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ABSTRACT 
This paper investigates the concepts of distributive ideal, dually distributive ideal and standard 
ideal in a join semilattice. It concerns with the property of ideals in a distributive semilattice. We 
obtain a characterization theorem for distributive (dually distributive) and standard ideal in a join 
semilattice. We establish the necessary and sufficient condition for a distributive ideal to be 
standard ideal. Finally, we bear out the fundamental theorem of homomorphism and 
Isomorphism theorem of standard ideal. 
 
Keywords: Distributive ideal, Distributive semilattice, Dually Distributive ideal, Standard ideal, 

Join Semi Lattice.  
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1. INTRODUCTION 

The concept of distributive ideal, standard ideal and neutral ideal in a lattice L has been 

introduced and studied by Hashimoto (1952); and Gratzer and Schmidt (1961). Properties of 

distributive ideals of Birkhoff (1967) are considered in our work.  In this paper we studied the 

notion of distributive (dually) ideal and standard ideal in a semilattice of Gratzer (1978) and 

produced a characterization theorem of standard ideal. The necessary and sufficient condition for 

a distributive ideal to be standard ideal was produced. Finally, the fundamental theorem of 

homomorphism and Isomorphism theorem of standard ideal were proved. 

 

2. METHODOLOGY 

Hashimoto (1952) and Gratzer and Schmidt (1961) have defined standard and distributive ideal 

and standard and distributive element in a lattice L and an example of standard ideal as a 

principal ideal. Also, they afforded a result that if  “s”  is a standard element and if “a” is an 

arbitrary element of lattice, then a  s is a standard element of the principal ideal (a] and this 

result is not valid for distributive elements. The properties of distributive ideals Birkhoff (1967) 

were considered for our work and we investigated the notion of distributive (dually) ideal, 
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standard ideal in a semilattice of Gratzer (1978) and produced a characterization theorem of 

standard ideal. We established the necessary and sufficient condition for a distributive ideal to be 

standard ideal. Finally, we obtained the fundamental theorem of homomorphism and 

isomorphism theorem of standard ideal. 

 

3. DISTRIBUTIVE IDEALS 

3.1. Definition   

A semilattice is a partially ordered set (S, ≤) in which any two elements in S have the least upper 

bound in S. 

 

3.2. Definition  

A semilattice is a non empty set S with binary operation ∨ defined on it and satisfies the 

following: 

  Idempotent law : a ∨ a =   a       for all a in S, 

 Commutative law : a ∨ b =   b∨a  for all a, b in S, 

 Associative law  : a∨ (b∨ c)  =   (a ∨ b) ∨ c  for all a,b,c in S. 

 

3.3. Theorem  

In a semilattice S, define a ≤ b if and only if a ∨ b = b for all a, b in S. Then (S, ≤) is an ordered 

set in which every elements has a least upper bound, conversely, given an ordered set P with that 

property, define a ∨ b = l.u.b.(a, b). Then (P, ≤) is a semilattice. 

 

3.4. Definition  

A non empty subset D of a semilattice S is called an ideal if   

         (i) for x in D, y in D ⇒ x ∨ y in D , (ii) for x in D, t in S and t ≤ x ⇒ t in D. 

 

3.5. Theorem  

If I(S) denotes the set of all ideals of a semilattice S, then I(S) is a lattice with respective to the 

following: 

  (i) D1≤ D2   if and only if  D1 ⊆  D2   
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  (ii) D1 ∨ D2   = { x in S / x =   x1 ∨ x2 , where x1 is in D1,  x2 is in D2} 

 (iii) D1 ∧  D2   = {x in S / x is in D1 and x is in D2}; where D1, D2  are in I(S). 

3. 6. Definition  

The smallest ideal containing x in S is denoted by (x] and is given by (x] = { s in S / s ≤  x}. 

Such ideal is called principal ideal generated by x.  

 

3.7. Definition  

An ideal D of a semilattice S is called distributive ideal if and only if 

    D ∨ (X ∧ Y) = (D ∨ X) ∧ (D ∨ Y) for all X, Y in I(S).  

 

3.8. Definition  

An ideal D of semilattice S is called dually distributive ideal if and only if  

D ∧ (X ∨ Y) = (D ∧ X) ∨ (D ∧ Y)  for all X, Y in I(S). 

 

3.9. Remark  

The following example shows that an ideal need not be a distributive or dually distributive. 

Consider the semilattice       S = {1,a,b,c,an ……, a1,a0 } given in figure 1. 

 

     o 

 o c 

o 

oo 

 

 

      o 

a0
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 b 
 a 

                           

Figure 1. Semilattice ideal need not be a distributive (dually distributive). 

 

Clearly D={ a0, a1….. an,a}, X={ a0, a1….. an,b}, and Y={ a0, a1….. an,c} are ideals of S. 

