)2 + (Ii(t)− Iib)2
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+ 0.0017

∫ t

t−τ

∫ t

z

(G(s)−Gb)2dsdz + 6.8414× 10−4
∫ t

t−τ

∫ t

z

(Ii(s)− Iib)2dsdz

that ensures the global stability of the equilibrium E0, that is, both glucose and insulin concentrations

will return their basal levels.

We plot the IVGTT data, the profiles from MM, and the profiles from the model (2.1) in Figure 2.

The dynamics of X(t) is multiplied by 4000 to fit into the scale of the window. Denote the values of the

model profilesX, Ii, Ip using the parameter values in Table 3, and the IVGTT plasma insulin data at the

sampling time marks tk by {X(tk)}, {Ii(tk)}, {Ip(tk)} and {I(tk)}, k = 1, 2, 3, · · · , respectively. Simple

correlation analysis discloses that {Ip(tk)} and {I(tk)}, {Ii(tk)} and {I(tk)} are strongly correlated

(0.989 and 0.909), but, on the contrast, {X(tk)} is not correlated with {Ii(tk)}, nor {I(tk)} with the

correlation coefficients merely 0.520 and 0.219, respectively.
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Figure 2. Profiles generated by MM and Model (2.1) for the subject 2.

For six out of the other eight subjects, given the parameter values in Table 3, we are able to construct

Liapunov functions in Theorem 3.2. The coefficients of Liapunov function defined by (3.1) are shown

in Table 4 and hence the equilibrium E0 is globally asymptotically stable. We plot the IVGTT data

and all model solution curves of these eight subjects in Figure 3 in smaller size of plots.

Table 4. Coefficients of Liapunov functions in Theorem 3.2 for the subject 2, 7 and

8 in [27], the subjects in Fig. 32A, 32B, 32C in [3], and the example in [21].

Subj 7 Subj 8 Fig32A Fig32B Fig32C MLabEx

A1/2 5 4 2 3 4 3

B1/2 3 1 2 1 3 2

C1/2 4 3 4 5 5 1

B1C 0.0132 0.0084 0.0056 0.0038 0.0078 7.6824× 10−4

B1D 0.042 0.0028 0.068 0.028 0.0384 0.0044

The correlation analyses shown in Table 5 on the model profiles for the other eight subjects using the

parameter values in Table 3 estimated in Section 4.2 consistently reveal that the plasma insulin profiles
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Table 5. Correlation coefficients between insulin concentrations in different compart-

ments from MM (1.1) and the model (2.1).

Subj 6 Subj 7 Subj 8 Subj 27 Fig32A Fig32B Fig32C MLabEx

{Ip(tk), I(tk)} 0.958 0.939 0.929 0.961 0.967 0.960 0.975 0.984

{Ii(tk), I(tk)} 0.976 0.900 0.974 0.955 0.938 0.968 0.959 0.977

{Ip(tk), Ii(tk)} 0.986 0.984 0.977 0.984 0.991 0.991 0.990 0.996

{X(tk), I(tk)} 0.609 0.445 0.426 -0.112 0.576 0.526 0.146 0.492

{X(tk), Ii(tk)} 0.895 0.740 0.533 0.398 0.919 0.804 0.627 0.787

{Ip(tk)} from the model (2.1) are strongly correlated to the IVGTT plasma insulin data {I(tk)}. The

interstitial insulin profile {Ii(tk)} by Model (2.1) is also strongly correlated to the plasma insulin data,

although slightly weaker than the correlation between the plasma insulin {Ip(tk)} and the IVGTT data

{I(tk)}. Without any surprise, the model profile {Ip(tk)} and {Ii(tk)} are strongly correlated as well.

These analyses for the subject 2 and other eight subjects can be supported by the known physiological

fact that interstitial insulin level is fractional of plasma insulin level, roughly about 60%, when at the

basal state [39, 42, 43]. These reasonably indicate that the time course Ii(t) from the model (2.1) may

indeed stand for the interstitial insulin concentration. On the other hand, neither of the nine profiles

{X(tk)} of the auxiliary variable X in MM (1.1) show strong positive correlation to the sampled IVGTT

plasma insulin data {I(tk)}. On the other hand, interestingly, the correlation coefficient between X

and Ii are greater than 0.8 for Subject 6, Fig32A, Fig32B, three of the total nine subjects. But the

three subjects inconsistently belong to different subgroups. The above analysis indicates that, even

though X is not proportional to or consistently and strongly correlated to interstitial insulin, certain

weak correlation between X and interstitial insulin still exists. In addition, observing that the initial

condition X(0) = 0 and X(t) stabilizes at 0, perhaps, X(t) could be appropriately interpreted as a

proportional increment of the interstitial insulin when the β-cells respond to the stimulus during IVGTT.

