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Abstract : In this work, we comprehensively explore the spectral and photophysical properties of a coumarin-

based dye (1) in neat solvents. The modulation of stokes shifts, emission quantum yields (ФF) and excited-state 

lifetimes of 1 by local environment (polarity, polarizability, viscosity and hydrogen bonding) signifies the formation 

of intramolecular charge state (ICT) from the amino group to the coumarin moiety. Collectively, in the more 

viscous polar solvents the rotation of the amino group is restricted, exponentially decreasing the non-radiative 

rate constants (knr). 

Keywords : SPECTROPHYSICS, INTERMOLECULAR CHARGE TRANSFER, NON-RADIATIVE RATE CONSTANT, 

EXCITED-STATE LIFETIME, LOCAL ENVIRONMENT. 

 

 

 

 

 Introduction 

Organic molecules' fluorescence is heavily reliant on their 
surroundings.[1] The bulk properties of a fluorophore or a 
chemical system are essentially determined by 
intermolecular reactions, and a number of properties must 
be considered when determining this relationship. Molecular 
shape and conformation, electrostatic, dipolar, and 
multipolar interactions, and short-range dispersive 

interactions are among these influences.[2], [3] Fluorescent 
dyes have thus become common molecular probes for 
determining microenvironmental parameters such as media 
polarity, as well as tracking their distribution and relocation 
in micro heterogeneous systems.  

Based on the literature study, it is reported that researchers 
have been interested in obtaining white light emission from 
organic molecules because of their usefulness in the solid-state 
lighting industry, as well as the light effects of liquid-crystal 
displays (LCDs) and full color OLED displays.[4], [5] Very rare 
organic compounds have been reported that emit across the 
entire visible spectrum (400 nm to 700 nm) with only a few 
reports available.[6]–[8] However, multilayered device 
fabrication by successive evaporation of different emitting 
compounds, spin coating of a mixture of different soluble 
emitters, excimer or exciplex emission, use of organic–metal 
complexes in a hybrid device structure, and phosphorescent 
emitters with a compatible host are the most commonly used 
methods for white light emissions.[4], [6], [9] [10], [11]. For 
white emission, the system structure is also essential. The 
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disadvantages of phosphorescent emitters are their high 
expense and complex system architectures. As a result, in 
order to be realistic in White organic light emitting diodes 
(WOLEDs), emission from a single compound is often 
preferred for ease of product fabrication.[9], [12]–[14] 
WOLEDs with a single emitting part provide benefits such as 
reproducibility, system reliability, and ease of 
fabrication[14]. In this context, the field of developing new 
fluorescent organic moieties with a broad spectrum of 
emissions in their solid state remains intriguing and 
demanding for researchers[15], [16] 

Coumarins have inspired researchers' attention for 

decades due to their broad variety of uses in electronics and 
photonics, taking advantages of their high stability and ease 
of synthesis, which has led to many sophisticated 
applications as sensors and emitters for solid state dye 
lasers and OLEDs.[14], [17], [18] However, based on 
structures the planar coumarin are considered to be more 
prone to self-quenching due to aggregation and 
intermolecular interactions (π–π interactions), reducing their 
usage and applications in OLEDs.[2], [19]–[23] It is 
believed that the invention of a host–guest doped emitter 
device has been a blessing to emissive display technologies 
increasing its application in many fields.[5], [24]–[28] 
Simultaneously, a lot of work has been undertaken to 
eliminate planar luminophores' aggregation/dye–dye 
interactions. Regulated π–π interactions are important in the 
creation of long-range emissions (excimer/exciplex 
formation), so they've been used as a support for light 
generation, especially white electroluminescence (EL).[28], 
[29] As a result, over the last decade, new fluorescent 
materials for OLEDs, as well as the creation of a basic device 
structure, have gotten a lot of attention.[6], [17], [30], [31] 
In this context, our exploration for new white-emitting 
electroluminescent materials led us to synthesize planar 
coumarin derivatives with extended π-conjugation. The 
physical properties in solution such as UV-vis absorption, 
fluorescence and excited-state lifetime of compound 1 are 
investigated in this study. 

  
Figure 1. Chemical structures of 1, see experimental 

section. 

Results and discussion 

Table 1 summarizes the collected major absorption and 
emission maxima for chromophore 1’s structures, as well as 
the single fluorescence lifetime values (Figures 2, 3), along 

with the corresponding stokes shift, relative fluorescence 
quantum yields (ФF), excited-state lifetime (τ), radiative (kr) 
and non-radiative (knr) rate constants in different neat 
solvents.  

