Mathematics in Applied Sciences and Engineering https://ojs.lib.uwo.ca/mase
Online First, pp.1-24 https://doi.org/10.5206 /mase/15949

OPTIMAL ACTUATOR PLACEMENT FOR CONTROL OF VIBRATIONS
INDUCED BY PEDESTRIAN-BRIDGE INTERACTIONS

MARTIN DEOSBORNS AROP, HENRY KASUMBA, JUMA KASOZI, AND FREDRIK BERNTSSON

ABSTRACT. In this paper, an optimal actuator placement problem with a linear wave equation as the
constraint is considered. In particular, this work presents the frameworks for finding the best location
of actuators depending upon the given initial conditions, and where the dependence on the initial
conditions is averaged out. The problem is motivated by the need to control vibrations induced by
pedestrian-bridge interactions. An approach based on shape optimization techniques is used to solve
the problem. Specifically, the shape sensitivities involving a cost functional are determined using the
averaged adjoint approach. A numerical algorithm based on these sensitivities is used as a solution
strategy. Numerical results are consistent with the theoretical results, in the two examples considered.

1. INTRODUCTION

An actuator is a device that introduces or prevents motion in a control system [10]. In this work, an
actuator is defined as a device that prevents motion in a control system.

Optimal actuator placement problems involve the question of finding the optimal location of the
subdomain [23]. They arise naturally in many practical applications, for example, in seismic inversion
[20], placement of loudspeakers for ideal acoustics [11], and medical applications [2].

There are extensive works on the optimal actuator placement problems governed by linear ordinary
differential equations in the literature, see [9, 22] and the references therein. From among the earlier
publications in this direction, we quote the work in [9], where the optimal placement of actuators
and sensors for gyroelastic bodies is studied based on controllability and observability criteria. Another
important study is by Van de Wal and de Jager [22], where a linear system is solved using controllability
and observability Gramians.

The optimal placement of actuators in dynamical systems governed by heat, advection, and wave
equations has also received a growing amount of attention. In [21], an actuator and sensor placement
problem is considered using an advection equation with an application in building systems. The authors
proposed a Gramian criterion, where the degree of controllability and observability is maximized with
respect to the least controllable and observable states.

An optimal actuator design and placement problem for a linear heat equation is investigated in
[10] using a shape and topology optimization approach. The authors parametrized the actuators by
considering controls over some subsets of the domains using indicator functions.

In [7] and [8], optimal stabilizations of the one-dimensional wave equation are investigated using a
genetic algorithm and frequential analysis approach, respectively. Furthermore, the optimal location of
controllers for the one-dimensional wave equation is studied in [16] as an exact controllability problem
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using the frequential analysis approach. In addition, the optimal location of the support of the control
for the one-dimensional wave equation as an exact controllability problem is studied in [14].

Inspired by the work in [14], we study an optimal actuator placement problem for linear wave
dynamics by using shape optimization techniques. In particular, we extend the techniques presented in
[10] to a dynamic system governed by the linear wave equation. Numerical realization of the problem
is achieved by using a finite difference method, see e.g., [13].

In this paper, we determine the optimal actuator placement for the stabilization of pedestrian-bridge
vibrations. More precisely, we use a shape optimization approach to find the optimal actuator location
so that the vibrations induced by pedestrian-bridge interactions are controlled.

The remainder of this paper is organized as follows. In Section 2, we fix the notations utilized in
the sequel and formulate the state and optimization problems. Section 3 is devoted to proving well-
posedness and deriving the optimality system for our optimization problems. In Section 4, we derive the
shape derivatives of the optimization problems. Numerical tests that illustrate the theoretical results
are given in Section 5. The paper ends with concluding remarks and future work.

2. FORMULATION OF THE PROBLEM

2.1. Notations. Let G be either the domain Q or its boundary 9. Then, we define L? (G) as a linear
space of all measurable functions y : G — R such that

1
2
Ioloer = ( [1o de)” <
The standard Sobolev space of order m € R U {0}, denoted by H™(G), is defined as
H™(G) :={y € L*(G)|D"y € L*(G), for all 0 < |y| < m},

where D7 is the weak partial derivative and + is a multi-index. The norm || - || gm gy associated with
H™(G) is given by

Wl = | 3 / Dy? d.

ly|<m 9

For a functional space X, we denote by LP(0,T;X) (1 < p < oo) the space of measurable functions
y:[0,T7] — X such that

r :
T :=( | o dt) < oo,

where T is the final time. The space of essentially bounded functions from [0, 7] into X is denoted by
L>(0,T; X) and is equipped with the norm esssup,¢(o )[|y(-; )|/ x, where esssup denotes the essential
supremum. The duality pairing between Hg () and H~1(Q) will be denoted by (-, ) H-1(0),H1 () While
the inner product in R? will be denoted by (-,-). We denote the control space by U := L?(0,T; L*(Q))
and the collection of measurable subdomains of Q by E(Q). We shall use L2(L?(Q2)), L2(H}(Q2)) and
L (H}(Q)) as the short forms for L2(0,7T; L2(2)), L*(0, T; H3(2)) and L>°(0,T; H}(9)), respectively.

2.2. Setup of the Problem. In this work, we consider the problem of controlling vibrations induced
by pedestrian-bridge interactions, see Figure 1.
The vibrations y(z,t) at position z and time ¢ are governed by the wave equation:
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OO

A 0

F1Gure 1. Control of vibrations on the domain 2 using the supports at w := w; U ws.

@fA— u (x,t) € Q x (0,T]
8t2 y - XW ) ) ) )
y=0, (x,t) € 002 x (0,11, (2.1)

y0) = F(@), D w,0) = gla), w € 0

where u = u(z,t) denotes the control variable, x,, the characteristic function for the domain w C €, and
2 € R%2. The domain w represents the location of the actuators. It is not known where these supports
should be placed in order to control the vibrations on the bridge. The goal is to determine the optimal
location of these supports. The vibrations may depend on the initial conditions f and g, control variable
u, and subdomain w. This leads to the cost functional .J : E(Q) x Uaq x H}(Q) x L?(Q2) — R defined by

1| dytoe

T 2
1
J(w,u, f, 9) :=/ Sy lo< (ol +H(-,t)
o 2 L2 "ol dt

«
+ 5 Ixuls Dl @dt, (2:2)

L2(Q)
where o > 0 is a given parameter and U,q is the admissible set of controls consisting of a closed and
convex subset of U. The first and second terms in (2.2) suggest that we minimize the vibrations and
speed, respectively while the third term is the control cost.

Remark 2.1. The notation x,u(x,t) is used to stress the fact that u(z,t) is zero outside of w.

Let w, f and g be fixed. Then by taking the infimum of the cost J over all controls u € U,q, we
obtain the functional J; : E(Q) x H}(Q) x L?(2) — R defined by

Jl(w7f7g) = 'u.g(lff(‘ld J(w,u,f,g). (23)

Note that the shape functional J; depends on the initial conditions f and g. To overcome such a
dependence, we introduce a functional J3 : F(2) — R defined by

JQ(w) = sup Jl(waf7g)a (24)
feKi,9eKo

where K; and K3 denote weakly compact subsets of Hg(2) and L?(£2) defined by

K= {f: |flnyey <1} and Kz:={g: |lglli2(0) < 1},

respectively. These conditions are used to average out the dependence of J; on the initial conditions,
and overcome overflow for large values of f and g.

After introducing the two functionals in (2.3) and (2.4), we now study the problems of finding a
minimum cost functional for a fixed w C 2 and a Lipschitz vector field X.
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Definition 2.1. The optimal actuator placement problems related to J; and Js are defined by the
minimization problems:

uf, (i + X) (@), /.9) (25)
and
Jnf, J2((id + X)(w)), (2.6)

where f € K1, g € K5 and (id + X)(w) := {z + X : & € w}, respectively.

