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ABSTRACT  

The application of centrosymmetric matrix on engineering takes their part, particularly about 
determinant rule. This basic rule needs a computational process for determining the appropriate 
algorithm. Therefore, the algorithm of the determinant kind of Hessenberg matrix is used for 
computing the determinant of the centrosymmetric matrix more efficiently. This paper shows 
the algorithm of lower Hessenberg and sparse Hessenberg matrix to construct the efficient 
algorithm of the determinant of a centrosymmetric matrix. Using the special structure of a 
centrosymmetric matrix, the algorithm of this determinant is useful for their characteristics.  
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INTRODUCTION 

One of the widely used studies in the use of centrosymmetric matrices is how to get 
determinant from centrosymmetric matrices. Besides this special matrix has some 
applications [1], it also has some properties used for determinant purpose [2]. Special 
characteristic centrosymmetric at this entry is evaluated at [3] resulting in the algorithm 
of centrosymmetric matrix at determinant. Due to sparse structure of this entry, the 
evaluation of the determinant matrix has simpler operations than full matrix entries. 

One special sparse matrix having rules on numerical analysis and arise at 
centrosymmetric the determinant matrix is the Hessenberg matrix. The role of 
Hessenberg matrix decomposition is the important role of computing the eigenvalue 
matrix. In the discussion, the recursive algorithm is explained to compute the n-per-n 
determinant of the Hessenberg matrix [4]. This study is the evaluation of some 
researches before about the determinant Hessenberg matrix [5,6]. 

The rule of the Hessenberg matrix for computing the determinant of general 
centrosymmetric matrix based on block matrix has been done by [7]. Moreover, this 
study continued by [8] on evaluating the previous work and shows only lower 
Hessenbeg matrix as block centrosymmetric matrix can use this algorithm. Then 
necessary and sufficient condition for this algorithm is constructed also that can be 
evaluated for the determinant process [9]. A Numerical example also shows for more 
understanding at a special centrosymmetric matrix on its block. 

Furthermore, the determinant of sparse Hessenberg matrix is also constructed for 
resulting in the new algorithm for a pentadiagonal matrix[10].  Some studies are also 
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focussing on the determinant algorithm for computational process [11-17]. Based on the 
previous study, we propose a new form of pentadiagonal matrix with construction 
entries based on a centrosymmetric matrix called pentadiagonal centrosymmetric 
matrix. We then continue applying the previous algorithm to compute our new form of 
pentadiagonal centrosymmetric matrix for determinant purpose. Finally, this paper 
shows two algorithms of centrosymmetric matrix determinant by using the algorithm of 
the determinant of the Hessenberg matrix. 

  

PRELIMINARIES  

Before we discuss the main result, let introduce some definitions and properties used 
to explain the determinant of centrosymmetric matrix using Hessenberg’s determinant. 

 
Definition 1 [3] The form of n -by- n  lower Hessenberg matrix is written as the matrix 
with the entries as follow 
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Definition 2 [10] The sparse Hessenberg matrix with order n  is the matrix with 
construction as  
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Definition 3 [2] Let   nn

nnij Ra 


A  be a centrosymmetric matrix, if the entries of the 

matrix satisfy 1,1  jninij aa  for ni 1  , nj 1  or  
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Definition 4 [7] The centrosymmetric matrix has a special structure that can be 

constructed as AAJJ nn  , where  11nnn eeeJ ,,,   and ie  is the unit vector with the 

i-th element 1 and others 0. 
 
Definition 5 [8] The centrosymmetric matrix with n order where mn 2  is even number 

order can be partitioned with the form 

  



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CJJB
A . (4)  

RESULTS AND DISCUSSION 

This part shows the rule of the determinant of lower Hessenberg and sparse 
Hessenberg matrix for determinant concept of the centrosymmetric matrix. Further 
discussion is also given for explaining the result and deeper understanding.  
 

Determinant Lower Hessenberg Matrix for Centrosymmetric Matrix’s  Determinant 

The algorithm of the determinant of lower Hessenberg is presented based on the 
definition and properties of this matrix. The following is the Lemma of the determinant 
of lower Hessenberg, which is constructed as a block matrix. 

  

Lemma 6 [7] Let 
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H  as the inverse matrix of 

its matrix, then the determinant of this matrix is written as     


 
1

1 1,1det
n

i ii

n
hhH . 

This algorithm is used for evaluating the algorithm of the determinant of 
centrosymmetric matrix with lower Hessenberg as a block matrix. The algorithm of the 
determinant of the centrosymmetric matrix with lower Hessenberg as block matrix can 
be proposed as follow. 

Input : Matrix 
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2) Construct NM,  are Hessenberg matrices become 

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Or we can write this algorithm by the following theorem for computing the 
determinant of centrosymmetric matrix with applying the algorithm of the determinant 
of lower Hessenberg matrix. This algorithm is only applied on a specific 
centrosymmetric matrix based on the special block matrix. 

 
Theorem 7 [9] Let centrosymmetric matrix with its block matrix, lower Hessenberg 

matrix, and its notation, such 11 NMNMPH  ~
,

~
,,,, , then the determinant of the 

centrosymmetric matrix is written as  
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Proof. From the definition of the centrosymmetric matrix, this matrix can be formed as a 

block matrix 
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matrix, the determinant of centrosymmetric matrix only calculate on block matrices the 
determinant. These block matrices NM,  are Hessenberg form, therefore the algorithm 

of determinant lower Hessenberg can be applied for this determinant. This step 
becomes the main necessary for the next algorithm. 

By the algorithm of lower Hessenberg matrix, let’s form  
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, where NM,α , NM,L , 

NM,β  are matrices with the size of 1n , nn , 1n  respectively and NMh ,  is scalar. By 

analytical process at lower Hessenberg algorithm, then we find 0Mh  and 0Nh . 