Now X ∧ Y = {a0, a1…….. an} , D ∨ (X ∧ Y) = {a0, a1…….. an, a},  

D ∨ X  = S and D ∨ Y = S. 

Therefore (D ∨ X) ∧ ( D ∨ Y) = S and  (D ∨ X) ∧ ( D ∨ Y) ≠ D ∨ (X  ∧ Y).  

Hence D is not a distributive ideal of the semilattice S. 

o 

a1

an    
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Also X ∨ Y = S , D ∧ (X ∨ Y) = {a0, a1…….. an, a}, D ∧ X  = {a0, a1…….. an}, 

 D ∧ Y = {a0, a1…….. an} and (D ∧ X) ∨ (D ∧ Y)  = {a0, a1…. an}. 

Therefore D ∧ (X ∨ Y) ≠  (D ∧ X) ∨ (D ∧ Y)   

Hence D is not a dually distributive ideal of the semilattice S. 

 

3.10. Result  

If D1 and D2 are distributive ideals then D1 ∨ D2 is also distributive. 

 

3.10.1. Proof : Let D1 and D2 are distributive ideals of S. Then for any two ideals X and Y of S, 

(D1 ∨ D2 ) ∨ ( X ∧ Y) =  D1 ∨ (D2 ∨ (X ∧ Y)) 

   = D1 ∨ [(D2 ∨ X) ∧ (D2 ∨ Y)] (as D2 is distributive) 

   = [(D1 ∨ (D2 ∨ X)] ∧ [D1 ∨ (D2 ∨ Y)] (as D2 is distributive) 

   = [(D1 ∨ D2) ∨ X] ∧ [(D1 ∨ D2 )∨ Y] 

Therefore D1 ∨ D2 is a distributive ideal. 

 

3.11. Definition  

A semilattice S is said to be directed below if a, b ∈ S, then there exists c such that c ≤ a, c ≤ b. 

 

3.12. Definition  

A semilattice S is called distributive if and only if w ≤ a ∨ b, where w, a, b in S ⇒ there exists x, 

y in S such that x ≤ a, y ≤ b and w = x ∨ y. 

 

3.13. Theorem  

A semilattice S is distributive if and only if  

(i)  S is directed below. 

(ii) The lattice I(S) of all ideals of S is a distributive lattice. 

 

3.13.1. Proof : Suppose a semilattice S is distributive. 

(i) To prove that S is directed below:      

© CNCS, Mekelle University                                                                                        ISSN:2220-184X 
 

23



Rama Ravi Kumar,E.S., Venkateswara Rao, J and Srinivas Kumar,V (MEJS)     Volume 3 (1):20-36, 2011   
 

Let a, b are in S. Then a ∨ b ∈ S. Since a ≤ a ∨ b and S is distributive there exists x, y in S such 

that x ≤ a, y ≤ b and a = x ∨ y.Trivially y ≤ x ∨ y = a. 

Therefore for a, b in S there exists y in S such that y ≤ a, y ≤ b so that S is directed below. 

(ii)  To prove that the lattice I(S) is distributive: 

Now x ∨ y ∈ D1 ∨ (D2  ∧ D3) 

⇔ x ∈ D1, y ∈ (D2  ∧ D3) ⇔ x ∈ D1, y ∈ D2  and y ∈ D3 

⇔ x ∈ D1 , y ∈ D2 and x ∈ D1 , y ∈ D3 ⇔ x ∨ y ∈ D1 ∨ D2  and x ∨ y ∈ D1 ∨ D3 

⇔ x ∨ y ∈ (D1 ∨ D2) ∧ ( D1 ∨ D3). 

Therefore D1  ∨ ( D2  ∧ D3) =  (D1 ∨ D2) ∧ (D1 ∨ D3). 

Also x ∨ y ∈ (D1  ∧ D2) ∨ (D1  ∧ D3) 

⇔ x ∈ D1 ∧ D2 ,  y ∈ D1  ∧ D3 ⇔ x ∈ D1 and x ∈ D2 ,  y ∈ D1  and y ∈ D3 

⇔ x ∈ D1 , y ∈ D1 and x ∈ D2 , y ∈ D3 ⇔ x ∨ y ∈ D1 and x ∨ y ∈ D2 ∨ D3 

⇔ x ∨ y ∈ D1 ∧ ( D2 ∨ D3). 

Therefore D1  ∧ ( D2 ∨ D3) = (D1 ∧ D2) ∨ (D1 ∧ D3) and I(S) is a distributive lattice. 

Conversely, suppose that S is directed below and I(S) is distributive lattice. 

Let w ≤ a ∨ b where a, b, w ∈ S. 

Now (w] = (w] ∧ ((a] ∨ (b])= ((w] ∧ (a]) ∨ ((w] ∧ (b]) = a0 ∨ a1,where a0 ∈ (a], a1 ∈ (b]. 