3. WELL-POSEDNESS OF THE FUNCTIONALS

To simplify the analysis, we reformulate the wave equation as a system. Note that by setting

ynfa.

ot ohos,
we can rewrite (2.1) as the following first-order system:
By";""’“ —ghew — (z,t) € 2 x (0,77,
QT £yt 9y u =0, (z,t) € @ x (0,77, (3.1)
Yl (e,0) = [@), 0199 (2,0) = g(x), 2 € D
yuhew =0, (x,t) € 002 x (0,T].

This reformulation is useful in the derivation of the optimality system and the discretization of the
optimization problems.
The well-posedness of (3.1) and hence, (2.1) is guaranteed by the following Lemma:

Lemma 3.1. Let f € H}(Q),g9 € L*(Q) and x,u € L?*(L?(2)). Then the problem

9w u w
<8 - ’¢> + fQ vy frgw Vo dr = fQ XU dx,
H=1(Q),Hg ()

Gyurfraw
< 4 ot a¢> = (,Uu,f,g,w’,(/}>’

for all ¢ € L2(HY(Q)) and ¢ € L2(L?(Q)) for a.e. t € (0, T] with y*F9(x,0) = f(z), v*F9%(2,0) =
g(x), has a unique weak solution y*/9* € L2(H}()) and v*F9« € L2(L*(Q)) with

(3.2)

Syt 0w

ot

Moreover, y*f9« € L>®°(H*N H(Q)) and v/9% € L= (HINL?()), and there exists a constant ¢ > 0
that depends on Q2 and T such that

€ L*(H ().

||y"’f’g’w||Loo(H3(Q)) + [0 T 9| oo 12(0)) < C<|qu||L2(L2(Q)) + I fllm2 ) + |9||L2(Q))- (3.3)

Proof. Tt is well known that problem (3.2) has a unique and stable weak solution 39« € L>(HE(Q))N
L2(H}(2)) and v*/9@ € L>°(L3(Q)) N L*(L%(R)), see e.g., [6, Chap. 7] . O

Now, we establish the convergence of the sequence of solutions to (3.1).
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Lemma 3.2. Suppose that {f,} is a sequence in K that converges weakly in H}(Q) to f € K1, {gn}
is a sequence in Ko that converges weakly in L*(Q) to g € Ko and {u,} is a sequence in Uyq that
converges weakly to a function u € Ugq. Then:

yumfn,gn,w N yu,f,g,w in L2(H5(Q)) as n — oo,

pUnifnsgnw _y pufigw i LQ(LQ(Q)) as n — oo.
Proof. Note that inequality (3.3) implies that the sequences {y%»f»9»«} and {v¥n+/»:97«} are bounded
in L2(H?(Q) N HY(Q)) and L2(H () N L3(£2)), respectively. By Rellich-Kondrachov theorem (see
e.g.,[1]), we can extract the subsequences again denoted by {y“»/m9n«} and {v"n-Fn97«} such that
{y¥nFne9n@} converges weakly to y* /9 in L2(H?(Q) N H()) and strongly to y*/9« in L2(HL(Q)),
and {v%n /9791 converges weakly to v®/+9% in L2(H}(Q2)) and strongly to v*/+9:% in L2(L2(f2)). Thus,
replacing (u, f,g,w) by (un, fn,gn,w) in problem (3.2), we may pass to the limits and obtain by the
uniqueness that y = y*“59% and v = v" /9%, O

In the following lemma, we check that the optimization problem (2.3) is well-posed.

Lemma 3.3. Problem (2.3) admits a unique optimal solution u.

Proof. We refer to [19, Chap. 1]. O
The notation u/9“ will be used to indicate that u depends on f, g,w.

Lemma 3.4. Suppose that {f,} is a sequence in H}(Q) that converges weakly to f in HE(Q) and {gn}
is a sequence in L*(S)) that converges weakly to g in L*(Q). Then we have

afnvgnvw — ﬂf’g’w in Uad as n — oo,

where w9 solves (2.3).

Proof. Since @/*97* minimizes J with (w, f,g) replaced by (w, fn,gn), for all u € Uyq and n > 0, it
follows from (3.3) that we must have

1 T Tfn 9n,w fn gn,w —
5/ ™ ,fn-,gn,w(,j)H%z(Q)+Hvu ,fn,gn,w(,7t)||2L2(Q)+a”qufn,gn,w(.’t)”%z(mdt
0
1 T
ns9n s 2 yfnsgn, 2 2
§§/0 ly s 9m ()12 ) + 0I5 ()2 + llxwu( O Z2 oy dt, (3.4)

< ellIxwull7z(r2 ) + an”?qé(g) + 19nlZ20)-

This implies that {@,} := {@/*9*} is bounded in U,4. By Rellich-Kondrachov theorem, we can extract
a subsequence {@y, } such that @,, — @ in U,q as k — oo. Since @ is a unique solution of J(w, -, f, g),
the whole sequence {@,,} converges weakly to @ in U,q as n — oo. Thus, using Lemma 3.2 and by weak
lower semicontinuity of norms, we may pass to the limit infimum in (3.4) to obtain

T
/O ly™ "9 (L2 + 109 O] 2 ) + allxwtC Ol L2 dt

T
< /0 59 (0122 ) + 07920122 ) + allxwul Ol 2ot (3.5)

for all u € Uug. So, we must have @ = u/9* and since w/9* is the minimizer of J(w,-, f,g) (see e.g.,
Lemma 3.3), the whole sequence {, } converges weakly to @/9“. Therefore, T, — @9 in U,y. As a

consequence of weak lower semicontinuity, we must have
Hﬂfvng 9

‘L2(L2(Q)) < limg oo inf HﬂnkHLz(L?(Q)) = ||ﬂf wHLz(Lz(Q)).
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Thus, it follows from (3.5) that the norm |[@/™ 97| 12 (2(q)) converges to |[a/9||12(z2(q)). The weak
convergence and norm convergence of (7, ) imply that @/»9« — 7/9« in U,y as n — oo. O

The following result will be used to characterize the optimal solution .

Theorem 3.5. Suppose that Uy,q = U. Then we have the following optimality system.:

W — yfew =, (5,8) € 2% (0,7,
% - Ayﬂ’f’g""i— Xt =0, (z,t) € Q x (0,71, (3.6)
YR8 (@,0) = f, w099 (2,0) = g, 2D,
yodew =, (x,t) € 002 x (0,71,
apigt’g'w — WS 9w = gy figw, (z,t) € Q x (0,7,
w fr9w U w vy w
Qu I NpSe = S, (,t) € Q2 x (0,7, 3.7)
pl9@ (2, T) =0, whH99 (2, T) =0, =€,
ptgw = (), z,t) € 9 x (0,T]
and
Xl — Xop™ 9% =0, (z,t) € Q x (0,T], (3.8)
where pt9« € L2(HY(Q)), w9« € L2(L*(Q)) and (y©F9« v@F9w g, phf9w f9¢) solyes
(3.6)-(3.8).
Proof. The optimality system (3.6)—(3.8) can be easily proved using standard techniques, see e.g.,
[12, Theorem 2.1], [19, Chap. 3]. |
Remark 3.1. Let U,g C U. Then, instead of (3.8), we find the variational inequality
/ (XWT — Xup™9) (u — 1) dadt > 0, for all u € Uyq. (3.9)
Qx[0,T]

The optimal solution % is now characterized using (3.9).
In the following lemma, the well-posedness of Js is checked.

