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ABSTRACT 

In this paper, we have discussed the inclusion properties of the homogeneous Herz-Morrey spaces 
and the homogeneous weak homogeneous spaces. We also studied the inclusion relation between 
those spaces. 
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INTRODUCTION  

The subject discussion about inclusion properties of any spaces or inclusion 
relation between spaces has interested to study. Some authors have studied about 
inclusion relation in some spaces (see [1], [2], [3], [4] and [5]). It guided us to discuss the 
inclusion properties of other spaces. 

Regarding C.B. Morrey in [6] who introduced Morrey spaces, many authors have 
defined the generalization of Morrey spaces and combined with other spaces. Lu and Xu 
[7] introduce one of the homogeneous Herz-Morrey spaces. These spaces are the 
generalization of Morrey spaces and Herz spaces. Let 𝛼 ∈ ℝ, 0 < 𝑝 ≤ ∞, 0 < 𝑞 < ∞, and 

0 ≤ 𝜆 < ∞, the homogeneous Herz-Morrey spaces ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(ℝ𝑛) are defined by  

ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(𝑅𝑛) ∶= {𝑓 ∈ 𝐿𝑙𝑜𝑐

𝑞  (ℝ𝑛/{0}) ∶  ‖𝑓‖
ℳ𝐾̇𝑝,𝑞

𝛼,𝜆(ℝ𝑛)
< ∞}, 

where  

‖𝑓‖
ℳ𝐾̇𝑝,𝑞

𝛼,𝜆(ℝ𝑛)
= sup

𝐿∈ℤ
2−𝐿𝜆 ( ∑ 2𝑘𝛼𝑝‖𝑓𝜒𝑘‖

𝐿𝑞(ℝ𝑛)
𝑝

𝐿

𝑘=−∞

)

1

𝑝

 

with 𝐵𝑘 = 𝐵(0,2𝑘) = {𝑥 ∈ ℝ𝑛: |𝑥| ≤ 2𝑘}, 𝐴𝑘 = 𝐵𝑘/𝐵𝑘−1 for 𝑘 ∈ ℤ and 𝜒𝑘 = 𝜒𝐴𝑘
 for 𝑘 ∈ ℤ 

be the characteristic function of the set 𝐴𝑘.  
Lu and Xu also defined the homogeneous weak Herz-Morrey spaces. For 𝛼 ∈ ℝ, let 

  0 < 𝑝 ≤ ∞, 𝜆 ≥ 0 and 0 < 𝑞 < ∞, the homogeneous weak Herz-Morrey spaces 

(𝑊ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(ℝ𝑛)) is a set of measurable 𝑓 ∈ 𝐿𝑙𝑜𝑐

𝑞  (ℝ𝑛/{0})  which completed by norm such 

that   

‖𝑓‖
𝑊ℳ𝐾̇𝑝,𝑞

𝛼,𝜆(ℝ𝑛)
= sup

𝛾>0
𝛾 sup

𝐿∈ℤ
2−𝐿𝜆 ( ∑ 2𝑘𝛼𝑝𝑚𝑘(𝛾, 𝑓)

𝑝

𝑞

𝐿

𝑘=−∞

)

1

𝑝

< ∞, 

where 𝑚𝑘(𝛾, 𝑓) = |{𝑥 ∈ 𝐴𝑘: |𝑓(𝑥)| > 𝛾}|. 
Some authors have studied those spaces in different term of discussion (see [7], [8], [9], 
[10]). Meanwhile, in this article, the authors would like to discuss the inclusion properties 
and inclusion relation of the homogeneous Herz-Morrey spaces and the homogeneous 
weak Herz-Morrey spaces. 
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RESULTS AND DISCUSSION 

Now, we formulate our main results of this paper as follows: 
Theorem 1.1. Let 1 ≤ 𝑝1 ≤ 𝑝2 < 𝑞 < ∞, then the following inclusion holds: 

ℳ𝐾̇𝑝2,𝑞
𝛼,𝜆 (𝑅𝑛) ⊆ ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (𝑅𝑛). 