Hence there exists a0, a1 in S such that a0 ≤ a; a1 ≤ b and (w] = a0 ∨ a1. 

Therefore S is distributive semilattice. 

 

3.14. Definition A binary relation θ on a lattice L is called congruence relation if 

(i) θ is reflexive : x ≡ x (θ) for all x in L 

(ii) θ is symmetric : x ≡ y (θ) ⇒ y ≡ x (θ) for all x, y in L 

(iii) θ is transitive :  x ≡ y(θ) and y ≡ z(θ) 

⇒ x ≡ z(θ) for all x, y, z in L 

(iv) θ satisfies substitution Property : x  ≡ x1(θ) and y ≡ y1(θ)     

⇒ x ∨ y  ≡ x1 ∨ y1(θ) and x ∧ y ≡ x1 ∧ y1 (θ) for all x, y, x1, y1 in L. 

 

3.15. Theorem  

Let D be an ideal of semilattice S. Then the following conditions are equivalent. 
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(i) D is distributive. 

(ii) The map ϕ : X →  D ∨ X is a homomorphism of I(S) onto  

[D) = {X in I(S) / X ≥ D}. 

(iii) The binary relation θD on I(S) is defined by X ≡ Y (θD) if and only if  

D ∨ X = D ∨ Y,, where X, Y in I(S) is a congruence relation. 

 

3.15.1. Proof: Let D be an ideal of semilattice S. 

To prove that (i) ⇒ (ii):

Suppose (i) holds. Then D∨ (X ∧Y) = (D ∨ X) ∧ (D ∨ Y) for all X, Y in I(S) 

Define a map ϕ : X → D ∨ X by ϕ (X) = D ∨ X.   → (1) 

For X, Y in I(S), ϕ ( X ∨ Y) = D ∨ (X ∨ Y) = (D ∨ D) ∨ (X ∨ Y) = D ∨ [D ∨ (X ∨ Y)] 

= D ∨ [D ∨ X ∨ Y] = D ∨ (D ∨ X) ∨ Y)] = (D ∨ X) ∨ (D ∨ Y)  = ϕ (X) ∨  ϕ (Y). 

Similarly, ϕ (X ∧ Y) = D ∨ (X ∧Y) = (D ∨ X) ∧ (D ∨ Y) = ϕ (X) ∧ ϕ (Y). 

Therefore ϕ is homomorphism. 

Next let X in [D). Then X ≥ D so that ϕ (X) = D ∨ X = X. 

Therefore for any X in [D), there exists X in I(S) such that ϕ (X) = X so that ϕ is homomorphism 

of I(S) onto [D). 

To prove (ii)  ⇒  (iii):  

Suppose the map ϕ: X → D ∨ X is a homomorphism of I(S) onto  

[D) = { X in   I(S) / X ≥ D}.Define the binary  relation θD in I(S) as X ≡ Y (θD)  if and only if D ∨ 

X = D ∨ Y where X, Y in I(S). We shall show that the relation is congruence:  

(a) For any X in I(S), D ∨ X = D ∨ X trivially so that X ≡ X (θD) for all X in I(S). Therefore θD is 

reflexive.       

(b) For X, Y in I(S), X ≡ Y (θD)  ⇒ D ∨ X = D ∨ Y ⇒ D ∨ Y = D ∨ X ⇒ Y ≡ X (θD). 

Therefore θD is symmetry. 

(c) For X, Y, Z in I(S), X ≡ Y (θD) and Y ≡ Z (θD) ⇒ D ∨ X = D ∨ Y and D ∨ Y = D ∨ Z ⇒ D ∨ 

X = D ∨ Z ⇒ X ≡ Z (θD). Therefore θD is Transitive. 

(d) Substitution Property: 

Suppose X ≡ X1 (θD) and Y ≡ Y1 (θD) for X, Y, X1, Y1 in I(S). Then D ∨ X = D ∨ X1 and D ∨ Y 

= D ∨ Y1.  → (2) 
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Βy (1) and (2) and since ϕ  is a homomorphism,  

D ∨ (X ∨ Y) =  ϕ (X∨ Y) = ϕ (X) ∨ ϕ (Y) , 

= (D ∨ X ) ∨ (D ∨ Y ) = (D ∨X1 ) ∨ (D ∨ Y1 ) = ϕ (X1) ∨ ϕ (Y1) = ϕ (X1∨ Y1) 

 = D ∨ (X1 ∨ Y1). 

Therefore  X ∨ Y ≡ (X1 ∨ Y1)θD . 

Similarly we can prove that X ∧ Y ≡  (X1 ∧ Y1)θD. 

Therefore θD is a congruence relation. 

To show that (iii) ⇒ (i): 

Suppose the binary relation θD defined by X ≡ Y (θD) if and only if D ∨ X = D ∨ Y is a 

congruence relation. 