Carefully examining the parameter values of the nine subjects in Table 3, it can be seen by comparison

that the estimations by the model (2.1) is consistently overcome the aforementioned drawbacks of MM

for the (dog) subject Fig32A, Fig32B and Fig32C [3]. For other (human) subjects, no consistent result

is observed.

Ha et al. [18] pointed out that the presence of a strong first insulin secretion phase could result

in an underestimation of insulin sensitivity through a set of data generated by a putative model.

Unfortunately we could not repeat their findings by our model (2.1).

In a short summary, the above results manifest that

a) the dynamics of Ip(t) and Ii(t) produced by the model (2.1) reflect the plasma and interstitial

insulin levels during the IVGTT duration.

b) in MM, the variable X(t) might be the increment of the interstitial insulin, which is not correlated

to the interstitial insulin dynamics. Instead, it is more suitable to be considered as the proportional

increment of the interstitial insulin from the basal level in responding to the bolus glucose stimulus.

c) numerical studies for a subgroups (dog subjects) evidenced the potentiality of the model (2.1) to

overcome the MM’s limitation – overestimating Sg and/or underestimating Si.

4.4. Physiological meaningful parameter values of E and τ would not destabilize the equi-

librium. In this section, we consider the robustness of the model (2.1) in physiological applications.
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Figure 3. Profiles generated by MM and Model (2.1) for the other eight subjects.
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Under certain conditions, we have shown that the equilibrium E0 of our model (2.1) is globally asymp-

totically stable. It is well known that larger time delays destabilize a system. We take the explicit

time delay τ and the transfer rate E between the two insulin compartments as bifurcation parameters

and investigate whether their changes would undermine the stability of E0. As results, omitting the

routine but lengthy mathematical treatments, we obtained that, in addition to a natural physiological

assumption Iib < Ipb (basal interstitial insulin level is lower than the basal plasma insulin level), a

necessary condition for E0 to be unstable is

Sg < (γ(1− f(Gb))− 1)SiIib. (4.1)

For the parameter values of seven out of the nine subjects in Table 3 estimated from the IVGTT

data, we successfully constructed Liapunov functions (refer to Table 4 for the coefficients) and thus the

equilibrium point E0 is globally asymptotically stable. So we focus on the subject 27 and 6 now. The

parameter values of both subjects do satisfy (4.1). However our intensive numerical simulations cannot

detect a bifurcation value when E varies from 0 to large, but we did detect a Hopf bifurcation value for

τ at τ0 ≈ 242.9 for subject 27 as shown in Figure 4, which is very much out of the physiological ranges

and the instability would not happen.
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Figure 4. Hopf bifurcation of Subject 27 when τ varies. Limit cycles bifurcated from

a Hopf bifurcation when τ changes from 0 to large. The bifurcation point is at τ0 ≈
242.9.

5. Discussions

As the rapid increase of diabetic population in the world, research on the metabolic regulation in

glucose and insulin becomes more and more pressing. Determining IS and GE are critical to find the

progression pathways of T2DM and drug developments for T2DM. IVGTT is an appropriate protocol

to determine these physiological characters less invasive and relatively accurate. However, the utility

of the IVGTT for evaluating the essential physiological characteristics, insulin sensitivity and glucose

effectiveness, has been challenged due to the minimal model [23]. A carefully formulated mathematical

model for IVGTT setting is important to accomplish the assessment. One possible reason causing the
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drawbacks may be due to limited knowledge in biology regarding the interstitial insulin when the model

was formulated, which resulted in a flaw in model structure. Till 2002, Straub and Sharp [45] pointed

out that the glucose-stimulated biphasic insulin secretion in the IVGTT setting includes at lease two

different pathways, the KATP channel-dependent pathways and KATP channel-independent pathways,

which was not considered in the model formulations in MM.

In this paper we formulate a reasonable model (2.1) to describe IVGTT based on physiological

observations and the well accepted Sturis’ model for the glucose-insulin regulation. Our intensive

numerical studies reveal that the parameter estimations of Si and Sg by our model show improvements

of MM’s limitations for the dog subjects in the available data. Even though the number of the available

data is limited, the consistency of the estimation in the entire subgroup may bring to light the right way

of the model formulation. We analytically justified that the model (2.1) is well posed and the unique

positive equilibrium point is globally asymptotically stable under certain conditions, which precludes

the model (2.1) from the invalidity encountered by the extended MM by Pacini and Bergman [34] as

pointed by De Gaetano and Arino [15]. Seven of the nine (≈ 78%) IVGTT data used in this paper do

satisfy such conditions. Bifurcation analysis shows that the equilibrium point is stable when the values

of the key parameter E and τ are within physiological ranges, which makes applications at ease.