Lemma 3.6. Let Ky and Ky be two weakly compact sets containing the respective origins. Then for
every w € E(Q), we can find f € K1 and g € Ko satisfying

[flzz) <10 l9llr2) < 1 and J2(w) = Ji(w, f, 9).

Proof. Note that 0 € Uyq. Let f € K1 and g € K» with fixed w € E(2). Then in the absence of control,
using (3.3) we have

T
i L 0.fg0 2 L 0fow 2
Do 1.0) = gmin o) < [ Gl + g0
< el £l + lolz2 () < cR?,

where R = /2. Since f € K; and g € K, it follows that % € Ky and 4 € K, with ||£||Hé(9) <
L |4%lz2) < 1. Next, we show that Jo(w) = Ji(w, f,g). From (2.4), we have

(3.10)

T

1 —=f9,w 1 =f9,w

Jo(w) = sup / 5”yu 9 ’f’g’w(~,t)|‘%2(9)+§||vu 9 ’f’g’w(~,t)||%2(9)
fE€K1,9€K2 JO

- —f,9,w
+ §|\quf’g’ ()72 dt- (3.11)
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Let {fn} C Ki, [[fallzi@) <1 and {gn} C Ko, [|gnllz2(n) < 1 be maximizing sequences. Then, (3.11)
can be written as

T
1 gfn gn,w 1 gin gn,w
— i _ U yfnsgn,w . 2 _ u Jfrsgn,w . 2
Ja(w) nlggo o 2||y ( »t)”Lz(Q) + 2”” ( 7t)||L2(Q)
«a — w
+ §||quf”’g"’ (s OlZ 20 dt. (3.12)

Since {f,} and {g,} are bounded in K; and Ka, respectively, a subsequence {f,, } converges weakly to
f € K1; {gn, } converges weakly to g € K. Since {f,} C K1 and {g,} C K3, the limit elements satisfy

£l ) < kli_{roloianfTLkHH&(Q) <1, llgllz2) < klgroloinf||9nk”L2(Q) <1,

by lower semicontinuity of norms. Thus, ||f|[z: ) <1 and [|g|lz2@) < 1. Since {fn,} and {g,, } are
bounded in Hg(2) and L2(R2), respectively, f,, — f € Hi(Q) and g,, — g in L*(Q). From Lemma
3.2, we note that {y%»f=9»«} converges strongly to y*“/9« in L2(H}(Q)) and {v*»/»92:%} converges
strongly to v*/9¢ in L?(L?(Q)), and from Lemma 3.4, @/ 9% — 7/9% in U,q as n — co. Thus, by
lower semicontinuity, we have norm convergence. Hence, we may pass to the limit in (3.12) and obtain

1 r ol w af9w w —f,g,w
Jz(w):§/0 ly™ T )2y + 0™ )T + @l O 1) 172 oy dt
:Jl(wafvg)'

Since f € K; and g € K, satisfy

||f||H01(Q) < 17 ||g||L2(Q) < 17 fEII(rlli,]}éKz J](W,f, g) = JQ(O‘)) = Jl(wmf?g))

it follows that the map w — Ja(w) is well-posed. O

4. SENSITIVITY ANALYSIS OF THE FUNCTIONALS

4.1. Shape Derivative. In order to compute the shape derivatives of J; and Jy, we introduce a
perturbation of the identity. Consider the space CG’O’l(ﬁ7 R?) of Lipschitz vector fields vanishing on 9f2.
We define a perturbation of the identity T (z) by T,(z) := z + 7X (), where z € 1, X € C%1(1, R?)
and 7 is the perturbation parameter [5, p.175]. In view of the perturbation of the identity, we give the
definition of a shape derivative of J as follows.

Definition 4.1. The directional derivative of J at w € E(f) in the direction X € C% (0, R?) is defined
by
J(Tr(w)) = J(w)

D X):= 1l T
J(@)(X) = lm T :

provided the limit exists.

Remark 4.1. The cost functional J is shape differentiable at w if X — DJ(w)(X) is linear and continuous
for all X € C%1(€2,R?), see e.g., [5] and [4].

4.2. Sensitivity of the State Equation. The space-time cylinder and its boundary will be denoted
by Qr :=Q x (0,T] and T'r :=T x (0, 7], respectively. The sensitivity of the solution of (3.1) is given
in the following lemma.
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Lemma 4.1. Let T, =id + 7X,7 > 0. Suppose that w is perturbed such that w, := T, (w),w € E(Q).
Then on the perturbed domain Q, x (0,T] with Q, := T,(Q),7 >0, we have

Lyugzgﬁ — 9T =0 in Qr, (4.1)
it AT = o in . (42)
gl 97 (2.0) = f(z) o Ty, 0597 (2,0) = g(z) o T, in Q, (4.3)
Y97 =0 on I'y, (4.4)
where

A(7) = (1) (0T7)HOT-) ™", ((7) := |det(IT,)|. (4.5)

Proof. In view of (3.1) with w, := T, (w),w € E(Q), we have
ayug# — 9% = 0 in Qp, (4.6)
8””67]0;% — Ayl9vr =y, win Qrp, (4.7)
yl 99 (2,0) = f(x), 01947 (2,0) = g() in Q, (4.8)
y“ 99 =0 on Iy, (4.9)

where w, C Q. Thus, considering (4.7) on the perturbed domain Q. x (0,7] with Q, = T.(Q),7 > 0,
we get the perturbed weak formulation:

v fr9wr
/ UT@ dx,dt —I—/ Vysh9wr .V de, dt = / Xw, W dx, dt, (4.10)
Q. x (0,77 Q% (0,7 Q% (0,7

for all p € L2(H}(,)) with (y®f9wr y:f9wr) satisfying (4.6)—(4.9). Next, employing a change of
variables induced by Q, := T,(Q) in (4.10) gives

uoT:l,f,g,w.r T _
2 X o dadt 4 [ ()T 9 0 T) - (g0 T,) dadi

Qr

Qr
= (7)(Xw, w0 T;)(p o T) dadt, for all p € L*(H (). (4.11)
Qr
Applying the chain rule (see e.g., [17, p.63]) in (4.11) together with x,,. = x0T, ! and the perturbed
variables (see e.g., [5, p.523])

yu,f,g,'r _ yuoT;l,f,g,wT o TT7 Uu,f,g,'r — ,UuoT:l,f,g,wT o TT’ (412)
yield
81}”7]079,7— T T
()= —(p o Tr) + {(7)(IT) " TVy" /47 (9T-) " TV (p o T) dudt
Qr
= C(T)(xwu)(p o Ty) dadt, for all p € L*(H} (). (4.13)
Qr

From (4.5), equality (4.13) simplifies to

oot
/ C(T)T(ga oT;) dxdt + / A(T)Vy" 97 . Y(p o T,) dodt
QT QT

= /Q C(7)(xwu)(p o T;) dxdt, for all p € L*(H(Q,)). (4.14)
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Since (4.14) is true for all ¢ € L?(H(Q,)), it follows that for all ¢ € L?(HE(Q)) the function ¢ o T 1
belongs to L2(H(2;)). So, testing (4.14) with ¢ := ¢o T for an arbitrary ¢ € L?(H{(2)), we obtain

s f>9,T
(T)O’UT((b ° T;l ° TT) A(T)§7yu7fygﬂ' . V(¢ o'l ;1 fold | 7.) dxdt
Qr

= () (xwu)(¢p 0o T o T,) dadt, for all ¢ € L*(H}(Q)). (4.15)
Qr
Rewriting (4.15), we have
vt 9

(1) ——=——¢ dadt + / A(T)Vy" 9™ .V ¢ dudt
Qr ot Qr

= C(T)xwue dxdt, for all ¢ € LQ(H(%(Q)). (4.16)
Qr

Similarly, considering (4.6) on 2, x (0,77, it can be shown that:
Oywt9r wfogr 2,79
A (T)T’Qb — ((T)v* 9T dedt = 0, for all ¢ € L*(L*(2)). (4.17)

T

Thus, after mapping back (4.16) and (4.17), and using (4.8)—(4.9) in (4.12), we have (4.1)—(4.4). O
In the following essential lemma, the sequence {7,,}32; will be necessary.