For X, Y in I(S), D ∨ (D ∨ X) = (D ∨ D) ∨ X = D ∨ X ⇒ D ∨ X ≡ X (θD) 

⇒ X ≡ D ∨ X (θD) by symmetry. Similarly we can prove Y ≡ D ∨ Y (θD). 

Then by substitution property X ∧ Y ≡ [ ( D ∨ X) ∧ ( D ∨ Y)] (θD). 

Hence D ∨ ( X ∧ Y)  = D ∨ (D ∨ X) ∧ (D ∨ Y)  = (D ∨ X) ∧ (D ∨ Y). 

Therefore D is distributive. 

 

3.16. Result  

Let D be an ideal of semilattice S. Then by applying the principle of duality to 2.15 we can have 

the equivalence of the following conditions.  

(i) D is dually distributive. 

(ii) The map ϕ : X →  D ∧ X is a homomorphism of  

I (S) onto (D] = {X in I(S) / X ≤ D.} 

(iii) The binary relation θD on I(S) is defined by X ≡ Y (θD) if and only if  

D ∧ X = D ∧ Y, where X, Y in I(S) is a congruence relation. 

 

3.17. Definition  

An ideal D of a semilattice S is called standard ideal if  

( ) ( ) (X D Y X D X Y∧ ∨ = ∧ ∨ ∧ )  for all X,Y ∈  I(s). 

The following example shows that every ideal need not be a standard ideal. 
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3.18. Example   

Let S = {a0, a1, a2,….. an,a, b,c,d,1} be the semilattice as shown in figure 2 and let D = {a0, a1, 

a2,….. an,a}  S.  ⊆

Then for all x, y ∈D,  x ∨ y = a and a ∈D. Next let x ∈D,  t∈S and let t ≤ x.  

Now t ≤ x and x ∈D implies that t = ai ,  

0 ≤ i ≤ n or t = a. In either case t a ∈D and D is an ideal of S.  

Similarly we can show that X = {a0, a1, a2,….. an, b}and  

Y =  {a0, a1, a2,….. an, c}, are ideals of S. Now X Y∧ = {a0, a1, ….. an} ; = S,    D Y∨

X D∧ ={a0, a1,…. an}, ={a(X D Y∧ ∨ ) 0, a1,…. an, b}=X and ( ) ( )X D X Y∧ ∨ ∧ ={a0, a1,…. an}.                        

Therefore ( )X D Y∧ ∨ ≠ ( ) ( )X D X Y∧ ∨ ∧ , 

shows that X is not a standard ideal. 

 

 

 

 

 

 

 

 

Figure 2. Semilattice ideal need not be a standard ideal. 

 

3.19. Theorem  

Let L be lattice and let θ be the binary relation on L defined by: x ≡ y(θ) if and only if x ≤ y. If θ 

is reflexive and symmetric, then θ is a congruence relation if and only if the following three 

properties are satisfied for all , ,x y z  in L. 

(i)   ( ) ( )( )x y x y x yθ θ≡ ⇔ ∧ ≡ ∨  

(ii)  ( ) ( ) ( ),  and x y z x y y z x zθ θ θ≤ ≤ ≡ ≡ ⇒ =  

(iii)  ( ) ( )( ) and  andx y x y x t y tθ θ≡ ≤ ⇒ ∧ = ∧  ( )( ) for all t Lx t y t θ∨ = ∨ ∈  
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3.19.1. Proof: Let the binary relation θ defined on a lattice L by:  

( )x y θ≡  if and only if x y≤ be  reflexive and symmetric. Assume that θ  is a congruence 

relation. We prove that θ satisfies the properties (i), (ii) and (iii). 

(i) Let ( )x y θ≡ . Then x y≤  and this implies x y x∧ =  and x y y∨ =  so that  

( )(x y x y )θ∧ ≡ ∨ .Conversely, suppose ( )( )x y x y θ∧ ≡ ∨ . Then x y x y∧ ≤ ∨ and this implies 

x y x∧ ≤  or ( )x y x θ∧ ≡ . Since θ  is symmetric we have ( )x x y θ≡ ∧ .  Since θ  is a congruence 

relation, this gives ( )x y θ≡ . 

(ii)  Let x y z≤ ≤ , then x y≤ and y z≤  and this implies ( )x y θ≡  and ( )y z θ≡ .  

Since θ  is a congruence relation θ  is transitive, so that ( )x z θ≡  

(iii)  Let ( )x y θ≡  and x y≤ , then for t ∈  L, x t y t∨ ≤ ∨ implies ( )( )x t y t θ∨ ≡ ∨  and similarly 

x t y t∧ ≤ ∧  for t in L, we have ( )x t y t θ∧ ≡ ∧ . 

Conversely, suppose θ  satisfies the properties (i), (ii) and (iii).  

We shall show that θ  is a congruence relation. 

Given θ  is reflexive and symmetric. 

Let ( )x y θ≡  and ( )y z θ≡ . Then x y≤  and y z≤  and these imply x y z≤ ≤ . 

