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To summarise skewed (asymmetric) distributions, such as reaction times, typically the mean or the median are used
as measures of central tendency. Using the mean might seem surprising, given that it provides a poor measure of
central tendency for skewed distributions, whereas the median provides a better indication of the location of the
bulk of the observations. However, the sample median is biased: with small sample sizes, it tends to overestimate
the population median. This is not the case for the mean. Based on this observation, Miller (1988) concluded
that "sample medians must not be used to compare reaction times across experimental conditions when there are
unequal numbers of trials in the conditions". Here we replicate and extend Miller (1988), and demonstrate that his
conclusion was ill-advised for several reasons. First, the median’s bias can be corrected using a percentile bootstrap
bias correction. Second, a careful examination of the sampling distributions reveals that the sample median is
median unbiased, whereas the mean is median biased when dealing with skewed distributions. That is, on average
the sample mean estimates the population mean, but typically this is not the case. In addition, simulations of false
and true positives in various situations show that no method dominates. Crucially, neither the mean nor the median
are sufficient or even necessary to compare skewed distributions. Different questions require different methods
and it would be unwise to use the mean or the median in all situations. Better tools are available to get a deeper
understanding of how distributions differ: we illustrate the hierarchical shift function, a powerful alternative that
relies on quantile estimation. All the code and data to reproduce the figures and analyses in the article are available
online.
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Introduction

Distributions of reaction times (RT) and many other
continuous quantities in social and life sciences are
skewed (asymmetric) (Micceri, 1989; Limpert, Stahel,

and Abbt, 2001; Ho and Yu, 2015; Bono et al., 2017):
such quantities with asymmetric distributions include
estimations of onsets and durations from recordings of
hand, foot and eye movements, neuronal responses,
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as well as pupil size. This asymmetry tends to differ
among experimental conditions, such that a measure
of central tendency and a measure of spread are in-
sufficient to capture how conditions differ (Balota and
Yap, 2011; Rousselet, Pernet, and Wilcox, 2017; Trafi-
mow, T. Wang, and C. Wang, 2018). Instead, to un-
derstand the potentially rich differences among distri-
butions, it is advised to consider multiple quantiles of
the distributions (Doksum, 1974; Doksum and Siev-
ers, 1976; Pratte et al., 2010; Rousselet, Pernet, and
Wilcox, 2017), or to explicitly model the shapes of the
distributions (Heathcote, Popiel, and Mewhort, 1991;
J. N. Rouder, Lu, et al., 2005; Palmer et al., 2011;
Matzke et al., 2013). Yet, it is still common practice
to summarise RT distributions using a single number,
most often the mean: that one value for each participant
and each condition can then be entered into a group
ANOVA to make statistical inferences (Ratcliff, 1993).
Because of the skewness (asymmetry) of reaction times,
the mean is however a poor measure of central tendency
(the typical value of a distribution, which provides a
good indication of the location of the majority of ob-
servations): skewness shifts the mean away from the
bulk of the distribution, an effect that can be amplified
by the presence of outliers or a thick right tail. For in-
stance, in Figure 1A, the median better represents the
typical observation than the mean because it is closer
to the bulky part of the distribution. (Note that all fig-
ures in this article can be reproduced using code and
data available in a reproducibility package on figshare
(Rousselet and Wilcox, 2018a). Supplementary mate-
rial notebooks referenced in the text are also available
in this reproducibility package).

So the median appears to be a better choice than the
mean if the goal is to have a single value that reflects the
location of most observations in a skewed distribution.
In our experience the median is the most often used al-
ternative to the mean in the presence of skewness. The
mode is another option, but it is difficult to quantify
in small samples and is undefined if two or more local
maxima exist, so we do not consider it here. We sus-
pect that inferences on the mode would be possible in
conjunction with bootstrap techniques, for strictly uni-
modal distributions and given sufficiently large sample
sizes, but this remains to be investigated.