Finally, the determinant of the centrosymmetric matrix based on lower Hessenberg form 
is  
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Determinant Sparse Hessenberg Matrix for Centrosymmetric Matrix’s Determinant 
 

Based on the previous study, [10] shows the efficient algorithm general 
pentadiagonal matrix. Then, this paper gives a specific discussion on the determinant of 
pentadiagonal centrosymmetric matrix by applying a pentadiagonal determinant matrix. 
There are some basic definitions for further study on the determinant of pentadiagonal 
centrosymmetric matrix. 

 
Definition  [17,18] Let  

njiijd
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
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D is called nn  general pentadiagonal matrix 

which the entry 0ijd  for 2 ji or it can be constructed as  
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This performance of the general pentadiagonal matrix has been described, and 
moreover, the algorithm of determinant general pentadiagonal is also evaluated [10]. 
This paper will give a different point of view from a general structure pentadigonal 
matrix, which can be constructed as a centrosymmetric matrix. This work combines the 
general pentadiagonal matrix’s definition, which has a centrosymmetric matrix 
structure, then we call the pentadiagonal centrosymmetric matrix. 

Therefore, we construct the algorithm of the pentadiagonal centrosymmetric matrix 
based on the algorithm of the determinant of the general pentadiagonal matrix. The 
algorithm has the following steps. 

1. Construct pentadiagonal centrosymmetric matrix 
Based on the definition of pentadiagonal and centrosymmetric matrix, then the 

pentadiagonal centrosymmetric matrix is written as 
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where the entries have a centrosymmetric structure 
1,1 


jninij

aa  for ni 1  , nj 1 . 

2. Transform into sperse Hessenberg matrix 
According to the form of sparse Hessenberg matrix, then the construction of sparse 

Hessenberg matrix  
njiijd




,1
D  is written as 
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The form of (8) matrix is resulted by choosing 
i1,iλ 
 from the matrix of  
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For instance, let pentadiagonal centrosymmetric matrix with the size 88  and choose 

1,2

1,3

2,3
d

d
  for transforming matrix as follows. 
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By the same way, taking 
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d
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d

d
    and the process will have the 

following Hessenberg matrix as follow. 
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Generally, the formula of the value of ii ,1  is defined as 
1,
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


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d
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~
dd  . 

Remembering that, 31   nnV  is the matrix which formed by λ matrix , having the 

form of HVD  . Consequently,  

         HVDDVD detdetdetdetdet  , where   1det V  (11) 

By the entries of D  which integer numbers or Zd ij , then it can use the following 

matrix 
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Furthermore, to compute the determinant of the pentadiagonal centrosymmetric 

matrix is only on computing the determinant of the Hessenberg matrix. Then, the next 
step is how to compute the Hessenberg matrix. 

 
3. Compute the Hessenberg Matrix 

By applying the previous algorithm, this determinant is constructed by using the 
two-term recurrence. This step takes the following explanation.  

Let nn  matrix 













n1n
T

1n1n

n
sr

qP
Z , where the size of block matrices is 1nZ   has 

   11  nn , n1n s,q   are the scalar and 1n
Tr   has  11  n . Then the determinant of 

nZ  recursively is written as : 

10f  

1iii fαf  , where 11 dα  , 
1i

1

1i

T

1iii qZrsα 



  

Then, the determinant of iZ matrix is   ii fZ det , where ni ,,2,1  . 

Now, we apply the previous algorithm for our sparse Hessenberg matrix, and we 
have the following recursive. 

 1nn1,n2nn2,n1n
1

1n
T

1nn,nn, ededHehdα 


 n  
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 1n1n
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eHe 







   and 

1n

2n

1n1n
1

1n
T

f

f
eHe







  then become 









 









 n1,n

1n

2n

n2,n2n1,n

1n

3n

1nn,nn, d
f

f
dd

f

f
ddα n . Then, by multiply the equation with 

1nf  we have 

 n1,n2nn2,n2n1,n3n1nn,nn,1n1nnn dfddfddffαf   . 

 
4. Construct the Algorithm of Determinant Pentadiagonal Centrosymmetric Matrix 

111 df   

1221221 dddff 2  

 2311321323323 dfddddff   

  for ni ,,5,4   

 iiiiiiiiiiiii dfddfddf ,12,22,131,,1  f  

 end 
  nfD det . 

This algorithm shows the rule of the determinant of Hessenberg matrix can be 
contructed for the general determinant of the pentadiagonal centrosymmetric matrix.  

 
Based on two different algorithms above, the rule of determinant Hesseberg matrix 

can evaluate the determinant of the centrosymmetric matrix. For efficient algorithm, the 
first algorithm evaluates the determinant of centrosymmetric matrix applying the 
algorithm of the determinant of the lower Hessenberg matrix. It happens caused by the 
lower Hessenberg matrix appear as its block matrix, then the algorithm of 
centrosymmetric matrix only a half working. On the next algorithm, the algorithm of the 
sparse Hessenberg matrix is applied to construct the algorithm of determinant general 
pentadiagonal centrosymmetric matrix. This algorithm is used caused by the same 
structure of the main matrix is a sparse Hessenberg matrix, therefore is applicable. 

CONCLUSIONS 

The different cases of the application of determinant Hesseberg matrix are applied to 
a different form of a centrosymmetric matrix . It is necessary to identify the form of the 
main general centrosymmetric from the beginning. This part determines the best 
algorithm for the computational process more efficient. This paper shows the different 
Hessenberg appearance on a centrosymmetric matrix results different algorithms of the 
computing of the determinant. 
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