Lemma 4.2. Let X € C%1(Q,R?).

(a) Then as 7, — 01, we have

C(mn) —1 e}

— div(X) strongly in L>°(£2), (4.18)
Tn
Alm) =1, div(X)I — X — X" strongly in L (€, R?*?), (4.19)
Tn

where I is the 2-dimensional identity matriz.
b) Suppose that {¥,} is a sequence in H}(Q) converging weakly to ¥ € HL ().
0 0
(i) Then for all ¥ € H}(Q2), we have as 7 — 0T,

T, o T, — VU strongly in Hj(Q). (4.20)
(ii) If {rn} is a null sequence, then as n — oo we have
v,oT, —V¥, .
O T T Y- X weakly in H(Q). (4.21)
Tn
Proof. The results of the convergence (4.18), (4.19), and (4.21) are proved in [17]: Lemma 2.31, p.107
and proposition 2.72, respectively while (4.20) is proved in [5, p.527]. O

Remark 4.2. There are constants c1, co > 0 such that for all x € Q and 7 € [0, 7x], 7x > 0,
c1 < ¢(1)(@), ea¢]? < A(T) ()¢ ¢, (4.22)
for all ¢ € R?, see e.g., [5, p.559].

The following lemma gives the a-priori estimates for y*f9:wr ywf97 yufigwr and vwfo7,

Lemma 4.3. For all (u, f,g,w) € Usa x H}(Q) x L?(Q) x E(Q), there exists a constant ¢ > 0, such
that

ly“" 9 | L2y + 100 L2 22)) < ef el + 1 lmp) + gl ), (4.23)
0
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||yu7f,g, u,f,g,7

ey + 1097 2y < c(uxwum(m)) Ul + ||g||Lzm)). (1.24)

Proof. Note that (4.23) is a consequence of (3.3) and the proof is omitted here. We prove (4.24) as
follows. By a change of variables, we have

T
/0 Iy D97 ()1 720y + VY597 (0120 dt

:/ |yu7fyg7T|2 + |vyu7f,9,7'|2 dxdt,
Qr

= | Uy T o TP 4 (U VYT o T Wy 9T o T dudt, (4.25)
Qr
= [ Uy T feer |2 4 AT () Wy T e gy eeTeh fger
Qr
(4.22) 1 ) S B
< C/ |yu0 - 7f,.q>w7| + Yy oT- Jfog,wr - VyteTs Jfog.wr dzdt,
Qr

(4.23) -
< e I wo T B aquaqon + I gy + ol )

Using X, = Xw © 7! and the natural norm on H'(Q), i.e.,

T
/0 gl 9T (02 + IV 0T (0220 dt = 11y 721 )
in (4.25) (see e.g., [3, p-39]), we obtain the desired inequality. O

For the continuity results of (u, f,g,7) + y* 97 and (u, f, g,7) = v*/97 we prove the lemma that
follows.

Lemma 4.4. For every (w1,uy, f1, 1), (wa, Uz, f2,92) € E(Q) x Uyq x HE(Q) x L*(Q), with (y1,v1)
and (ya,v2) being the corresponding solutions to (4.6)—(4.9), there is a constant ¢ > 0, independent of
(wlauhfhgl) and (WQ,’LLQ,fQ,gQ), such that

1 = yallL2(ma @) + lvr = v2llz2(22(0))
< C<|XW1U1 = Xws 2 z2(z20)) + 11 = fallm ) + llgr — gzle(Q))- (4.26)

Proof. Since (y1,v1) and (y2,v2) solve (4.6)—(4.9), it follows that they satisfy

0
% —vp = 0in Qp,
% — DAYk = X uk in Qr,
yr(x,0) = fr(x),ve(x,0) = gi(z) in Q,
yr =0 on I'r,
for all k =1,2. Let y12 := y1 — y2 and v13 := v1 — va. Then (y12, v12) satisfies
0
322 — V12 = 0 in QT,

vz :
8t - Ale = leul - XLUQUQ mn QT?

y12(2,0) = fi(x) — fa(x),vi2(2,0) = g1(x) — g2(2) in Q,

y12 =0 on I'p.
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Hence, (4.26) follows from (3.3). O
The following lemma is an immediate consequence of Lemma 4.4.

Lemma 4.5. Let w € E(2) be given. Suppose that for all 7, € (0,7x], Un,u € Uad, fn, f € HY(Q) and
gn>9 € L*(Q),

Up = u in Uyg, frn— fin H&(Q),gn —gin L*(Q), 7, = 0, as n — oo.
Then:
Un s frnsGnsTn u,f,g,w : 2 1
Y -y in L°(Hy(2)) as n — oo,

pUnofrsgnsmn _y pusfigw L*(L?(Q)) as n — oo.

Proof. Using inequality (4.24), we see that the sequences {y%» /9™ 1 and {vUn:Fn:9n:7n} are bounded
in L2(H2(Q) N HY(Q)) and L2(HL(Q) N L3(£)), respectively. By Rellich-Kondrachov theorem, we can
extract subsequences {y“wxfrr9ni Tk} and {vUneofreo9ne T} such that {y%esfrr9ne ™} converges
weakly to y*/ 9« in L2(H?(Q) N H{(Q)) and strongly to y*“/9¢ in L2(H}(Q)), and {vUnefrxdne T}
converges weakly to v/9% in L2(H}(Q)) and strongly to v*/+9« in L2(L%(Q)). From (4.16) and (4.17),
it is known that (yg,vy) with yg 1= y%fre9n T and vy, = v¥nefoedne ™ k€ {0} UN satisfies the
variational formulations

ov
A ¢ (Tnk)fatkw + A(70, ) Vs - Vo dadt = ; C(Tny, ) Xwtin, @ dadt,
Oy _
C(Tn, ) —=—1 dadt — C(Tn, )vgyp dadt = 0, (4.27)
Qr ot Qr
for all p € LQ(H(%(Q)) and ¢ € LQ(LQ(Q)) with yk(m70) = fns (x) © TTnk and ’Uk(.T,O) = Gny (33) o T'rn,c

in Q. From Lemma 4.2, it follows that f,, () o T., — f(z) in H}(Q) and g, (x) o T, —g(2)in
L?(Q) as k — oo. Thus, we have y(z,0) = f(z) and v(z,0) = g(z). Using the weak convergence of
{tn, } {yr}, {vr} and the strong convergence in Lemma 4.2, i.e., {(1,,) = 1 in L*°(Q), A(1,,) — [
in L°°(Q,R?*?) as k — oo, we pass to the limits in (4.27) and obtain

%4,0 + Vy - Vo dxdt = / X dxdt,
ap Ot .

Ay

— 1 dzdt — vip dxdt =0, (4.28)
o Ot Qr

for all ¢ € L?(HL(Q)) and ¢ € L?(L?(Q2)) with y(x,0) = f(z),v(z,0) = g(x). Furthermore, since
(4.28) with y(z,0) = f(x),v(x,0) = g(x) admits a unique solution, we must have y = y*/9“ and
v = v%/9%  Thus, the sequences {y,,} and {v,} converge to y = y*/9% in L2(H}(Q)) and v = v*F9«
in L?(L?(Q)), respectively. This finishes the proof. O

The following lemmas will be employed in the proof of the theorem that follows.

