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ABSTRACT 

The Levenberg-Marquardt algorithm has become a popular method in nonlinear curve fitting 
works. In this paper, following the steps of Levenberg-Marquardt algorithm, we extend the 
framework of the algorithm to two and three dimensional real and complex functions. This work 
briefly describes the mathematics behind the algorithm, and also elaborates how to implement it 
using FORTRAN 95 programming language. The advantage of this algorithm, when it is 
extended to surfaces and complex functions, is that it makes researchers to have a better trust 
during fitting. It also improves the generalization and predictive performance of 2D and 3D real 
and complex functions. 
 
Keywords:  Levenberg-Marquardt algorithm, Nonlinear curve fitting and Least square fitting 

technique. 
 

 

1. INTRODUCTION 

Levenberg-Marquardt (LM) algorithm is an iterative technique (Levenberg, 1944; Kelley, 1999; 

Avriel, 2003; Marquardt, 1963; Bates & Watts, 1988; Box, et al., 1969; and Gill, et al., 1981)  

which helps in locating the discrepancy between a given model and the corresponding data. Such 

functions are usually expressible as sum of squares of nonlinear functions. The LM algorithm 

has become a standard technique for nonlinear least-square problems (Lourakis, 2005; Lampton, 

1997; Arumugam, 2003; Coope, 1993; and Madsen, et al., 2004) and can be thought of as a 

combination of steepest descent and the Gauss-Newton methods. The paper is presented as 

follows: In section one, we present a brief introduction about the LM algorithm. In section two 

we discuss about the least square fitting technique. Section three elaborates Vanilla Gradient 

descent method. In the fourth section we present Newton’s method. A more detailed discussion 

of LG algorithm is presented in section five.  Section six discusses about the implementation of 

the LM algorithm. In the last section we present a brief summary of the paper. 
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1.1. Least-Square’ Fitting Technique 

Suppose we have a set of  experimental data points  N ix{ , ,iy ,L ,if iσ } , where ,…, N for 

which we need to make a fitting. Here 

1=i

iX ( ),..., ii yx≡  are the data coordinates,  is the data 

value and 

if

iσ �is the data error bar. Next we take a model which can estimate the values of  as 

a function of   and a set of internal variable parameters : 

.  

f

iX ( ,..., ii yx≡ ) ( )MpppP ,...,, 21≡

( )PXf ,

Let us construct the chi-square function: 
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=   is called residue function.   The goal of the least square 

method is to determine the parameters  of the regression function P ( )PXf ,  so as to minimize 

the squared deviations between   and  if ( )PXf i ,   for all data points: Ni L1= .  If we assume 

that all measured values of are normally distributed with standard deviations given 

by

if  

,iσ then ‘statistically-the-best’ match would correspond to the minimal value of . Thus, 

the suitable model is essentially the one which gives the minimum value of the chi-square with 

respect to the parameters. That is why the method itself is called the ‘least-square’ technique. Of 

course, the error bars are determined not only by a statistical noise, but also by systematic 

inaccuracies, which are very difficult to estimate and are not normally distributed. However, to 

move on, we assume that they are some how accounted for by the values

2χ

iσ . Other approaches 

that are useful in determining the best-fit parameters for non-linear functions  by 

minimizing  iteratively include Newton’s method and Gradient descent method.  

( PXf , )
2χ

1.2. Vanilla Gradient Descent Method 

The Gradient descent method is simply an instinctive moving in the ‘steepest descent’ direction, 

which is apparently determined by the minus-gradient:  
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or  

                =

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Mβ

β

β

M

2

1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

M

cM

M

c

M

c

cMcc

cMcc

p
Pr

p
Pr

p
Pr

p
Pr

p
Pr

p
Pr

p
Pr

p
Pr

p
Pr

)()()(

)()()(

)()()(

21

22

2

2

1

11

2

1

1

L

MOMM

L

L

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

)(

)(

)(

2

1

cM

c

c

Pr

Pr

Pr

M

.           (2) 

In compact form [ ] )(
2
1 2 PrJ T=∇−= χβ , 

Where is called Jacobian matrix of the residue which is defined in Eqn. 1. The one-

half coefficient is put to simplify the formulas. To improve the fit, we can shift the parameters 

J )( ci Pr

,kkckc ppp δ+→  where kk tconsp βδ ×= tan   
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The steepest descent strategy is justified, when one is far from the minimum, but suffers from 

slow convergence in the plateau close to the minimum, especially in the multi-parameter space. 