Generally, by Theorem 1.1, we have the following inclusions of the homogeneous 
Herz-Morrey spaces. 
Theorem 1.2. Let 1 ≤ 𝑝1 ≤ 𝑝2 < 𝑞 < ∞, then the following inclusion holds: 

𝐿𝑞(𝑅𝑛) = ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛)  ⊆  ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛)  ⊆ ℳ𝐾̇𝑝1,𝑞
𝛼,𝜆 (𝑅𝑛). 

Besides, we have the inclusion property of the homogeneous weak Herz-Morrey spaces, 
also the inclusion relation of the homogeneous Herz-Morrey spaces. 
Theorem 1.3. Let 1 ≤ 𝑝1 ≤ 𝑝2 ≤ 𝑞 < ∞, the following inclusion holds: 

𝑊ℳ𝐾̇𝑝2,𝑞
𝛼,𝜆 (ℝ𝑛) ⊆ 𝑊ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (ℝ𝑛). 

Theorem 1.4. Let 1 ≤ 𝑝 ≤ 𝑞. Then the inclusion ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(ℝ𝑛) ⊆ 𝑊ℳ𝐾̇𝑝,𝑞

𝛼,𝜆(𝑅𝑛) is proper. 

The proof of each theorem will be described in the following section. 
 

THE PROOF OF THEOREM 1.1. 
For proofing Theorem 1.1., we shall show that ‖𝑓‖

ℳ𝐾̇𝑝1,𝑞
𝛼,𝜆 (𝑅𝑛)

≤  ‖𝑓‖
ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛)
 by applying 

Hölder inequality. 

Proof of Theorem 1.1. Let we first take for any 𝑓 ∈ ℳ𝐾̇𝑝1,𝑞
𝛼,𝜆 (𝑅𝑛), then by using Hölder 

inequality and 𝑝1 ≤ 𝑝2 we obtain that 

‖𝑓‖
ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (𝑅𝑛)
= sup

𝐿∈𝑍
2−𝐿𝜆 ( ∑ 2𝑘𝛼𝑝1

𝐿

𝑘=−∞

‖𝑓𝜒𝑘‖
𝐿𝑞(ℝ𝑛)
𝑝1 )

1

𝑝1

≤  sup
𝐿∈𝑍

2−𝐿𝜆 (( ∑ (2𝑘𝛼𝑝1)
𝑝2
𝑝1

𝐿

𝑘=−∞

)

𝑝1
𝑝2

( ∑ (‖𝑓𝜒𝑘‖
𝐿𝑞(ℝ𝑛)
𝑝1 )

𝑝2
𝑝2−𝑝1

𝐿

𝑘=−∞

)

1−
𝑝1
𝑝2

)

1

𝑝1

 

≤ sup
𝐿∈𝑍

2−𝐿𝜆 (( ∑ 2𝑘𝛼𝑝2

𝐿

𝑘=−∞

)

𝑝1
𝑝2

( ∑ ‖𝑓𝜒𝑘‖
𝐿𝑞(ℝ𝑛)

𝑝1𝑝2
𝑝2−𝑝1

𝐿

𝑘=−∞

)

1−
𝑝1
𝑝2

)

1

𝑝1

 

≤ sup
𝐿∈𝑍

2−𝐿𝜆 ( ∑ 2𝑘𝛼𝑝2

𝐿

𝑘=−∞

( ∑ ‖𝑓𝜒𝑘‖
𝐿𝑞(ℝ𝑛)

𝑝1𝑝2
𝑝2−𝑝1

𝐿

𝑘=−∞

)

𝑝2−𝑝1
𝑝1

)

1

𝑝2

 

≤ sup
𝐿∈𝑍

2−𝐿𝜆 ( ∑ 2𝑘𝛼𝑝2

𝐿

𝑘=−∞

‖𝑓𝜒𝑘‖
𝐿𝑞(ℝ𝑛)
𝑝2 )

1

𝑝2

 

≤ ‖𝑓‖
ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛)
. 