Lemma 4.6. For every null-sequence {1} in [0,7x], every sequence {f,} in K1 converging weakly in
H}(Q) to f € Ky and for every sequence {g,} in Ko converging weakly in L*(Q) to g € K2, we have

ﬂfnu‘]nv'rn — ﬂf)!]’w in Uad as 1 — oo.

Proof. We proceed as follows. Note that w, _, wfr9nwrn and w9 Tr represent the perturbed domain,
optimal control solution, and perturbed optimal control, respectively. Since @/m9: ™ = gfn:9n:wrm o T,
(see e.g., [5, p.523]) and w/»9n“mm — TH9¥ in U,y by Lemma 3.4, the desired result follows from
Lemma 4.2. (Il
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In the sequel, we denote the set of maximizers by Xo(w).

Lemma 4.7. For every null sequence {1} in [0,7x]| and every sequence {fn,gn} with (fn,gn) €
X2 (ws,), we can find a subsequence {fn,,dn,}, such that f,, — f in H}(Q) and g,, — g in L*(Q) as
k — oo, where (f,g) € Xa(w).

Proof. 1t is easy to prove this from (2.4) and the proof is left out. O

4.3. Averaged Adjoint Equations. Let 7 € [0,7x] be fixed. Then the mapping T ! : U,y —
Uag, u — T-!owu is a bijection between U,q and U,q that preserves the binary operations. As a
consequence and using the change of variables T, it is easy to show that

u€Uqq 2 u€Uqq

1
inf J(wr,u, f,g) = - inf / ¢(7) (y“’f’g’7|2 + [l 9T 2 4 a|u2> dxdt.
Qr
Note that p € L2(H}(Q)) and w € L?(L?(2)). By choosing Lagrange multipliers ¢ = p and ¢ = w,
we can incorporate (4.1)—(4.4) in the formulation of the following Lagrangian functional.

Definition 4.2. Define the parametrized Lagrangian
H:[0,7x] X Ung x K1 x Ky x H}(Q) x L2(Q) x H}(Q) x L?(Q) — R by

H(r,u, f,9) :=/

36 (@97 + 0597+ alw?) dodt
Qr

80”7)07977— u,f,q,T u,f,g,T u,f,g,T u,f,q,T
+ (T)Tp S0 4 A(r) Wy ST LS9 () xoup™ 9
Qr
Oy f9T
+ C(T) Yy o wW 9T C(T)v“’f’g’Tw“’f’g’T dadt (4.29)

+ / C(T)(y“’f’g’T(m, 0)—fo TT)w“’f’g’T(x,O) + C(T)(v“’f’g’T(ac,O) —go TT)p“’f’g’T(%O)dac,
Q

where H(r,u, f,g) i= H(r,u, f, g, y"I97 yul 07 pufar yufary

In the sequel, the following definition is used.
Definition 4.3. Given 7 € [0,7x], 0 < s < 1 and (u, f,g) € Uaq x K1 X Ky. We define the averaged
adjoint equations associated with y*/9™ and y*/:9«; v*97 and 9 as: find p*f97 € L2(HL(Q))
and w597 € L2(L?(2)) such that

1 ~
/ Oy H(1,u, f, g, syl 9T 4 (1— S)yu,ﬁgw’ pwher puter w"’f’g’T)(q’))ds =0, (4.30)

0

for all ¢ € L2(HL(Q)), and

1
[ 0 (r £y s T o (L ) e ) (p)ds =0, (4.31)
0

for all ¢ € L?(L*(Q)), where d,H and 9, H denote the partial derivatives of H with respect to y and
v, respectively.

The following lemmas will be important in the proof of the theorem that follows.
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Lemma 4.8. The averaged adjoint equations (4.30) and (4.51), associated with y*“9™ and y*/9+;
v 9T and v H9Y are given by

Awwf9:7 ;
/ —(()p——— dudt+ | A1)V Vp"IIT dadt
Qr Qr
1
= _/ 5((7)(yu’f’g’r + y 99 ¢ daxdt, for all ¢ € L*(H(Q)) (4.32)
Qrp
and
apuv.f)gyT 1
/ —C(TW( —&-w“’ﬂ“) dxdt = —/ 7<(7)(vu,f,g,r _|_,Uu7f,g,w)1/] dadt, (4.33)
Qr ot Qr 9

for all ¢ € L?(L3(R2)), respectively.

Proof. Since y“/97 ﬁ(r,u,f,g,y“’f’g’T,v“*f’g’f,p“’f’g’f,w"’f’g*T) is affine, H is Gateaux differen-
tiable with respect to y, see e.g., [19, p.200]. Thus, it is easy to see that (4.32) and (4.33) hold. O

The lemma that follows is a direct consequence of Lemmas 4.5 and 4.8.
Lemma 4.9. For all 7, € (0,7x], un € Uga, fn € K1 and g, € Ko, such that
Up — u in Upg, fn— fin H}(Q),g, — g in L*(Q), 7, — 0, as n — o0,
where u € Uyq, f € Ky and g € Ko, we have
punSngnT _y puliow iy L2(HH(Q)) as n — oo,
w frgn Ty qpwfi99 iy L2(L2(Q)) as n — oo,

with p79% € L2(HY(Q)) and w9« € L2(L%(Q)) satisfying the adjoint equations

u,f,g,w
/ Wbawi drdt + [ V- VpI9 dudt = _/ y“h e dadt,
Qr

ot Qr Qr
et 9.
_¢p7 — pw" 9 drdt = —/ v P99y dadt,
Qr ot Qrp

for all ¢ € L2(HL(Q)) and o € L?(L?(2)) with p»/9% (2, T) = 0 and w9 (z,T) =0 a.e. in Q.

Proof. Using (3.6)—(3.7) and the estimate in [6, p.391-393, Theorem 6] , we have the a-priori bound for
the adjoint given by

ot

f195
[P || L2 (2 ) + Hat

< ch“’f’g’T =+ vuhﬁgw”p(w(m). (4.34)
L2(L2(9))

Using similar arguments as in Lemma 4.5 and replacing (u, f, g,7) by (tn, fn,gn, ) in (4.32) and
(4.33), and passing to the limits as n — oo, we have the desired result. O

4.4. Directional Derivative of Max-Min Functions. Let H : [0,7x] X Ugq X K1 X Ko — R be a
function. Then, we define the max-min function & : [0, 7x] — R by

h(r):= sup inf H(r,u,f,g).
feK1,ge Ko EUad
In the following lemma, we seek to find out sufficient conditions for the existence of the limit
d . h(m) —h(0)
—h(0") ;= lim —2—~,
"0 =l ==

for any function £ : [0, 7x] — R such that ¢(7) > 0 for 7 € (0, %], and £(0) = 0.

Lemma 4.10. Assume that the following hypotheses hold.
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(HO) The problem
inf H(r,u, f,g)

u€Uqq
admits a unique optimal solution .

(H1) The set of mazimizers

fEK:,geK UEUaa w€Uuq

is nonempty for all T € [0, 7x].
(H2) For all f € K1,9 € Ko and 7 € [0,7x], the partial derivatives

H(T7 uﬂf,ga fa g) — H(O7UT7fvga fa g)

i
0 o(r)
and
. H(T7u0’fygafag)7H(07u07f’gvag)
lim
70 £(T)

exist and are equal.
(H3) For all 7, € [0,7x] and (fn,gn) € X2(wy), there exist subsequences {7, } and {fn,, gn, ; with
fr, — fin H}(Q) and g,, — g in L*(Q) as k — oo and (f,g) € X2(w), such that

lim H(Tnkaunkafnkvgnk) 7H(O;unkafnkagnk) :8gH(O+,uO’f’9,f,g)

k—o0 E(Tnk)
and
- H(Tnk,ufnk’gnk707fnk7gnk) — H(O,uf"k’gnk’ovfnkagnk) _ agH(OJr ul90 f g).
k— o0 K(Tnk) ’ .