By property (ii) we have ( )x z θ≡ .Therefore  θ  is transitive. 

Let ( )1x x θ≡ and ( )1y y θ≡  so that 1 x x≤  and 1y y≤ .  

This together with the property (iii) gives  

1 1x y x y∨ ≡ ∨ and also ( )1 1x y x y θ∧ ≡ ∧  for 1 1, , , Lx y x y ∈ .  

Thus θ  satisfies substitution property.  

Hence, θ  is a congruence relation. 

 

3.20. Theorem   

Let D be an ideal of a semilattice S. Then, the following conditions are equivalent. 

(1) D is standard ideal. 
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(2) The binary relation Dθ  on I(S) defined by ( )DX Y θ≡ if and only if ( ) 1X Y D X Y∧ ∨ = ∨ for 

some  is a congruence relation. 1D D≤

(3) D is distributive and for all X, Y ∈ I(S) 

D X D Y, D X =D Y∧ = ∧ ∨ ∨  implies X = Y 

 

3.20.1. Proof: Suppose D is an ideal of a semilattice S. Define the binary relation Dθ  on I(S) as  

( )DX Y θ≡ if and only if ( ) for some 1X Y D X Y∧ ∨ = ∨ 1D D≤ . 

(1) => (2) It is sufficient to prove that  

(i) Dθ  is reflexive   

(ii) Dθ  is symmetric   

(iii) ( )DX Y θ≡ ( )( )X Y X Y θ⇔ ∧ ≡ ∨   

(iv) ( ) ( )X Y Z, X Y  and Y ZD Dθ θ≤ ≤ ≡ ≡  ⇒ ( )X Z  Dθ≡  

(v) X  and Y≤ ( )X Y Dθ≡ ⇒ ( )X Z Y Z Dθ∧ ≡ ∨  for all X, Y, Z ∈I(s) 

(i) Let X, Y ∈I(s) be arbitrary. 

Then, by the definition of  Dθ  we have (X ∨ X) ∨ D1 = X ∨ X 

for    1X=D D≤ ( )X X Dθ⇒ ≡  for all X ∈  I(S). Thus Dθ  is reflexive 

(ii) For X, Y ∈I(S), X ≡ Y(θD) (X ∧ Y) ∨ D⇒ 1 = X ∨ Y  for some D1 ≤  D.   

 for  some D( ) 1Y X D = Y X⇒ ∧ ∨ ∨ 1 ≤   D   ( )Y DX θ⇒ ≡ . 

Thus Dθ  is symmetric. 

(iii)  for some D( ) ( ) 1X Y X Y D = X YDθ≡ ⇔ ∧ ∨ ∨ 1 ≤   D 

( ) ( ) ( ) ( )1X Y X Y D X Y X Y⇔ ∧ ∧ ∨ ∨ = ∧ ∨ ∨⎡ ⎤⎣ ⎦  for some D1 ≤   D,   

and by taking  we have  X=X Y and Y= X Y∧ ∨

( X ∧ Y  ) ∨  D1  = X ∨ Y for some D1 ≤   D ⇔ ( )X Y= X Y Dθ∧ ∨  

(iv) Suppose , X Y Z≤ ≤ ( ) ( )X Y  and Y ZD Dθ θ≡ ≡  

 and  ( ) 1X Y D X Y⇒ ∧ ∨ = ∨ ( ) 2Y Z D Y Z∧ ∨ = ∨  for D1, D2 ≤   D. 

Now, 1 2X D = Y and Y D Z∨ ∨ = . 
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Since, X ≤ Y and  Y ≤ Z  we have, 

( ) ( )1 2 1 2X D D X D D∨ ∨ = ∨ ∨ 2 Z∨ =

)

= Y D    for . 1 2D D D∨ ≤

Then, = Z = X ∨   Z ( ) ( ) (1 2 1 2X Z D D X D D∧ ∨ ∨ = ∨ ∨

Therefore ( )X Z  Dθ≡ . 

(v) Suppose  and X Y≤ ( )X Y Dθ≡   ( ) 1X Y D = X Y⇒ ∧ ∨ ∨ for some D1 ≤   D. 

Since  X Y≤ ⇒ X Z Y Z∨ ≤ ∨ ( ) ( )( ) ( ) ( )1X Z Y Z D X Z Y Z⇒ ∨ ∧ ∨ ∨ = ∨ ∨ ∨  

Therefore ( ) . ( )(X Z Y Z  Dθ∨ ≡ ∨ )

Similarly we can prove that ( ) ( )( )X Z Y Z  Dθ∧ ≡ ∧ . 

Therefore Dθ is a congruence relation. 

To show that (2) (3): ⇒

Suppose the binary relation Dθ  on I(s) defined by ( )X DY θ≡  if and only if  

 for some D( ) 1X Y D = X Y∧ ∨ ∨ 1 ≤   D is a congruence relation. 