 

By this observation, we know that 𝑓 ∈ ℳ𝐾̇𝑝2,𝑞
𝛼,𝜆 (𝑅𝑛). Hence it concludes that 

ℳ𝐾̇𝑝2,𝑞
𝛼,𝜆 (𝑅𝑛) ⊆ ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (𝑅𝑛). 
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THE PROOF OF THEOREM 1.2. 

Since it has been stated in Theorem 1.1 that ℳ𝐾̇𝑝2,𝑞
𝛼,𝜆 (𝑅𝑛) ⊆ ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (𝑅𝑛), therefore 

in proving Theorem 1.2, we need to prove that 𝐿𝑞(𝑅𝑛) = ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛)  ⊆  ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛). 

Proof of Theorem 1.2. To prove that 𝐿𝑞(𝑅𝑛) = ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛), we need to show that 

‖𝑓‖𝑳𝒒(𝑹𝒏) = ‖𝑓‖
𝑀𝐾̇𝑞,𝑞

𝛼,𝜆(𝑅𝑛)
. Let take for any 𝑓 ∈ 𝑀𝐾̇𝑞,𝑞

𝛼,𝜆(𝑅𝑛), by applying Hölder inequality 

for the norm. We obtain that 

‖𝑓‖
𝑀𝐾̇𝑞,𝑞

𝛼,𝜆(𝑅𝑛)
≤ sup

𝐿∈𝑍
2−𝐿𝜆 ( ∑ 2𝑘𝛼𝑞

𝐿

𝑘=−∞

((∫ |𝑓(𝑥)|𝑞 𝑑𝑦 
𝐵(0,2𝑘)

)

1

𝑞

(∫ |𝜒
𝑘
|

𝑞
𝑑𝑦

𝐵(0,2𝑘)

)

1

𝑞

)

𝑞

     )

1

𝑞

 

≤  sup
𝐿∈𝑍

2−𝐿𝜆 ∑ 2𝑘𝛼

𝐿

𝑘=−∞

 (∫ |𝑓(𝑥)|𝑞  𝑑𝑦 
𝐵(0,2𝑘)

)

1

𝑞

(2𝑘𝑑)
1

𝑞  

≤ sup
𝐿∈𝑍

2−𝐿𝜆 ∑ 2
𝑘𝛼+

𝑘𝑑

𝑞

𝐿

𝑘=−∞

 (∫ |𝑓(𝑥)|𝑞 𝑑𝑦 
𝐵(0,2𝑘)

)

1

𝑞

   

≤ 𝐶 (∫ |𝑓(𝑥)|𝑞 𝑑𝑦 
𝐵(0,2𝑘)

)

1

𝑞

  

≤ ‖𝒇‖𝑳𝒒(𝑹𝒏), 

it means that 𝑓 ∈ 𝐿𝑞(𝑅𝑛). Then 𝐿𝑞(𝑅𝑛) ⊆ ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛). Meanwhile, for any 𝑓 ∈ 𝐿𝑞(𝑅𝑛), we 

can find any constant 𝐶 such that 𝐶 = sup
𝐿∈𝑍

2−𝐿𝜆 ∑ 2
𝑘𝛼+

𝑘𝑑

𝑞𝐿
𝑘=−∞ , then it shows that 𝑓 ∈

ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛) which means ℳ𝐾̇𝑞,𝑞

𝛼,𝜆(𝑅𝑛) ⊆ 𝐿𝑞(𝑅𝑛). Hence, it concludes that 𝐿𝑞(𝑅𝑛) =

ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛). 

Next, we have to prove that ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛)  ⊆  ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛) by showing 

‖𝑓‖
ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛)
≤  ‖𝑓‖

ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛)

. By using a similar way for proving Theorem 1.1., and since 

𝑞 > 𝑝2, it is clear that ‖𝑓‖
ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛)
≤  ‖𝑓‖

ℳ𝐾̇𝑞,𝑞
𝛼,𝜆(𝑅𝑛)

. Therefore, the proof is complete. 