Then, we have

d
—h oot = O H 0-&-7 07f,g7 .q).
GDme= | ma D07 AP, £,g)
Proof. We refer to [5, p.524] and [18]. O

In the following theorem, we derive the directional derivative of Jo for 4(7) = 7.

Theorem 4.11. The directional derivative of Jo(w) at w in the direction X € CO1(Q,R?) is given by

DJy(w)(X) = max / 5’1(yf’g’”,vf’g’“,pf’g’“,wf7g’“,uf’g7‘”>:3X—|—So(f,g)-dedt, (4.35)
(f.9)€X2(w) Jor

where
Sl <yfvgyw7vf75’7w’ T?ﬁshw’ wﬁg&” /u/fvng)

aﬁfvgw

1 1 «
— | Zfow |2 L Zpfhew)2 4 Zgfiaw |2 _ mfhew
= (G110 4 3T + Sl - phae

owh 9w

_ yf;gxw + V§f7g7w . Vﬁﬁg#—d _ Xwﬂfvgawﬁfyg7w _ ﬁfyg7wmfvgaw

1 1
— Tg]jfyg»w (J}, O) _ Tf@fvng(x’ 0))[ _ v?fvng ® V§fvng _ V]jfyg»w ® Vyfang7

Solfsg) i= (Vfwf’g’“(r, 0) + Vs 9 (a, 0>), (4.36)

1
T
and the adjoint (p¥9% wH9) satisfies (3.6)(3.7).
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Proof. Since J; and J are well-posed, it follows that (HO) and (H1) are satisfied. Next, we check
that (H2) and (H3) hold. Using the fundamental theorem of calculus on averaged adjoint equations
(4.30)—(4.31), it is easy to see that

fI(T’u7f7g7yu,f7gﬁ’Uu,ﬁg,T’pu,f,g,T,wmf,gﬁ) — g(ﬂ%f7g,yu7f,g,w7vu7f,g,w7pu,f7gﬁ7wu,ﬁg,r)_ (4.37)
Since J(wr,uoTY, f,g) = H(r,u, f, g,y 97 vwd:or pufom 45.97) it follows from (4.37) that
J(wy,u o0 T;l, f.9) = I:I(T, u, f, 9, yu,ﬁg,w’ Uu,ﬁg,w)pu,f,gﬂ" ,wu,f»gn—).
Hence,

J1(w7,f, g) _ uénde ﬁ(7_7u’f’g7wa,g,w’Uu,ﬁg,w’pu,f,gﬁ,wwf,gﬁ)_ (4.38)

Choosing @ := /9" in (4.38) with
(1, u, f, g,y 9w pwlow pufor yufor)

replaced by
(Tn7 ﬂn» fn7 ns yﬂn yfnsgn ;W7 /Uﬁn s frsGn,w , pﬂn 3 GnsTn , wﬁvufn yInTn )

and substituting in (4.29), we have

_ 1 - y
H(Tp,Tny fros Gn) :/ §C(Tn)(‘y ofrsGns
Qr

Oy¥n i frsgnsw

2 + |,Uﬂn7fnvg"’w|2 + Oé|ﬂn|2) dl’dt

Gl T T A )Ty Gy T i
T

— 0 Unyfrgn,w
+ / ( _ C(Tn)xwﬂnpunvfn7gny7'n + C(T’I’L) Y wunvfnvgnﬂ'n
Qr ot

_ C(Tn)vunvfn»gn7wwun7fnvgnaTn) dwdt + / |:<(Tn) (yunafnvgnvw (x’ 0)
Q

— fno Tﬂl>w“"’f"’g”’7" (z,0) + ¢(1n) (v“"’f"’g"’“’(a:, 0) — gn © Tm) plrdmgnTa (g 0)| dx.  (4.39)

From (4.5) as 7, — 07, we have ((7,,) = 1, A(7,) — I. Utilizing this result in (4.39), and re-arranging
the terms, we obtain

H(Tnaﬂna fn»gn) - H(Oaﬂm fnagn)

Tn
-1 1 _ _

— LT”) - |yumfmgmw|2 + |Uun,fmgmw|2 +Ot|ﬂn|2 dxdt

Qr Tn 2
n (1n) = 1 Qo frogne pinofngn,mn 4 A(mn) — Ivyﬂn,fn,7gmw L pTnofnignTa

Qr Tn ot Tn

— — 7n7f7l7 mns
_ C(T’I’L) 1Xwﬂnpﬂn7fn7gnv7'n d{L‘dt + C(Tn) 1 <8yu 7 wwﬂnafnﬂnﬂ'n
Tn Qr Tn ot

_ Uun;f'rngn;qun7fn;gn77'n> dxdt +/ C(Tn) — 1 (<yun7fn;gnyw (1.70)
9) Tn
— fn o TTn)wunyf7ngn,7Tn (l', O) + (Uunvfn,7gnvw (l‘, O) —gno T7_n>p“n1fnvgn77'n (x’ 0)) d.T

n TT —Jn 7 n TT _Jn.u
7/ (fonfwun,fn,gn,Tn(x,0)+mpun,fnvgnan(x’O)> dx. (4.40)
Q

Tn Tn
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Note that
9 _
gnoT, = Py (y“OTT,L17fmgn,7w (,0) 0 T-r">

and

Gn © TT'n_ — On 0 (yuOTrnl7.fn79n sw ($7 O) o TTn _ yuOT:nlmfnagn sw (337 O))

Tn T ot Tn

since T, is independent of ¢. Using these results, Lemmas 4.2 and 4.9, the right-hand side of (4.40)

converges to

opfHraw

=f9,w
at P

’+

1 1
/ diV(X) (lyf,g,w|2 + ,|@f79,w|2 + glﬂfvg7w
Qr 2 2 2

8?]0797“’

8t mf,g,w _ @f»gawmﬁg#d + v?ﬁgﬁd . Vﬁﬁgﬁd _ quﬁngpf»g:w) d{Edt

1
_ / (8XVyf’g’“ . vﬁﬁgw + 8XTVyf*9*“’ . Vﬁf»ng + va . wa7g7W(x, 0)
Qr

1
+ TVg - XphI (x, 0)) dxdt.

(4.41)

Integrating the fourth and fifth terms of (4.41) by partial integration in time ¢, and using the facts that
pl9e (2, T) = 0,9 (2, T) =0, A: B = Z?l:l agby and a®b: A =a- Ab, a,b € R?, A, B € R?*2

we have

= = e —f,.w OPL
fQT (<é|yf,g,W|2 + %|Uf,g,w|2 4 %|uf7g,w|2 —_ghaw pat

_yﬁgwamg% + Vyfvng . v]*)fulhw _ Xwﬂﬁg’wﬁf’g’w _ @fygaw@ﬁgw _ %gﬁfagyw ($7 O)

— 1 fwl 9 (z, 0)) I —vyhow @ vplhow — vplow @ Vyfvgv“) 10X

—% <Vfwf’g’w(x, 0) + Vgp/9v(x, 0)) - X dxdt.