In addition, we also observed followings through our analyses.

a) As known, in daily life (also called free living), the interstitial insulin and the plasma insulin keep

at a balanced stable state [39, 42, 43]. In IVGTT, the balance is contravened for about 100 minutes

due to the readily released insulin stored in β-cell granules into the peripheral triggered by the bolus

glucose injection into the vein.

b) The interstitial insulin level can be close to the level of the plasma insulin when the second phase

insulin release occurs in the first 30 minute but hardly overpasses the plasma insulin level. The balance

is gradually restored.

c) When the plasma insulin exhibits the second peak caused by the second phase secretion, the

interstitial insulin also acts like a bump but not a peak. In such case, the difference between the plasma

insulin and interstitial insulin is larger.

MM directly models the insulin action. When the insulin actions on adipocytes, skeletal muscle

and liver in obesity are impaired, or decreased in the pathways of glucose uptake and metabolism, the

glucose removal is eventually reduced [10]. Our analysis manifests that the variable X for insulin action

in MM could be understood as a quantity proportional to the increment of the interstitial insulin, rather

than proportional to nor strongly correlated to the interstitial insulin.

It has been shown that hostile environmental factors promote the development of T2DM. Marunaka

[30] found that the level of pH (potential of hydrogen) in the interstitial fluid is a critical factor re-

sponsible for the occurrence of insulin resistance as pH level affects the binding affinity of insulin to

its receptors. Even under mild metabolic disorder conditions with blood pH is kept constant within

a normal range (7.35 − 7.45), the interstitial fluid pH would be lower than a normal level due to the

less pH-buffering molecules in interstitial fluids than the powerful pH-buffering molecules in blood (e.g.,

hemoglobin and albumin), which leads to insulin resistance [30]. Quantifying the impact of pH on in-

sulin resistance in detail by mathematical models could be significant in this area. Other environmental

factors promote the development of T2DM can be found in the review by Dendup et al. [12].

The protocol IVGTT is less invasive, less expensive, but more accurate than other protocols such as

oral glucose tolerant test (OGTT). If a reliable model can come up with for the estimation of the key

physiological characteristics, it will be beneficial to both biologists and clinicians working in this area,

and ultimately to the diabetic patients.
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Appendix A. Details of the proof of Theorem 3.2

To calculate the derivation of V (t) = V1(t) + V2(t) along any positive solutions of system (2.1), we

first have

dV1(t)

dt
= A1(G(t)−Gb)[b− SgG(t)− SiG(t)Ii(t)]

+ B1(Ip(t)− Ipb) [σf(G(t− τ))− E (Ip(t)− Ii(t))− dpiIp(t)]
+ C1(Ii(t)− Iib) [E (Ip(t)− Ii(t))− diiIi(t)]

= A1(G(t)−Gb)[−Sg(G(t)−Gb)− SiG(t)(Ii(t)− Iib)− SiIib(G(t)−Gb)]
+ B1σ(Ip(t)− Ipb) (f(G(t− τ))− f(Gb))

− B1(Ip(t)− Ipb) [(E + dpi) (Ip(t)− Ipb)− E(Ii(t)− Iib)]
+ C1(Ii(t)− Iib) [E(Ip(t)− Ipb)− (E + dii) (Ii(t)− Iib)] . (A.1)

According to the mean value theorem, we have from (A.1) that

dV1(t)

dt
= A1(G(t)−Gb)[−(Sg + SiIib)(G(t)−Gb)− SiG(t)(Ii(t)− Iib)]

+ B1σ(Ip(t)− Ipb)f ′(G(ξ))(G(t− τ)−Gb)
− B1(Ip(t)− Ipb) [(E + dpi) (Ip(t)− Ipb)− E(Ii(t)− Iib)]
+ C1(Ii(t)− Iib) [E(Ip(t)− Ipb)− (E + dii) (Ii(t)− Iib)]

= − A1(Sg + SiIib)(G(t)−Gb)2 −A1SiG(t)(G(t)−Gb)(Ii(t)− Iib)

− B1(E + dpi)(Ip(t)− Ipb)2 + (B1 + C1)E(Ip(t)− Ipb)(Ii(t)− Iib)

− C1(E + dii)(Ii(t)− Iib)2

+ B1σ(Ip(t)− Ipb)f ′(G(ξ))[(G(t− τ)−G(t)) + (G(t)−Gb)], (A.2)

where G(ξ) is between G(t− τ) and Gb. Because G is bounded and α and γ are positive constants, we

get that f ′(G(ξ)) is bounded. Similarly, setting R = Sg + SiIib,K = SiGM and

L = σ
(γ + 1)2

4γα
(
γ − 1

γ + 1
)