Logically we would like large steps down the gradient at locations where the gradient (slope) is 

small (near the plateau) and small steps when the gradient is large not to rattle out of the 

minimum. Moreover, it has no information about the scale or the value of the constant and one 

can see that kk tconsp βδ ×= tan  has a problem with the unit dimensions. 

1.3. Newton’s Method 

Newton's method is an algorithm used for finding roots of equations in one or more dimensions. 

Let us expand  using a Taylor’s series around the current points, 

, we get 

)(2 Pχ∇

( )Mcccc pppP ,..., 21≡

)()( 22
cPP χχ ∇=∇ + higher order terms                                (4) [ ] +∇⋅ )(22

c
T PP χδ
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α is the second order gradient vector of (is called Hessian 

matrix) evaluated at .  

2χ

cP

Near the current points , we can approximate the value of up to the second order, as 

+ . 

cP )(2 Pχ

)()( 22
cPP χχ ∇=∇ [ ] )(22

c
T PP χδ ∇⋅

Assuming the chi-square function is quadratic around  and solving for the minimum values of 

the parameters by setting , we get the update rule (the next iteration point) for 

Newton’s methods:  

cP
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The chi function (which is quadratic) to be minimized has almost parabolic shape. The Hessian 

matrix, which is proportional to the curvature of , is given by  2χ
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(the one-half here is also added for the sake of simplicity). The components klα  of the Hessian 

matrix in Eqn. (7) depends both on the first derivative, 
k

ci

p
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∂
∂ ),( , and second derivative, 
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∂∂
∂ ),(2 , of the basic function with respect to their parameters. The Second derivative can 

be ignored when it is zero, or small enough to be negligible when compared to the term 

involving the first derivative. In practice, this is quite often small enough to neglect. If one looks 

at Eqn. (7) carefully, the second derivative is multiplied by [ ]),( cii PXff − . For the successful 

model, this term should just be the random measurement error of each point. This error can have 

either sign, and should in general be uncorrelated with the model. Therefore, the second 

derivative terms tend to cancel out when summed over time . Inclusion of second derivative 

term can in fact be destabilizing if the model fits badly or is contaminated by outlier points that 

are unlikely to be offset by compensating points of opposite sign. So, instead of Eqn. (7) we shall 

define the α-matrix simply as: 
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After computing, numerically or analytically, the gradient and Hessian matrices for the current 

set of parameters, one can immediately move to the minimum by shifting the parameters 

,kkk ppp δ+→ where the displacement vector kpδ   is determined from the linear system 

derived in Eqn. (5), i.e.,  
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(9) 

One of the problems associated with Newton’s method (Levenberg, 1944; Kelley, 1999; Madsen, 

et al., 2004; and Lawson & R.J. Hanson, 1974) is its divergence after successive iterations. At 

the instant when diverges we would like to retreat to its previous value  and 

then decrease the steps,  

)(2 PPc δχ + )(2
cPχ

Pδ  and try again. 
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Figure 1. Graph of the chi function: The chi-square (χ2) function versus two arbitrary 
experimental parameters P1 and P2. 

 

1.4. The Levenberg-Marquardt Algorithm 

In order for the chi-square function to converge to a minimum rapidly, one needs a large step in 

the direction along with the low curvature (near the minimum) and a small step in the direction 

with the high curvature (i.e. a steep incline). The gradient descent and Gauss-Newton iterations 

provide additional advantages. The LM algorithm is based on the self-adjustable balance 

between the two minimizing strategies: the Vanilla Gradient Descent and the Inverse Hessian 

methods. 
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Coming back to the steepest descent technique  is dimensionless but 2χ kβ  has the same 

dimension as
kp

1 , as indicated in Eqn. (3). The constant of proportionality between kβ and 

kpδ must therefore have the dimension of . For instance, if the parameter is measured 

in , then

2
kp kp

kg kβ has obviously the units of  so the constant must have a dimension of . 