The choice between the mean and the median is how-
ever more complicated. Depending on the goals of the
experimenter and the situation at hand, the mean or the
median can be a better choice, but most likely neither is
the best choice — no method dominates across all situ-
ations. For instance, it could be argued that because the
mean is sensitive to skewness, outliers and the thickness
of the right tail, it is better able to capture changes in the

shapes of the distributions among conditions. As we will
see, this intuition is correct in some situations. But the
use of a single value to capture shape differences nec-
essarily leads to intractable analyses because the same
mean could correspond to various shapes. If the goal is
to understand shape differences between conditions, a
multiple quantile approach or explicit shape modelling
should be used instead, as mentioned previously.

The mean and the median differ in another important
aspect: for small sample sizes, the sample mean is unbi-
ased, whereas the sample median is biased. Concretely,
if we perform many times the same RT experiment, and
for each experiment we compute the mean and the me-
dian, the average mean will be very close to the popu-
lation mean. As the number of simulated experiments
increases, the average sample mean will converge to the
exact population mean. This is not the case for the me-
dian when sample size is small. However, over many
studies, the median of the sample medians is equal to
the population median. That is, the median is median
unbiased. (This definition of bias also has the advan-
tage, over the standard definition using the mean, to
be transformation invariant (Efron and Hastie, 2016).
More precisely, like the mode, the median is invariant
to affine transformations — shift and scale transforma-
tions. For a random variable X, affine invariance is de-
fined as: Median(a+bX) = a+bMedian(X), with a and b >
0.) In contrast, when dealing with skewed distributions,
the sample mean is median biased.

To illustrate, imagine that we perform simulated ex-
periments to try to estimate the mean and the median
population values of the skewed distribution in Fig-
ure 1A. Let’s say we take 1,000 samples of 10 obser-
vations. For each experiment (sample), we compute the
mean. These sample means are shown as grey vertical
lines in Figure 1B. A lot of them fall very near the popu-
lation mean (black vertical line), but some of them are
way off. The mean of these estimates is shown with the
black dashed vertical line. The difference between the
mean of the mean estimates and the population value is
called bias. Here bias is small (2.5 ms). Increasing the
number of experiments will eventually lead to a bias of
zero. In other words, the sample mean is an unbiased
estimator of the population mean.

For small sample sizes from skewed distributions, this
is not the case for the median. If we proceed as we did
for the mean, by taking 1,000 samples of 10 observa-
tions, the bias is 15.1 ms: the average median across
1,000 experiments over-estimates the population me-
dian (Figure 1C). Increasing sample size to 100 reduces
the bias to 0.7 ms and improves the precision of our
estimates. On average, we get closer to the population
median (Figure 1D). The same improvement in preci-
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Figure 1. Skewness, sampling and bias. A. Ex-Gaussian distribution with parameters µ = 300, σ = 20 and τ = 300.
An ex-Gaussian distribution is formed by convolving a Gaussian distribution with an exponential distribution. It is
defined by 3 parameters: the mean µ and the standard deviation σ of the normal distribution, and the decay of the
exponential component τ. In practice, an ex-Gaussian random sample can simply be obtained by adding a Gaussian
random sample to an exponential random sample. For details and applications, see for instance Golubev (2010)
and Palmer et al. (2011). In the current example, the distribution shows a sharp rise on the left and has a long
right tail. This distribution is used by convenience for illustration, because it looks like a very skewed reaction time
distribution. The vertical lines mark the population mean and median. B. The vertical grey lines indicate 1,000
means from 1,000 random samples of 10 observations. As in panel A, the vertical black line marks the population
mean. The vertical black dashed line marks the mean of the 1,000 sample means. C. Same as panel B, but for the
median. D. Same as C, but for 1,000 samples of 100 observations. This figure was created using the code in the
illustrate_bias notebook.

sion with increasing sample size applies to the mean
(see section on sampling distributions).

The reason for the bias of the median is explained by
Miller (1988):

’Like all sample statistics, sample medi-
ans vary randomly (from sample to sam-
ple) around the true population median, with
more random variation when the sample size
is smaller. Because medians are determined
by ranks rather than magnitudes of scores,
the population percentiles of sample medians
vary symmetrically around the desired value
of 50%. For example, a sample median is

just as likely to be the score at the 40th per-
centile in the population as the score at the
60th percentile. If the original distribution is
positively skewed, this symmetry implies that
the distribution of sample medians will also
be positively skewed. Specifically, unusually
large sample medians (e.g., 60th percentile)
will be farther above the population median
than unusually small sample medians (e.g.,
40th percentile) will be below it. The average
of all possible sample medians, then, will be
larger than the true median, because sample
medians less than the true value will not be
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small enough to balance out the sample medi-
ans greater than the true value. Naturally, the
more the distribution is skewed, the greater
will be the bias in the sample median.’