Thus, we have the tensor representation (4.35)—(4.36). Hence,
lim H(Tna Un,, fnagn) - H(Oa U, fn; gn)

n—00 Tn

= / S <yf,g,w,,Uf,g,w’pf,g’w’wf,g,wvuf,g,w> 10X + So(f,9) - X dxdt.
Qr

Suppose that u, o := /970 Then similarly, modifying @, as Uy, 0, We obtain

hm H(TnaﬂmOv fn7gn) - H(07ﬂn,07 fn7gn)

n— 00 Tn

— / S (yﬁg,w,Uf,g,w’pf,g,w’wf,g,w’uﬁg,w) COX + So(f; g) - X dxdt.
Qr

(4.42)

(4.43)

Let {f,,} and {g,} be constant sequences. Then, it is clearly seen that H (7, Un, fn, gn)—H(0,Tn, frn, gn)
in (4.42) and H(7Ty,Un,0, fr, 9n) — H(0,Tp 0, fr, gn) in (4.43) are equal. Hence, (H2) is satisfied. Uti-
lizing Lemma 4.7, we obtain LHS of (4.42) and (4.43) as 9, H(0",@%/9, f, g) and 0, H(0F,a/9°, f, g),

respectively. Hence, (H3) is satisfied.

As a consequence of Theorem 4.11, we obtain the directional derivative of .J;.

O
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Corollary 4.12. Let the hypotheses of Theorem 4.11 hold. Let (f,g) € HE(Q) x L?(2) :=V be given.
Then the directional derivative of Ji(w, f,g) at w in the direction X € C%1(Q,R?) is given by

D f.9)%) = [

51( faw phow phow phow 5 a%) OX + So(f,9) - Xdadt, (4.44)
Qr

where Sy (yf’g"”7vf’9’“’7pf’9’“’,wf’g’“’,uf’g’“> and So(f,g) are defined by (4.56).

Proof. For a constant R > 0, we note that

max Ji(w, f,q) = R max Ji(w, f,g). 4.45
fEK1,9gEK>2 1( f g) fELK1,9e 5 K2 1( f g) ( )
1128 0y <R HyHLzm) R \|f|\H1(Q)§1 \|g||L2<Q)_1

From (4.45) and by the hypotheses of Theorem 4.11, we deduce that % € Ky and £ € K, with
H%HH(%(Q) < 1 and [[§[lz2(@) < 1. Thus, we have the singleton {K;, K2} := {(f,9)}. So, for all
w € E(Q), we have

JQ(w) = fGII(Illi]}éKQ Jl(wafag) = Jl(wafag)'

Hence, we deduce that Xo(w) = {(f,¢)}. Since X2(w) is a singleton, (4.44) follows by Theorem 4.11. O

As a further consequence of Theorem 4.11, we write (4.35) as an integral over dw. To this end, we
require that w and 2 are C? domains. Additionally, for any two sets w and 2, the notation w € Q will
be used to mean that w is compactly contained in 2. In other words, w € Q if w C Q and @ is compact.

Corollary 4.13. Let f € K1, € K3 and X € Co'o’l(ﬁ, R?) be given. Assume that w € Q and Q are C?
domains.

(a) Given (f, ) € %2( ), deﬁne S1(f,9) and So(f,g) by S1(f,g) = foT S1(f,9)(s) ds and

So (f,9) fo So(f,9)(s) ds, respectively. Then we have
gl(fv g)|we Wl’l(wa R2X2)7 Sl(fv g)|Q\E€ Wl’l(Q \wv R2X2)7 SO(f7g)|we LQ(W7R2)7 (446)
—div(S1(f,9)) + So(f,9) =0 a.e. in wU (Q\ D). (4.47)

Moreover, (4.35) can be written as

DJ(w)(X) = fgr)%aaé(w) /&J/ al 9w ()9 (1) (X - v) dtds, (4.48)

for X e CD'O’l(ﬁ7 R2), with v the outer normal to w. We denote the jump of S1(f,g)v across dw

by [S1(f,9)v] := S1(f, 9)lwv = S1(f,9) v
(b) We have that (4.44) can be written as

DJi(w, . 9) /8 / 9 (199 () (X - v) dtds, (4.49)
for X € CO1(Q, R?).

We begin by stating an important lemma, the so-called Nagumo’s lemma (see e.g., [15]) before
proving Corollary 4.13. The outer normal to OR? will be denoted by v.
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Lemma 4.14. Let Q C R? be a bounded domain of class C*, k > 1. Suppose that X € CD’O’I(@, R?) is
a vector field satisfying
X(x)-v(z) =0, for all z € OR?.
Then the flow ®, of X satisfies
O, () =Q and ¢,(0Q) = 99, for all .

Proof of Corollary 4.13. We prove (4.46)—(4.48) as follows. By Nagumo’s lemma, we have
DJy(w)(X) = 0, for all X € CL(Q,R?). Using this condition and definitions of S;(f,g) and So(f,g) in
(4.35), we see that

/Q 81(f.9): 0X + 8o(f.g) - X da =0, (4.50)

for all X € C}(Q,R?). Integrating the first term in (4.50) by partial integration and using X|sq= 0
we have

/Q(—div(Sl(f, 9) +So(f,9)) - X do =0, (4.51)

for all X € CL(Q,R?). Since X € C}(Q2,R?), applying the fundamental lemma of calculus of variations
n (4.51) gives (4.47). Further, since y,p € H?(Q) N Hg () follows from elliptic regularity theory (see
g., [6, p.317] ), we have that (4.46) holds. Thus, noting that Q = wU(Q\@) and by partial integration,
we have for all X € C}(Q,R?),

Dh(@)(X) =  max /51( X + So(f.g) - X da,
(f,9)€X2(w
= max dle , g —&—S’ , - X dx
e ([ (—avsigan + i)
(4.52)
+/ ( div(S1(f,9)) + So(f,g)> X dz +/ [S1(f,9)v]- X ds),
Q\w Ow
(4.47) A
= max S1(f,9)v] - X ds.
()€ (w) /aw[ 1(f9)4]
Since (4.46) holds, it follows that
R T
T-(f,9) = 5(f,9) +/ X9 (9 (t) dt € WH (w, RP?). (4.53)
0
So, T,(f,g)v =0 on dw. Hence, it is easy to see from (4.53) that
T
St = ([ o ptee) d o (154)
0
Since X and v are independent of time ¢, substituting (4.54) in (4.52) gives
DRw)(X) =  max / / T 9 (D9 (1) (X - ) dids,
(f:9)eX2(w)  Jow
as was to be proved.
The proof of (4.49) is similar to the proof of Corollary 4.12. O

4.5. Gradient Algorithm for Optimal Actuator Placement. Here, we present the steps of a
gradient-based algorithm for optimal actuator placement. The version of the algorithm is summarized
in Algorithm 1. It is important to note that we can also use Jo in this algorithm to investigate the
optimal actuator placement by replacing J; with Js.
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Algorithm 1 Shape derivative-based gradient algorithm for optimal actuator placement
Require: wy € E(Q), f, g, tolerance ¢ > 0,k = 0, \,dy := —V.J;(wo, f, g)-
while |d;| > ¢ do
if Ji((id + Ady)(wk), f,9) < Ji(wk, f,g) then
di, = =V Ji(wi, f,9)
Wg+1 = (ld + )\dk)(wk)
k=k+1
end if
end while

return optimal actuator placement w1

5. NUMERICAL EXAMPLES

5.1. Discretization. Let step sizes be h in space and At in time, i.e., Ax; = Axo = h and t = kAL.
Then, discretizing (3.6) and (3.7) using finite differences, we have for k =1,2,..., M — 1

yitl=yh+ AtV

VZJ'_l = Vi + A yE 4+ Aty,ub, (5.1)
Yh =1,
V), = &h

and for k=M, M —1,...,2
Py = pi, + At(wh = Vi),
wil = w + 4,p} — Aty (5.2)
h =0,

Wh =0,

respectively, where

Yh = (11,012, - YN-1)2(N=1)2) | VA = (011,012, -, UV —1)2(N—1)2)

w, = (w1, 12, - uv—n2(N—1)2) Fn = (fir, fizs oo fov—neav—n2) |

gh = (911,012, - -, g -1)2(v—1)2) > Ph = (P11, P12, - -, PN -1 (v-1)2) |5

wp, = (w11, w12, . .. ,w(N_l)z(N_l)Z)T,r _ %

and

B 10 0 4 1 0 0
I B I 1 4 1

Ar=1| 0o 1 - 0 with B = 0 g
_— B I o1 41
o ... 0 I B o .. 0 1 -4

and I is the identity matrix. The matrix A, is of size (N — 1)2 x (N — 1)? while matrices B, I and 0

are of size (N — 1) x (N — 1). The discrete functionals of J; and Jo are

Jin(w, fh,8n) =

N = —

Jmin / Yt ya(®) + Vi) VAl + axomn ) oundt (5.3)
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and