Therefore the unit cannot be the same for all parameters since they are generally measured in 

different units (  in Seconds,  in Meter…  in Ampere). Marquadt surmised that the 

components of the Hessian matrix must hold at least some information about the order-of–

magnitude scale and dimension. Among the components of 

1−kg 2−kg

1p 2p
Mp

α -matrix the reciprocal of the 

diagonal elements  have these dimensions. Hence he suggested that this must set the scale 

of the constant. To avoid the scale becoming too large, it is divided by a dimensionless positive 

damping term, 

1−
kkα

λ  (being positive ensures that kpδ  is a descent direction). Eqn. (3) is then 

replaced by 
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In more compact form,  .1
k
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δ =                                                                                                             

In order to combine Eqns. (9) and (10), Marquardt defined a diagonally-enhanced new α′ -
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whereλ is a dimensionless constant, and klα is replaced with  klα ′ in Eqn. (5) which yields 
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For   very small value ofλ , the displacement vector ,kpδ obtained from Eqn. (12) is close to the 

one, obtained by the pure Inverse Hessian technique, Eqn. (9), which is a good step in the final 

stages of the iteration, near the minima. If  (or very small), then we can get (almost) 

quadratic final convergence. However, if 

02 =χ

λ is very large, then the matrix klα ′  is forced in to 

being diagonally dominant, so Eqn. (12) goes over to be identical to Eqn. (10), this is good if the 

current iterate is far from the solution. It means that, by increasing the parameter λ we approach 

the ‘steepest descent’ limit (i.e. a short step in the steepest descent direction).  Thus, the damping 

term λ influences both the direction and the size of the step, and this leads us to make a method 

without a specific line search. To reduce the computational errors (especially near the minimum 

point), it is recommended to find the derivatives of the model function  analytically. 

Let’s first prepare the LM algorithm, with flow chart.  The minimization process is iterative. One 

starts with a reasonably small value of

( PX ,2χ )

λ . At every successful iteration: ( )22
curmew χχ < ,  it is 

reduced by a factor of 10, moving towards the ‘inverse Hessian’ regime. Otherwise it retreats to 

the ‘steepest descent’ regime by being increased by a factor of 10. The stop criteria are necessary 

to avoid an endless iteration cycle. When one or more combination of the following stopping 

criteria are satisfied, then the fitting process stops:   

i. When the total number of iterations entered by the user attains.   

ii. When the minimum value of   to exit iteration attains.  )(2
cPχ

iii. When the absolute shift of the chi square, )()( 22
cc PPP χδχ −+   below some a certain 

threshold or decreases by negligible amount. The program can also be set to ‘PAUSE’ when 

 a start to diverge then continues after press enter key.  )(2 PPc δχ +
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Figure 2. The LM Algorithm with a flow chart. 

 

he update rule is used as follows. If the error goes down following an update, it implies that our 

uadratic assumption on  is working and reduce 

T
2χ λq  (usually by a factor of 10) to reduce the 

fluence of gradient descent. On the other hand, if the error goes up, we would like to follow the 

radient more and so

in

g λ is increased by the same factor. If the initial guess is good but does 

ot fall down to the required minimum value, we have to change the initial value of 

2χ

λn slightly. 
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2. IMPLEMENTATION OF THE LM ALGO ITHM 

In this paper Gauss’s elimination and Gauss’s Jordan matrix inversion methods are used to 

determine the shift parameters. Among the several tests made on real and complex non linear 

functions, only three examples are illustrated to see how much this method is effective and faster 

than the other methods.  

2.1. Test on real three dimensional wave func

The first test is applied to two dimensional data coordinate 

R

tion 

( )ii yx ,  and data value 

where , e.g., at  .  

Table 1. Experimental data for irregularly shaped surface. 

if  

2101−=i )6.452,1,7(7 777 =−=−== fyxi

 ix  -7 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 7 

iy  

-7 -1.029 6.743 13.3 15.99 14.91 12.72 19.56 33.59 14.18 

-

3.027 2.91 2.546 

-

2.389 -8.428 

- -

-6 384 -7.211 0.544 6.464 7.324 2.644 -6.841 -20.33 4.615 5.203 10.67 13.85 11.29 4.334 -3.

-5 -9.661 -5.837 -3.782 -5.371 -10.97 -22.67 -49.52 40.49 21.73 18.62 17.54 13.99 8.64 3.572 

-4 -1 2-7.136 -8.94 -11.96 5.41 -18.64 -26.28 -52.5  54.98 26.54 16.56 12.09 9.181 8.176 8.796 

-1.112 -6.983 -13.68 -17.6 -16.22 -15.65 -27.89 40.53 16.97 5.508 0.567 

-

0.605 3.058 9.637 -3 

-2 26 - 5.997 4.853 -0.665 -7.916 -11.2 -4.794 3.837 10.87 5.224 

-

2.158 

-

8.837 

-

10.48 

-

10. 4.33 

-1 6.452 7.76 2.596 -0.96 10.17 22.71 41.83 30.86 21.57 19.46 13.81 

-

14.99 11.16 0.942 

- - - - -

0 1.905 14.72 12.53 6.545 21.22 31.66 47.46 

-

47.46 

-

31.66 

-

21.22 

-

6.545 

-

12.53 

-

14.72 -1.905 

1 

- - - -

-0.942 11.16 14.99 13.81 19.46 21.57 30.86 41.83 22.71 10.17 0.96 2.596 -7.76 -6.452 