 
THE PROOF OF THEOREM 1.3. 

One way for proving Theorem 1.3. is showed that ‖𝑓‖
𝑊ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (𝑅𝑛)
≤

 ‖𝑓‖
𝑊ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛)
. 

Proof of Theorem 1.3. Let take for any 𝑓 ∈ ‖𝑓‖
𝑊ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (𝑅𝑛)
, then by observing the norm of 

𝑓 we obtain that 

‖𝑓‖
𝑊ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (ℝ𝑛)
= sup

𝛾>0
𝛾 sup

𝐿∈ℤ
2−𝐿𝜆 ( ∑ 2𝑘𝛼𝑝1𝑚𝑘(𝛾, 𝑓)

𝑝1
𝑞

𝐿

𝑘=−∞

)

1

𝑝1

 

≤ sup
𝛾>0

𝛾 sup
𝐿∈ℤ

2−𝐿𝜆 ( ∑ 2𝑘𝛼𝑝2𝑚𝑘(𝛾, 𝑓)
𝑝2
𝑞

𝐿

𝑘=−∞

)

1

𝑝2

 

≤ ‖𝑓‖
𝑊ℳ𝐾̇𝑝2,𝑞

𝛼,𝜆 (𝑅𝑛)
. 

By the observation, it concludes that 𝑊ℳ𝐾̇𝑝2,𝑞
𝛼,𝜆 (ℝ𝑛) ⊆ 𝑊ℳ𝐾̇𝑝1,𝑞

𝛼,𝜆 (ℝ𝑛). 
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THE PROOF OF THEOREM 1.4. 
Proving Theorem 1.4 is used a similar idea as previous theorems which shall show 

that ‖𝑓‖
𝑊ℳ𝐾̇𝑝,𝑞

𝛼,𝜆(ℝ𝑛)
≤  ‖𝑓‖

ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(ℝ𝑛)

. 

Proof of Theorem 1.4. Let 𝑓 ∈ ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(ℝ𝑛), 𝑎 ∈ ℝ𝑛, and 𝛾 > 0. We observe that 

|{𝑥 ∈ 𝐴𝑘: |𝑓(𝑥)| > 𝛾}|
𝑝

𝑞 ≤ (∫ |𝑓(𝑥)𝜒𝑘|𝑞 𝑑𝑥 
𝐵(0,2𝑘)

)

𝑝

𝑞

= ‖𝑓𝜒𝑘‖
𝐿𝑞(ℝ𝑛)
𝑝  

Multiplying both side by ∑ 2𝑘𝛼𝑝𝐿
𝑘=−∞ , then we obtain that 

∑ 2𝑘𝛼𝑝|{𝑥 ∈ 𝐴𝑘: |𝑓(𝑥)| > 𝛾}|
𝑝

𝑞

𝐿

𝑘=−∞

≤ ∑ 2𝑘𝛼𝑝‖𝑓𝜒𝑘‖
𝐿𝑞(ℝ𝑛)
𝑝

𝐿

𝑘=−∞

. 

It says merely that ‖𝑓‖
𝑊ℳ𝐾̇𝑝,𝑞

𝛼,𝜆(ℝ𝑛)
≤  ‖𝑓‖

ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(ℝ𝑛)

, therefore 𝑓 ∈ 𝑊ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(ℝ𝑛). Hence, it 

is proved that ℳ𝐾̇𝑝,𝑞
𝛼,𝜆(ℝ𝑛) ⊆ 𝑊ℳ𝐾̇𝑝,𝑞

𝛼,𝜆(𝑅𝑛). 

CONCLUSIONS 

By this result, the author can conclude that the homogeneous Herz-Morrey spaces have 
inclusion properties as stated above. This result will be useful to be used in proving 
fractional integral on the homogeneous Herz-Morrey spaces. 
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