Because of this bias, Miller (1988) recommended to
not use the median to study skewed distributions when
sample sizes are relatively small and differ across con-
ditions or groups of participants. We suspect such situ-
ations are fairly common given that small sample sizes
are still the norm in many fields of psychology and neu-
roscience: for instance, in some areas of language re-
search participants can only be exposed to stimuli once
and unique stimuli are difficult to create; in clinical psy-
chology, some experiments must be kept short to deal
with special populations; in occupational psychology,
social psychology or cognitive psychology of ageing and
development, a whole battery of tests might be admin-
istered in one session. However, as we demonstrate
here, the problem is more complicated and the choice
between the mean and the median depends on the goal
of the researcher. In this article, which is organised in 5
sections, we explore the advantages and disadvantages
of the sample mean and the sample median. First, we
replicate Miller’s simulations of estimations from sin-
gle distributions. Second, we introduce bias correction
and apply it to Miller’s simulations. Third, we exam-
ine sampling distributions in detail to reveal unexpected
features of the sample mean and the sample median.
Fourth, we extend Miller’s simulations to consider false
and true positives for the comparisons of two condi-
tions. Finally, we consider a large dataset of RT from a
lexical decision task, which we use to contrast different
approaches.

Replication of Miller 1988

To illustrate the sample median’s bias, Miller (1988)
employed 12 ex-Gaussian distributions that differed in
skewness (Table 1). The distributions are illustrated
in Figure 2, and colour-coded using the difference be-
tween the mean and the median as a non-parametric
measure of skewness. Figure 1 used the most skewed
distribution of the 12, with parameters (µ = 300, σ = 20,
τ = 300).

To estimate bias, following Miller (1988) we per-
formed a simulation in which we sampled with replace-
ment 10,000 times from each of the 12 distributions.
We took random samples of sizes 4, 6, 8, 10, 15, 20,
25, 35, 50 and 100, as did Miller. For each random
sample, we computed the mean and the median. For
each sample size and ex-Gaussian parameter, the bias
was then defined as the difference between the mean of
the 10,000 sample estimates and the population value.

Table 1
Miller’s 12 ex-Gaussian distributions. Each distribu-
tion is defined by the combination of the three parameters
µ (mu), σ (sigma) and τ (tau). The mean is defined as
the sum of parameters µ and τ. The median was calcu-
lated based on samples of 1,000,000 observations (Miller
1988 used 10,000 observations), because it is not known
analytically. Skewness is defined as the difference between
the mean and the median.

µ σ τ mean median skewness
300 20 300 600 509 92
300 50 300 600 512 88
350 20 250 600 524 76
350 50 250 600 528 72
400 20 200 600 540 60
400 50 200 600 544 55
450 20 150 600 555 45
450 50 150 600 562 38
500 20 100 600 572 29
500 50 100 600 579 21
550 20 50 600 588 12
550 50 50 600 594 6

First, as shown in Figure 3A, we can check that the
mean is not mean biased. Each line shows the results
for one type of ex-Gaussian distribution: the mean of
10,000 simulations for different sample sizes minus the
population mean (600). Irrespective of skewness and
sample size, bias is very near zero — it would converge
to exactly zero as the number of simulations tends to
infinity.

Contrary to the mean, the median estimates are bi-
ased for small sample sizes. The values from our
simulations are very close to the values reported in
Miller (1988) (Table 2). The results are also illustrated
in Figure 3B. As reported by Miller (1988), bias can be
quite large and it gets worse with decreasing sample
sizes and increasing skewness. Based on these results,
Miller (1988) made this recommendation:

’An important practical consequence of the
bias in median reaction time is that sam-
ple medians must not be used to compare re-
action times across experimental conditions
when there are unequal numbers of trials in
the conditions.’