First we prove that D is a Distributive ideal.  .  For all X,Y∈I(s) we have X ≤ D  X  ∨

⇒  X ∧ ( D  X) = X [ X ∧ ( D  X)] D = X  D (*1)  ∨ ⇒ ∨ ∨ ∨ ⇒

Also X  (D ∨ X) = X  D  (*2) ∨ ∨ ⇒

So from (*1) and (*2) we get [X ∧ ( D  X)]  D  =  X  (D X) ∨ ∨ ∨ ∨

This together with the definition of Dθ implies X ≡ (D  X)( ∨ Dθ ) (1) ⇒

Similarly one can show that ( )( )Y D Y Dθ≡ ∨  ⇒ (2) 

Since Dθ is a congruence relation, we have X ∧ Y ≡ [ ( D  X) ∧ (D  Y)]( ∨ ∨ Dθ )                         

( ) ( ) ( ) ( ) ( ) ( )X Y D X D Y D= X Y D X D Y⇒ ∧ ∧ ∨ ∧ ∨ ∨ ∧ ∨ ∨ ∧ ∨⎡ ⎤⎣ ⎦  

                                                            ( by the def of Dθ ) 

( ) ( ) (X Y D= D X D Y⇒ ∧ ∨ ∨ ∧ ∨ )  since ( ) ( )X Y D X D Y∧ ≤ ∨ ∧ ∨ . 

Therefore ( ) ( ) ( ) ( )X Y D=D X Y D X D Y∧ ∨ ∨ ∨ = ∨ ∧ ∨ for all X, Y ∈ I(S) 

Therefore D is a distributive ideal. 

Next let us assume that  

D X=D Y∧ ∧  and , for all X, Y D X=D Y∨ ∨ ∈ I(S) we shall show that  X = Y. 
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From (1) we have ( ) ( ) ( )X Y D X D Y Dθ∧ ≡ ∨ ∧ ∨⎡⎣ ⎤⎦ (since Dθ  is congruence relation) 

           ≡ [D ∨  X)  ∧  (D ∨  X)]( Dθ ) (since D ∨  X = D  Y)  ∨

           ( )(D X )Dθ= ∨  

      ( )X Dθ≡  (by (1)) 

But ( )X Y X Dθ∧ ≡ ( )( ) ( )1X Y X D = X Y X⇒ ∧ ∧ ∨ ∧ ∨  for some 1D D≤  

( ) 1X Y D X⇒ ∧ ∨ = . ( since X ∈ I(S) and I(S) is a  lattice) (3) ⇒

Also , ( )1 1D X Y D X≤ ∧ ∨ = 1D D≤ ⇒ 1D D X=D Y≤ ∧ ∧ 1D D Y Y⇒ ≤ ∧ ≤ 1D Y⇒ ≤  

and . 1 1 1D X, D Y D X Y≤ ≤ ⇒ ≤ ∧

So . But by (3),( ) 1X Y D X Y∧ ∨ = ∧ ( ) 1X Y D X∧ ∨ = .  

Therefore and im X=X Y∧  plies X ……..(4) Y≤

Similarly, we can show that Y ≤ X ……………(5) 

Therefore from (4) and (5) we have X = Y. 

To show that (3) (1):  ⇒

Suppose D is distributive and for all X,Y∈ I(s) 

D X=D Y, D X=D Y∧ ∧ ∨ ∨ implies X = Y. 

We shall show that D is standard ideal or  

( ) ( ) (X D Y X D X Y∧ ∨ = ∧ ∨ ∧ ) for all X,Y∈ I(s). 

For X, Y ∈ I(S), let B =  and C = (X D Y∧ ∨ ) ( ) ( )X D X Y∧ ∨ ∧ . 

We have (X ∧ D) ( X ∧ Y ) ≤ X and (X ∧ D) ( X ∧ Y ) ≤  D Y so that  ∨ ∨ ∨

 (X ∧ D) ( X ∧ Y ) ≤ X ∧ ( D Y) or C ≤  B.  ∨ ∨

This gives D ∧ C ≤ D ∧ Β …….(1) 

Now D ∧ X ≤ D and D ∧ X ≤ (D ∧ X) ∨ ( X ∨ Y) = C. 

( )
( )

D X D C D B=D X D Y                                                                                                          

   D D Y X=D X

⇒ ∧ ≤ ∧ ≤ ∧ ∧ ∧ ∨⎡ ⎤⎣ ⎦
= ∧ ∨ ∧ ∧⎡ ⎤⎣ ⎦

Therefore . D B=D C∧ ∧

Also since D is distributive ( ) ( ) ( )( )D B=D (X D Y ) D X D D Y∨ ∨ ∧ ∨ = ∨ ∧ ∨ ∨  

                                                 ( ) ( )D X D Y= ∨ ∧ ∨  
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 ( )= D X Y∨ ∧  

             ( )( ) ( )= D D X X Y∨ ∧ ∨ ∧ (by absorption property) 

             ( )( ) ( )= D X D X Y∨ ∧ ∨ ∧  

             ( ) ( )=D X D X Y
D C

∨ ∧ ∨ ∧

= ∨
 

Therefore . D B = D C∨ ∨

Hence,  and . D B=D C∧ ∧ D B = D C∨ ∨

So by (3) B = C and D is a standard ideal. 