-5.997 4.33 10.26 10.48 8.837 2.158 -5.224 

-

10.87 

-

3.837 4.794 11.2 7.916 0.665 -4.853 2 

3 -9.637 -3.058 0.605 -0.567 -5.508 -16.97 -40.53 27.89 15.65 16.22 17.6 13.68 6.983 1.112 

4 -8.796 -8.176 -9.181 -12.09 -16.56 -26.54 -54.98 52.52 26.28 18.64 15.41 11.96 8.94 7.136 

5 -17.54 -18.62 -21.73 -40.49 49.52 22.67 10.97 5.371 3.782 5.837 9.661 -3.572 -8.64 -13.99 

6 3.384 -4.334 -11.29 -13.85 -10.67 -5.203 -4.615 20.33 6.841 

-

2.644 

-

7.324 

-

6.464 

-

0.544 7.211 

7 8.428 2.389 -2.546 -2.91 3.027 14.18 33.59 19.56 12.72 

-

14.91 15.99 -13.3 6.743 1.029 

- - - -
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From the above results (Table.1), one can easily see that the data (surface) follows the wave 

function having the form  

 ( ) )cos()sin(
1

),,,,(), 322
3

1321 xyp
x

p
y

ppppyxfP −−
+

== . 

the LM approach, in ord

))sin(( yxpXf

We have then made a fitting, using er to find the values of the 

parameters 

cos(

( )3,21 ,, ppp  that best fit ),( PXf i  with  if  (see Fig. 3 (a) and (b)).  

ension is 2=q  and the numbers of parameters are 3In this case the dim =M . After initializing 

( )3,2p1 ,, pp  the values found from the iteration are 0.02 =χ , ,0.71 =p  0.112 =p  and . 

The function now have the from

0.543 =p

 ( ) )cos()sin(11)cos(54
1

)11sin(7),( 2 xy
x

y
y

xyxf −−
+

= . 

As one can see from the above results, the LM model is highly useful when it is implemented to 

com -shaped surfaces. What is also important here is here that  selecting an appropriate 

type of function (such as sine, power, decay, etc functions) and lambda. The shift parameters are 

not that much changed by normalized random errors only minimum of chi-function increases. 

Hence, based on the above two figures (Figs. 3 (a) and (b)), one can conclude that new 

equations/relations and modifications to the already existing formulas can be obtained from 

experimental data having disturbed/complicated surfaces.  

2.2. Test made on complex two dimensional function 

In e

plicated

llipsometery the complex ratio ΔΨ== j

s

p e
r

r
tanρ  is measured, commonly 

expressed in terms of the two real parameters Ψ  and Δ  i.e. ΔΨ= jetanρ . The inversion of this 

formula to get suitable value of real and imaginary part of the refractive index is some what 

ifficult to do analytically, and even numerically inversion of comp

algorithm is not yet well developed.  

e homo s  air and glass with 

r=

d lex functions using LM 

Let us consider an oblique reflection and transmission of optical plane wave at the planner 

interface between two semi-infinit geneou  optically isotropic media

complex index of refraction jkn + . The ratio of the complex reflection coefficient, n ρ , is 

the angle of incident by related to 

=Ψ= Δjetanρ
( )

( ) θθ

θθθsin 2

⎢
⎡

cossin

sincos
22

2
22

0

jkn

jkn

r

r

+−
⎥⎦
⎤

⎣
−+−

. 
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The algorithm has been tested on an actual data taken in a PSA-ellipsometry on acrylic glass 

sample for a wave length of light nm450 . After successive iterations the following results has 

been recorded.  

 

Table 2. Experimental data and computed values of ρ and n . 