Jon(w) = max Jin(w, fh, gn), (5.4)

hs8h

respectively. The discrete derivatives J; j, and Jaj are given by

DJy p(w, th, gn)(X) = _/a /0 uh(s,t)Tph(s,t)(X -v) dtds (5.5)
and

DJy p(w)(X) = max Jy p(w, fn, g1),

fr.gn

for X € é’o’l(ﬁ, R?), respectively. The vector b € R? has components

T
bj = —/ / w(s,t) 'puls, t)(e; - v) dtds, j = 1,2,
Ow JO
where e; is the jth element of the standard basis of R%.

5.2. Examples. We illustrate the actuator placement optimizations for two cases of initial conditions
f and g. In all the experiments, the actuators wy, and ws each of fixed size 0.2 x 0.2 are placed on the
domain and moved along the descent direction x; = z5. We consider two actuators without overlap
such that they move into their optimal locations. We set the tolerance ¢ to 1074 and N to 8.

Ezxample 5.21. We consider the case

y(z1,22,0) = sin 7y sin mxo, 0<z,20 <1,
e . .
v(x1,29,0) = %smﬂxl sinmzy, 0<x,20 <1,

so that the initial speed v(xy,x2,0) varies with the speed of wave 1 < ¢ < 2?0' First, we start by
investigating the optimal actuator placement using Jy 5. For initial actuators wy,wy centered at (0.4, 0.4)
and (0.825,0.825), respectively, a shape optimization Algorithm 1 is utilized. The results are presented
in Figure 2. It is observed from Figure 2 that as the actuators move toward the optimal locations in the
subsequent iterations (see Figure 2(a)), the functional .J; j, decays until a stationary point is reached,
see Figure 2(b). The optimization algorithm converges after 120 iterations. The optimal actuators are
centered at (0.325,0.325) and (0.75,0.75), respectively.

Next, we perform numerical experiments using J; but with initial actuators wi,ws centered at
(0.2,0.2) and (0.825,0.825), respectively. Algorithm 1 is run until the set criterion is achieved. The
results are depicted in Figure 3. From this figure, we see that as the actuators move toward the optimal
locations, see Figure 3(a), the functional Js j, decays until a stationary point is reached, see Figure 3(b).
The convergence of the optimization algorithm occurs after 73 iterations. The final actuator locations
are found at (0.325,0.325) and (0.75,0.75), respectively. This is consistent with the result obtained by
using Jy p.

Lastly, the results of the experiments to investigate the influence of the wave speed are shown in
Figure 4 and Table 1.

From Table 1, we see that when w; is placed at (0.4,0.4), and wy at (0.825,0.825) (see Figure 4(a)),
the least values of both J; j, and J3 ;, are obtained. Furthermore, it is observed that J; j, increases with
an increase in the wave speed ¢, see Figure 4 and Table 1. We also note from Table 1 that the least
values of J j,(w) after 120 iterations are the same. This confirms the fact that the dependence of Jj 5,
on the initial conditions is averaged out.
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FIGURE 2. (a) The initial actuator center locations: (0.4,0.4), (0.825,0.825) (red) and
final actuator center locations: (0.325,0.325), (0.75,0.75) (blue). (b) The history of
cost functional J; 5, as the actuators move from the initial to the optimal actuator
locations. The speed of the wave is set to ¢ = 1.
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FIGURE 3. (a) The initial actuator center locations: (0.2,0.2), (0.825,0.825) (red) and
final actuator center locations: (0.325,0.325), (0.75,0.75) (blue). (b) The history of
cost functional Jpj, as the actuators move from the initial to the optimal actuator
locations. The speed of the wave is set to ¢ = 1.

Example 5.22. In this example, we set
y(r1,22,0) = z122(1 — 1) (1 — 22), 0<m,220 <1,
1
v(x1,x9,0) = §sin(x1(1 —x1)za(l —x2)), 0< 29,20 <1,

so that the initial conditions of the dynamics satisfy Dirichlet boundary conditions. Therefore, the
optimal actuator center locations are expected at points different from the boundary of the domain.
First, we start by investigating the optimal actuator placement using J; ;. With initial actuator center
locations wy,we at (0.2,0.2) and (0.825,0.825), respectively, the results are shown in Figure 5.

The minimum value of Jj ;, occurs when the actuators are placed at (0.3,0.3) and (0.7,0.7).



22 M. D. AROP, H. KASUMBA, J. KASOZI, AND F. BERNTSSON

96

— = =The speed of the wave c=1
The speed of the wave c=3
—==The speed of the wave c=5

C—ivitial Actuator
C—JFinal Actuator

L L L . L
10 20 30 40 50 B0
Iteration number

(a) (b)

FIGURE 4. (a) The initial actuator center locations: (0.4,0.4), (0.825,0.825) (red) and
final actuator center locations: (0.325,0.325), (0.75,0.75) (blue). (b) Demonstration
of the influence of wave speed on the history of cost functional J; ;, as the actuators
move from the initial to the final actuator locations.

TABLE 1. The minimum values of functionals J; ;, and J p, after 120 iterations for the
given speed of wave c. The measure of the cost of control is set to o = 1074,

¢ Jinw, f.g) Jan(w)
1 788529  0.4307

3 80.2176 0.4307
) 83.4128 0.4307

Next, we perform a numerical experiment using Js . With initial actuator center locations at
(0.2,0.2) and (0.825,0.825), we run Algorithm 1 until the set criterion is achieved. The results are given
in Figure 6. From this figure, we see that the functional J5 ;, decays until a stationary point is reached.
The convergence of the optimization algorithm occurs after 50 iterations. The final actuator locations
are found at (0.3,0.3) and (0.7,0.7), see Figure 6(a). This is in agreement with the result obtained by
using Jy p.

6. CONCLUSION

In this paper, we proved important results for the differentiability of functionals J; and J5. The shape
derivative is derived using the averaged adjoint approach. We also developed a shape derivative-based-
gradient algorithm for determining the optimal actuator placement for the control of vibrations induced
by pedestrian-bridge interactions. The algorithm is constructed by embedding the shape sensitivities
in a gradient-based method. The numerical results presented illustrate the potential of the shape
sensitivities for solving the optimal actuator placement problem whenever the actuator’s width is fixed
in advance. The optimal actuator design for the wave equation is under our next research study
plan. The term ”design” here means picking the best domain w by parametrizing the set of admissible
domains.
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FIGURE 5. (a) The initial actuator center locations: (0.2,0.2), (0.825,0.825) (red) and
final actuator center locations: (0.3,0.3), (0.7,0.7) (blue). (b) Demonstration of the
history of cost functional J; ;, as the actuators move from the initial to the optimal
actuator locations.
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FIGURE 6. (a) The initial actuator center locations: (0.2,0.2), (0.825,0.825) (red) and
final actuator center locations: (0.3,0.3), (0.7,0.7) (blue). (b) History of cost functional
Jo.n, as the actuators move from the initial to the optimal actuator locations.
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