 

3.21. Theorem  

Every standard ideal in a semilattice S is a distributive ideal but converse is not true. 

 

3.21.1. Proof: By the theorem, 2.20 every standard ideal in a semilattice S is a distributive ideal.  

In the semilattice S = {a0, a1, a2,….. an,a, b,c,d,1}as shown in figure 3 the ideal  

 D = {a0, a1, a2,….. an,1} is a distributive ideal but not a standard ideal. 

 

 

 

 

     

 

 

 

Figure 3. Semilattice distributive ideal is not a standard ideal. 

 

3.22. Theorem  

The necessary and sufficient condition for a distributive ideal D to be standard in a semilattice S 

is that D ∧ X = D ∧ Y and D ∨ X = D ∨ Y for all X, Y ∈ I(S) implies X = Y. 

3.22.1. Proof: Immediate from the theorem 2.20. 
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3.23 Statement   

Suppose ϕ is a homomorphism of a semilattice S on to a semilattice S1 and D is a standard ideal 

of S. The binary relation θD defined by x ≡ y(θD) if and only if ϕ(x) =  ϕ(y) where x, y ∈ S, is 

such that  

(i) θD  is a congruence relation on S 

(ii) S/θD  is a semilattice 

(iii) S/θD ≅ S1 

 

3.23.1. Proof: (i)  First let us show that θD  is a congruence relation on  S. 

Since ϕ(x) = ϕ(x) for x ∈ S, by definition of θD, we have x ≡ x (θD). Thus θD  is a reflexive. 

Suppose x ≡ y(θD) for x, y ∈ S.Then ϕ(x) = ϕ(y) or ϕ(y) = ϕ(x), which implies that y ≡ x (θD). 

Thus θD is symmetric. 

Suppose x ≡ y(θD) and y ≡ z(θD) for x, y, z ∈ S.  

Then ϕ (x) = ϕ(y) and ϕ(y) = ϕ(z) so that ϕ(x) = ϕ(z) which implies x ≡ z(θD). Thus θD is 

transitive. 

Suppose x ≡ x1 (θ) and y ≡ y1(θ)  .Then we have ϕ (x) = ϕ(x1) and ϕ(y) = ϕ(y1) 

Now ϕ (x ∨ y) = ϕ(x) ∨ ϕ(y) (as ϕ is homomorphism) 

  = ϕ(x1) ∨ ϕ(y1) = ϕ(x1 ∨ y1) (as ϕ is homomorphism). 

This implies x ∨ y ≡ (x1 ∨ y1) (θD). 

Similarly, ϕ(x ∧ y) = ϕ(x) ∧ ϕ(y) =  ϕ(x1) ∧ ϕ(y1)=ϕ(x1 ∧ y1) implies x ∧ y ≡ x1 ∧ y1(θD). 

Therefore θD satisfies substitution property. 

Hence θD is a congruence relation. 

(ii)  To prove S/θD is a semilattice let S/θD = { [x] θD / x ∈ S}. 

Define ∨ on S/θD by [x] (θD) ∨ [y] (θD) =  (x ∨ y) (θD) 

where [x] (θD), [y] (θD) ∈ S/θD. Since x, y ∈ S, x ∨ y ∈ S as S is a semilattice which implies (x ∨ 

y) (θD) ∈ S/θD. 

Therefore S/θD  is a semilattice. 

(iii) To prove S/θD ≅ S1, let us define a map ψ : S/θD → S1 by ψ ([x] (θD)) = ϕ(x) for  

[x] (θD) ∈  S/θD. 
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For [x] (θD), [y] (θD) ∈ S/θD,  [x] (θD)  = [y] (θD) ⇒ x ≡ y(θD)  ϕ(x) = ϕ(y)  ⇒

⇒ ψ ([x] (θD)) = ψ ([y] (θD)). 

Therefore ψ is well defined. 

Further, for [x] (θD), [y] (θD) ∈ S/θD,  ψ ([x] (θD)) = ψ ([y] (θD)) ⇒  ϕ(x) = ϕ(y) 

⇒ x ≡ y (θD)  [x] (θ⇒ D) = [y] (θD). 

This show ψ is one-one. 

Let z1∈ S1. Then there exists z ∈ S such that ϕ(z) = z1, since ϕ is onto. So [z] (θD) ∈ S/θD and ψ 

([z] (θD)) = φ(z) =z1.  