 

 

 

Figure 2. Absorption (black) and emission (red) spectra (λexc = 375 
nm) of chromophore 1 in hexane (A) and ethanol (B). 

tetrahydrofurane (C), dimethylsulphoxide (D), dioxane (E), 
dichloromethane (F), chloroform (G), acetonitrile (H), butanol (I), 

dimethyleflouroamide (J) 
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Figure 3. Emission decays for 1 (25 μM) in hexane 
(A), ethanol (B) acetonitrile (C), chloroform (D), 
diethylether (E), methanol (F), tetrahydrofuran (G), 
dichloromethane (H), dimethylsulphoxide (I), 
dimethylefouramide (J), dioxane K) and Butanol (L) 
upon excitation at 375 nm (30 ps) at room 
temperature. Instrument response function (IRF) is 
also shown in red upon excitation at 375 nm (30 ps) 
at room temperature. Instrument response function 
(IRF) is also shown in red. 

 
Noticeably, non-linear Lippert-Metaga plot has been 
observed as illustrated in Figure 4A when stokes shift values 
were plotted against solvent orientational polarizability (Δf) 

(Table 2). In addition, the measured ФF and τ did not 
correlated with solvent polarity/polariozabilioty factors (Figure 
4B and 5A). This means that solvent polarity and polarizability 
effects do not alone play a role on affecting the photophysical 
properties of 1 in neat solvents.  

 
Figure 4. Correlation between the stokes shifts (Δν, A) and 

fluorescence quantum yields (ФF, B) for 1 with the 
orientation polarizability (Δf) for different solvents. 

The time-resolved emission measurements along with the 
quantum yields data enabled us to better understand the 
origin of luminescence and to assess which solvent property 
controls the spectral properties of 1. In the present study, the 
emission decays were measured every 10 nm across the entire 
emission spectra for each sample when excited at 375 nm. In 
the global analysis, the data measured at all wavelengths are 
fitted simultaneously by a mono-exponential function 
convoluted with the instrument response function (IRF). The 
fluorescence lifetime is given by the inverse of the rate 
constant of the exponential decay. The fluorescence lifetime 
experiments were repeated several times. The estimated 
experimental error was 4 %. The radiative (kr) and non-
radiative (knr) rate constants (Table 1) were then calculated 
and compared to the solvent parameters listed in Table 2 
(Figure 5B). While kr is independent of solvents polarity, value 
of knr increases significantly in low-polarity solvents. 

 

Figure 5. Correlation between the excited-state lifetime (τ, 
A), radiative (kr) and non-radiative (knr, B) decay rates for 1 
with the orientation polarizability (Δf) for different solvents. 

To explain the above observation, the knr was plotted against 
solvent viscosity. An exponential dependence was observed 
(Figure 6). It transpires that by analogy to similar coumarin 
derivatives,2 the increased value of knr in non-polar solvents is 
attributed to the rotation of toluene or cyano group, which 
provides a rapid deactivation pathway to the ground state. In 
more polar solvents an intramolecular charge state (ICT) state 
is formed, causing the larger Stokes shift. However, in this ICT 
state, rotation of the toluene is restricted and knr decreased. It 
must be said that this rotation is restricted due to large energy 
barrier in the ground state. The energy barrier is much smaller 
in the excited state. Consequently, such rotation effects the 
emission intensity and excited state lifetime of the fluorophore. 
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Figure 6. Exponential dependence of non-radiative 
decay rates for 1 with solvent viscosity (η) in cP for 

different solvents, R = 0.99 

 

Experimental 

Samples 

All solvents CB7 (purity >99.9%) were purchased from 
Sigma-Aldrich and used as received. Millipore water was 
used (conductivity less than 0.05 µS). 

 Spectroscopy  

The UV–visible absorption spectra were measured between 
300 and 500 nm on a Cary-300 instrument (Agilent, Santa 
Clara, CA, USA) at room temperature. Fluorescence spectra 
measurements were scanned at room temperature, between 
400 and 700 nm on a Cary-Eclipse fluorimeter (Agilent, 
Santa Clara, CA, USA). Slit widths were 2.5 nm for both 
excitation and emission monochromators. The pH values 
were recorded using a pH meter (WTW 330i equipped with a 
WTW SenTix Mic (Xylem Analytics Germany Sales GmbH & 
Co. KG, WTW, Weilheim, Germany). Quartz cuvettes (1.0 
cm, 4.0 mL) were used in all spectroscopic measurements 
and were obtained from Starna Cells Inc. (Atascadero, CA, 

USA). The concentration of chromophore was kept at 25 μM 
in all experiments, in which solution was prepared under N2 
pursing. All NMR spectra were performed on a Varian 400 
MHz spectrometer in D2O. All 1H-NMR spectra are referenced 
in ppm with respect to a TMS standard. The pH values of the 
solutions were adjusted (± 0.2 units) by adding adequate 
amounts of HCl or NaOH and recorded using a pH meter 
(WTW 330i equipped with a WTW SenTix Mic glass 
electrode).  