According to Google Scholar, Miller (1988) has been
cited 187 times as of the 18th of April 2019. A look
at some of the oldest and most recent citations reveals
that his advice has been followed. A popular review arti-
cle on reaction times, cited 438 times, reiterates Miller’s
recommendations (Whelan, 2008). However, there are
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Figure 2. Miller’s 12 ex-Gaussian distributions. This figure was created using the code in the miller1988 notebook.

several problems with Miller’s advice, which we explore
in the next sections, starting with one omission from
Miller’s assessment: the bias of the sample median can
be corrected using a percentile bootstrap bias correc-
tion.

Bias correction

A simple technique to estimate and correct sampling
bias is the percentile bootstrap (Efron, 1979; Efron and
Tibshirani, 1994). If we have a sample of n observa-
tions, here is how it works:

• sample with replacement n observations from the
original sample

• compute the estimate (say the mean or the me-
dian)

• perform steps 1 and 2 nboot times

• compute the mean of the nboot bootstrap esti-
mates

The difference between the estimate computed using
the original sample and the mean of the nboot bootstrap
estimates is a bootstrap estimate of bias.

To illustrate, let’s consider one random sample of 10
observations from the skewed distribution in Figure 1A,
which has a population median of 508.7 ms (rounded
to 509 in the figure):

sample = [355.0, 350.0, 466.7, 1758.2, 604.5, 1707.6,
367.2, 1741.3, 331.4, 1193.2]

The median of the sample is 535.6 ms, which over-
estimates the population value of 508.7 ms. Next, we
sample with replacement 1,000 times from our sample,
and compute 1,000 bootstrap estimates of the median.
The distribution obtained is a bootstrap estimate of the
sampling distribution of the median, as illustrated in
Figure 4. The idea is this: if the bootstrap distribution
approximates, on average, the shape of the sampling
distribution of the median, then we can use the boot-
strap distribution to estimate the bias and correct our
sample estimate. However, as we’re going to see, this
works on average, in the long-run. There is no guaran-
tee for a single experiment.

The mean of the bootstrap estimates is 722.6
ms. Therefore, our estimate of bias is the difference
between the mean of the bootstrap estimates and
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Table 2
Bias estimation for Miller’s 12 ex-Gaussian distributions. Columns correspond to different sample sizes. Rows
correspond to different distributions, sorted by skewness. Values are for the mean bias, as illustrated in Figure 3B. There
are several ways to define skewness using parametric and non-parametric methods. Following Miller 1988, and because
the emphasis is on the contrast between the mean and the median in this article, we defined skewness as the difference
between the mean and the median.

Skewness n=4 n=6 n=8 n=10 n=15 n=20 n=25 n=35 n=50 n=100
92 41 26 19 18 8 8 6 4 3 1
88 39 27 21 16 10 7 5 5 3 2
76 35 23 16 12 8 7 5 4 3 1
72 35 24 16 14 8 6 5 4 3 2
60 28 18 15 9 6 6 4 3 2 1
55 26 18 12 9 7 5 4 3 2 1
45 21 14 10 9 5 4 3 2 2 1
38 18 11 8 7 5 3 3 1 1 1
29 13 10 6 5 3 2 2 1 1 0
21 9 6 4 4 2 2 1 1 1 0
12 5 4 3 2 1 1 1 1 0 0
6 2 2 1 0 1 0 0 0 0 0

the sample median, which is 187 ms, as shown by
the black horizontal arrow in Figure 4. To correct
for bias, we subtract the bootstrap bias estimate from
the sample estimate (grey horizontal arrow in Figure 4):

sample median - (mean of bootstrap estimates - sample
median)

which is the same as:

2 x sample median - mean of bootstrap estimates.

Here the bias corrected sample median is 348.6
ms. So the sample bias has been reduced dramatically,
clearly too much from the original 535.6 ms. But bias
is a long-run property of an estimator, so let’s look at a
few more examples. We take 100 samples of n = 10,
and compute a bias correction for each of them. The
results of these 100 simulated experiments are shown
in Figure 5A. The arrows go from the sample median
to the bias corrected sample median. The black vertical
line shows the population median we’re trying to esti-
mate.