Therefore, for z1∈ S1, there exists [z] (θD) ∈ S/θD ,such that ψ ([z] (θD)) = z1 so that ψ is onto. 

Finally, let us show that ψ is homomorphism. 

For [x] (θD), [y] (θD) ∈ S/θD we have 

      ψ ([x] (θD)) ∨ [y] (θD))  = ψ ((x ∨ y) (θD)) 

   = ϕ (x ∨ y) 

   = ϕ(x) ∨ ϕ(y) 

   = ψ ([x] (θD)) ∨ ψ ([y] (θD)).  

Therefore ψ is an onto homomorphism.Hence S/θD ≅ S1. 

 

3.24. Theorem  

Let S be a semilattice, I is an ideal of S and D is a standard ideal of S such that D ⊆ I. Then 

(i) I is a standard ideal in S and if and only if I/D is a standard ideal in S/D 

(ii) S/I ≅ (S/D) / (I/D) 

3.24.1. Proof: Let S be a semilattice, I is an ideal of S and D a standard ideal of S such that D ⊆ 

I. 

(i) Let I be a standard ideal in S. 

To prove that I/D is a standard ideal in S/D, it is sufficient to prove that I/D is the homomorphic 

image of I. Now, define ϕ : S → S/D by ϕ(x) = [x] θD, where x ∈ S. 

As in theorem 2.23 one can see that ϕ is an onto homomorphism. 

If we restrict ϕ from I to I/D, we have ϕ(I) is an onto homomorphic image of I and ϕ(I) = I/D, 

which implies ϕ(I) = I/D is a standard ideal. 

Conversely suppose that I/D is a standard ideal of S/D. 
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For X, Y ∈ I(S), let Y ,X be the homomorphic images of X and Y respectively under the map ϕ : 

S → S/D. 

Since I/D is a standard ideal in S/D, we have  

 YX ≡  (θI/D) (from characterization theorem for standard ideal) 

 ⇒ ( ) YXIY X 1 ∨=∨∧ for some I/DII1 =≤  

 ⇒ (X ∧ Y) ∨ I1 = X ∨ Y for some I1 ≤ I. 

 ⇒ X ≡ Y(θI)  ⇒ I is a standard ideal in S. 

(ii) To prove that S/I ≅ (S/D)/(I/D) define g: S → (S/D)/(I/D) by g(x) = [ x ] θ(I/D) where x ∈ S. 

 For x = y where x, y ∈ S. ⇒ [ x ] θ(I/D) = [ y ] θ(I/D) ⇒ g(x) = g(y). Therefore g is well defined. 

To show that g is onto, let [ x ] θ(I/D) ∈  (S/D)/(I/D). Then  x ∈ S/D for some x ∈ S and g(x) = 

[ x ]θ(I/D) . Therefore g is onto. 

Finally, for x, y ∈ S, g(x ∨ y) = [ YX ∨ ] θ(I/D)   = [ X ] θ(I/D) ∨ [ Y ] θ(I/D) = g(x) ∨ g(y). 

This shows that g is a homomorphism  

Clearly ker g = I, so that by fundamental theorem of homomorphism S/I ≅ (S/D)/(I/D). 

 

3.25. Theorem  

A semilattice S is distributive ⇔ Every ideal D of S is a standard ideal. 

 

3.25.1. Proof: Assume that in a semilattice S every ideal D is a standard ideal. 

Then by the theorem 2.20, D is a distributive ideal and ( ) ( ) ( )D X Y D X D Y∨ ∧ = ∨ ∧ ∨ for all 

X, Y ∈ I(s). This is true for all D so that I(s) is a distributive lattice. 

This implies that S is a distributive semilattce by Theorem 2.13 

Conversely, suppose that a semilattice S is a distributive semillatice and D is an ideal of  S. Now 

S is a distributive semilattice of I(s) 

⇒  I(s) is a distributive lattice, by Theorem 2.13 

⇒ Every element in I(s) is standard, since I(s) does not contain N5 or M3 

⇒ Every ideal D of S is a standard ideal. 

 

4. CONCLUSION 
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In this paper, we investigated the notions of distributive (dually) ideal and standard ideal in a 

semilattice, and established a characterization theorem of standard ideal. We ascertain that set of 

all ideals of a semilattice is a lattice. We attain the equivalent conditions for a semilattice (ideal 

of a semilattice) to be distributive (dually distributive). We confirm that every ideal need not be a 

standard ideal. We define a congruence relation on a lattice and achieve its equivalent conditions. 

We get hold of the equivalent conditions for an ideal of a semilattice to be a standard ideal. We 

set up that every standard ideal in a semilattice is a distributive ideal but converse is not true. We 

take the necessary and sufficient condition for a distributive ideal to be standard in a semilattice. 

We concluded with the result that a semilattice is distributive if and only if every ideal of it is a 

standard ideal. 
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