 Photochemistry   

The excited-state lifetimes were measured by time-
correlated single-photon counting (TCSPC) on LifeSpec II 
spectrometer (Edinburgh, Kirkton Campus, UK) by using 
EPL-375 picosecond diode laser (λex =375 nm, repetition rate 
= 20 MHz, and instrument function = 30 ps) for excitation. 
A red-sensitive high-speed PMT detector (H5773-04, 
Hamamatsu Photonics K. K., Hamamatsu, Japan) was used 
to collect ~10,00 counts/s for each run. The concentration 
of 1 was 25 μM in each solvent. The data were analyzed by 
the iterative reconvolution method using the instrument’s 

software that utilizes the Marquardt-Levenberg algorithm to 
minimize χ2. The fluorescence decay in each solvent was found 
to fit mono-exponential function, eq. (1),  

      (1) 

where τ is the lifetime with amplitude α  

 

Quantum Yield, Radiative and Non-Radiative 

Measurements    

 

 values were measured using Coumarin 2 (C 450) in 

acetonitrile as the standard (ФF = 0.8),2 and calculated using 
the known equation: 

 

where n is the refractive indices for the standard (std) and 
experimental (unk) solvents, I is the fluorescence integral of 
the emission between 400 and 700 nm, and A is the 
absorbance at the excitation wavelength. The error estimated 
as standard deviation of the mean was approximately 10% for 
the fluorescence quantum yields. kr and knr were calculated 
using the known equations: 

 , , , and . 

 Conclusions 

The detailed photophysics of a coumarin-based dye as a function 
of local microenvironment is described and it is concluded that the 
change in quantum yields and excited-state lifetimes are due to 
the changes in non-radiative rate constants (knr), which 
correlates exponentially with solvent viscosity. A more polar 
solvents (such as butanol) restricts the rotation of the 
toluene/cyano compared to non-polar solvent (such as 
hexane).  
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Table 1.  Absorption (λa), steady-state emission (λf) peak positions and excited-state lifetimes τ along with stokes shifts (Δν), 
fluorescence quantum yields (ФF), radiative rate constants (kr), and non-radiative rate constants (knr) for 1 at 25 µM in neat 
solvents. Dye was excited at 375 nm in all solvents. 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Table 2.  Solvent properties including refractive index (n), dielectric constant (ԑ), orientational polarizability (Δf), viscosity (η), 

hydrogen bond accepting ability (β), hydrogen bond donating ability (α) and polarity/polarizability parameter (π*). 

 

Solvents  λa/ nm λf/ nm Δν (cm-1) ФF τ/ ns kr
 / 108 s–1 knr

 / 108 s–1 

hexane 383 437 3226.4 0.057 0.35 16.5 26.9 

diethylether 387 452 3715.9 0.079 0.682 11.6 13.5 

chloroform 393 459 3658.8 0.205 1.817 11.3 4.37 

dichloromethane 392 462 3865.2 0.246 2.044 12.2 3.69 

dioxane 387 455 3861.8 0.213 1.708 12.5 4.61 

tetrahydrofuran 387 460 4100.7 0.157 1.441 10.9 5.85 

acetonitrile 382 469 4856.1 0.346 3.435 10.1 1.9 

methanol 387 472 4653.4 0.298 3.782 7.8 1.86 

ethanol 389 465 4201.6 0.580 3.501 16.6 1.2 

dimethylformamide 387 474 4742.7 0.325 4.489 7.23 1.5 

butanol 389 465 4201.6 0.291 3.319 8.78 2.13 

dimethylsulphoxide 391 478 4654.9 0.116 1.518 7.64 5.82 

Solvents N ԑ Δf η/ cP α β π* α + β + π* 

hexane 1.376 1.87 -0.001 0.28 0 0 -0.08 -0.08 

diethylether 1.352 4.33 0.17 0.24 0 0.47 0.27 0.74 

chloroform 1.446 4.81 0.15 0.57 0.44 0 0.58 1.02 

dichloromethane 1.416 8.93 0.22 0.41 0.33 0 0.82 1.15 

dioxane 1.422 2.22 0.02 1.37 0 0.37 0.55 0.92 

tetrahydrofuran 1.406 7.58 0.21 0.48 0 0.55 0.58 1.13 

acetonitrile 1.344 37.5 0.31 0.34 0.19 0.31 0.75 1.25 

methanol 1.328 32.7 0.31 0.54 0.93 0.62 0.6 2.15 

ethanol 1.364 25.07 0.29 0.98 0.83 0.77 0.54 2.14 

dimethylformamide 1.435 37.6 0.28 0.92 0 0.69 0.88 1.57 

butanol 1.394 17.85 0.27 2.57 0.79 0.88 0.47 2.14 

dimethylsulphoxide 1.479 48.9 0.26 1.99 0 0.76 1 1.76 
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