γ−1
γ ,

where GM and L are the maximum values of G(t) and function of σf ′(G(ξ)) for G > 0, we obtain from

(A.2) that

dV1(t)

dt
≤−A1R(G(t)−Gb)2 −A1K | (G(t)−Gb)(Ii(t)− Iib) |

−B1(E + dpi)(Ip(t)− Ipb)2 + (B1 + C1)E(Ip(t)− Ipb)(Ii(t)− Iib)

− C1(E + dii)(Ii(t)− Iib)2 +B1L | (Ip(t)− Ipb)(G(t− τ)−G(t)) |
+B1L | (Ip(t)− Ipb)(G(t)−Gb) | . (A.3)

Furthermore, since xy ≤ 1
2 (x2 + y2) for all x, y ≥ 0, we obtain that

|(Ip(t)− Ipb)(G(t− τ)−G(t))| =
∣∣∣∣(Ip(t)− Ipb)∫ t

t−τ
G′(s)ds

∣∣∣∣
=

∣∣∣∣∫ t

t−τ
[−Sg(G(s)−Gb)− SiG(s)(Ii(s)− Iib)− SiIib(G(s)−Gb)](Ip(t)− Ipb)ds

∣∣∣∣
=

∣∣∣∣∫ t

t−τ
[(Sg + SiIib)(G(s)−Gb)(Ip(t)− Ipb) + SiG(s)(Ii(s)− Iib)(Ip(t)− Ipb)]ds

∣∣∣∣
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≤ 1

2
(Sg + SiIib)

(∫ t

t−τ
(G(s)−Gb)2ds+ τ(Ip(t)− Ipb)2

)
+

1

2
SiGM

(∫ t

t−τ
(Ii(s)− Iib)2ds+ τ(Ip(t)− Ipb)2

)
=

1

2

[
R

∫ t

t−τ
(G(s)−Gb)2ds+K

∫ t

t−τ
(Ii(s)− Iib)2ds+ τ(R+K)(Ip(t)− Ipb)2

]
. (A.4)

It follows from (A.3) and (A.4), we derive that

dV1(t)

dt
≤ −A1R(G(t)−Gb)2 −A1

K

2

[
(G(t)−Gb)2 + (Ii(t)− Iib)2

]
|

−B1(E + dpi)(Ip(t)− Ipb)2 + (B1 + C1)E(Ip(t)− Ipb)(Ii(t)− Iib)

− C1(E + dii)(Ii(t)− Iib)2 +B1
L

2

[
(Ip(t)− Ipb)2 + (G(t)−Gb)2

]
+B1

LR

2

∫ t

t−τ
(G(s)−Gb)2ds+B1

LK

2

∫ t

t−τ
(Ii(s)− Iib)2ds

+B1τ
L(R+K)

2
(Ip(t)− Ipb)2

= −
(
A1R+A1

K

2
−B1

L

2

)
(G(t)−Gb)2

−B1

[
E + dpi − τ(C +D)− L

2

]
(Ip(t)− Ipb)2

−
[
C1(E + dii) +A1

K

2

]
(Ii(t)− Iib)2

+ (B1 + C1)E(Ip(t)− Ipb)(Ii(t)− Iib)

+B1C

∫ t

t−τ
(G(s)−Gb)2ds+B1D

∫ t

t−τ
(Ii(s)− Iib)2ds, (A.5)

where C = LR
2 , D = LK

2 .

Second, for V2(t), it follows

dV

dt
≤ −

(
A1R+A1

K

2
−B1

L

2

)
(G(t)−Gb)2

−B1

[
E + dpi − τ(C +D)− L

2

]
(Ip(t)− Ipb)2

−
[
C1(E + dii) +A1

K

2

]
(Ii(t)− Iib)2

+ (B1 + C1)E(Ip(t)− Ipb)(Ii(t)− Iib)

+B1Cτ(G(t)−Gb)2 +B1Dτ(Ii(t)− Iib)2

= −
(
A1R+A1

K

2
−B1

L

2
−B1Cτ

)
(G(t)−Gb)2

−B1

[
E + dpi − τ(C +D)− L

2

]
(Ip(t)− Ipb)2

−
[
C1(E + dii) +A1

K

2
−B1Dτ

]
(Ii(t)− Iib)2

+ (B1 + C1)E(Ip(t)− Ipb)(Ii(t)− Iib).
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Clearly, if the conditions (H1) and (H2) hold, then dV
dt < 0. Therefore, the steady state of Eb is

globally asymptotically stable according to the Lyapunov Theorem. This completes the proof. �
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