Values found from the successive iterations 

thi   
tmeasuremen  

 Data  
 coordinate  

( )deg/

alExperiment  

error Actual  

),( nii θρρ −  

 data values  Computed  values   

iiθ  if ρ= ),(),( nPXf ici = θρ  

1 52+j0 

-0.11

j0.00134

1-

j1.31

-4.2445958E-05-

j2.2291672E-0

726- -1.1721756E-0

77083E-03 5

2 54+j0 j0.00135 j1.3587392E-03 05+j8.7391818E-06

-0.06301- -6.2998131E-02- -1.1868775E-

3 55+j0 

-0.03577-

j0

-3.5782781E-02- 1.2781471E-

.00135 j1.3766416E-03 05+j2.6641530E-05

4 56+j0 

-0.00847-

j0.00143

-8.5111084E-03-

j1.3926749E-03

4.1108578E-05-

j3.7325081E-05

N=4 

,1=q  ,1=m   

 

j0.3 31 +== np c  

10-Ej7.0279005-09-1.1195837E    CHI =  
9-1.32188E ABS(CHI) =  

3-1Ej2.90234271.50009620    n    +=  

Initialization  

 

 

The real and imaginary part of the refractive index of the glass found from the iteration is 

 1.5000962        nr =  and 2710.0029k = respectively. The fitted values of the reflection 0234

coefficient have up to 5 decimal precision (one can also get high precision by selecting 

perfection and machine error. 

plex function is, we only solve the derivative of  

appropriate lambda till the errors arise only form the experiment im

The interesting thing doing with com ),( nθρ  

with respect to   i.e.  n
dn

nd ),(θρ  to find  and  (not rn k
rdn
n ),(θρ  and 

dk
n ),(θρ ) . During 

interpolation and extrapolation, unlike the Aitkens and Lagrange interpolations, graphs 

erpolated using LM  follow  path (with ).  int  model  the right  little regression
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Figure 4. Extrapolated graph for the complex function ),( nθρ with * and ▪ representing 
experimental and numerical values respectively. 

 

2.3. Test on complex two dimensional power unction 

The third test was made on complex three dimensional power functions (their derivatives are 

logarithmic functions). Consider the following experimental data: 

 f

Table 3. Experimental data on 2D power functions.   

i  ix  iy  if  

1 6+j2 - 1- j 6 151.1271 j 41.47818 

2 5+j8 29+j 0 -318.893 j 710.7169 

3 -3+-j0.5 -7+j 1 34.97808 j 96.72046 

4 -4+j 2 0+j 5 61.8854 - j 24.1816 

5 -5+j 5 -9.9- j 3 260.2891 j 413.5324 

6 -6- j 1 -4+j 1 14.13067 j 120.9102 

N =6 
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( ) 434321
21,,,,, pxypyxppppyxf pp +++=The data is fitted with the function . For this 

case the value of  and2=q 4=M . During Initialization of the parameters 

with , jp 5.021 −= jp 5.022 += , 5.0023 jp +=  and 5.024 jp +=  (equivalent to 

), the appropriate value of5.0,5.0,5.0,5.0,2,2,2 −=cP  λ  used near  is . 

 

 

Figure  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5 (a). Graphs of the experimental and nume cal data at different number of iterations.  

 

 

 

 

 

 

 

 

 

Figure 5 (b). Graphs of the experimental and numerical data at different number of iterations.  
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Figure 5 (c). Graphs of the experimental and numerical data at different number of iterations.  

 

 
Figure 5 (d). Graphs of the experimental and numerical data at different number of iterations.  

 

The function becomes ( ) ( ) ( ) 39505.0,,,,, 26.01
4321 jxyjyxppppyxf j +−+−++= − . From the Figs. 5 

(a)-(d), we can see that the LM is not affected by the order of the data (ascending or descending). 
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Based on the above results we can conclude that the LM algorithm is popular method and has the 

following advantages  

(i) The parameters converge rapidly around the minimum in multi dimensional surfaces with 

complicated landscapes.  

(ii)  Even though the initial guess is poor, LM fits partly/most of the parameters to make 

fresh start.  

(iii)  The convergence speed needed to reach the minimum, is not significantly influenced by 

the number of parameters.  

(iv) The shift parameters are not that much changed by normalized random errors. Only the 

minimum of the chi-function increases.  

(v) Normalized random errors do not bring much change on the convergence speed, etc. Like 

any other non-linear optimization techniques, the LM algorithm method in finding global 

 

a better guess).  

 

3. SUMMARY  

We extended the framework of the LM algorithm to real and complex multi-dimensional 

functions. The results show that LM is very efficient when Gradient Descent and Newton’s 

methods separately failed to converge.  In this paper we developed two programs (one for real 

and the other for complex or imaginary values) that work for any number of parameters, any 

number of dimensions and coordinate systems: Cartesian, Curvilinear etc. We believe that the 

algorithm also provides a concert support when someone wants to make a check at the instant of 

a fitting or when solving complex functions. Last but not least the LM method develops user’s 

trust on the algorithm during fitting complicated surfaces and/or graphs.  
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