With n = 10, the sample estimates have large spread
around the population value and more so on the right
than the left of the distribution. The bias correction
also varies a lot in magnitude and direction, some-
times improving the estimates, sometimes making mat-
ters worse. Across experiments, it seems that the bias
correction was too strong: the population median was
508.7 ms, the average sample median was 515.1 ms,
but the average bias corrected sample median was only
498.8 ms (Figure 5B).

What happens if instead of 100 experiments, we per-
form 1000 experiments, each with n = 10, and compute
a bias correction for each one? Now the average of the
bias corrected median estimates is much closer to the
true median: the population median was 508.7 ms, the
average sample median was 522.1 ms, and the average
bias corrected sample median was 508.6 ms. So the bias
correction works very well in the long-run for the me-
dian. But that’s not always the case: it depends on the
estimator and on the amount of skewness (for instance,
as we will see in the next section, bias correction fails for
quantiles estimated using the Harrell-Davis estimator).

If we apply the bias correction technique to our me-
dian estimates of samples from Miller’s 12 distributions,
we get the results in Figure 3C. For each iteration in
the simulation, bias correction was performed using 200
bootstrap samples. The bias correction works very well
on average, except for the smallest sample sizes. The
failure of the bias correction for very small n is not
surprising, because the shape of the sampling distribu-
tion cannot be properly estimated by the bootstrap from
so few observations. More generally, we should keep
in mind that the performance of bootstrap techniques
depends on sample sizes and the number of resam-
ples, among other factors (Efron and Tibshirani, 1994;
Wilcox, 2017). From n = 10, the bias values are very
close to those observed for the mean. So it seems that
in the long-run, we can eliminate the bias of the sample
median by using a simple bootstrap procedure. As we
will see in another section, the bootstrap bias correc-
tion is also effective when comparing two groups. Be-
fore that, we need to look more closely at the sampling
distributions of the mean and the median.
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Figure 3. Bias estimation. For each sample size and ex-Gaussian parameter, mean bias was defined as the difference
between the mean of 10,000 sample estimates and the population value; median bias was defined using the median
of 10,000 sample estimates. A. Mean bias for mean reaction times. B. Mean bias for median reaction times. C.
Mean bias for median reaction times after bootstrap bias correction. D. Median bias for mean reaction times. E.
Median bias for median reaction times. This figure was created using the code in the miller1988 notebook.

Sampling distributions

The bias results presented so far rely on the standard
definition of bias as the distance between the mean of
the sampling distribution (here estimated using Monte-

Carlo simulations) and the population value. However,
using the mean to quantify bias assumes that this es-
timator of central tendency is the most appropriate to
characterise sampling distributions; it also assumes that
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Figure 4. Bootstrap bias correction example: one experiment. The sample median (black dashed vertical line)
overestimates the population value (black dotted vertical line). The kernel density estimate of 1,000 bootstrap
estimates of the sample median suggests, correctly, that the median sampling distribution is positively skewed. The
difference between the sample median and the mean of the bootstrap medians (thick black vertical line) defines the
bootstrap estimate of the bias (black horizontal arrow). This estimate can be subtracted from the sample median
(grey horizontal arrow) to obtain a bias corrected (BC) sample median (grey dashed vertical line). This figure was
created using the code in the illustrate_bias notebook.

we are only interested in the long-term performance of
an estimator. If the sampling distributions are asymmet-
ric and we want to know what bias to expect in a typical
—or most representative— experiment, other measures
of central tendency, such as the median, would charac-
terise bias better than the mean.

Consider the sampling distributions of 10,000 means
and medians for different sample sizes (n=4 to n=100)
from the 12 ex-Gaussian distributions described in Fig-
ure 2. When skewness is low (6, first row of Figure 6),
the sampling distributions are symmetric and centred
on the population values: there is no bias. As we saw
previously, with increasing sample size, variability de-
creases, which is why studies with larger samples pro-
vide more accurate estimations. The flip side is that
studies with small samples are much noisier, which is

why results across small n experiments can differ sub-
stantially (Button et al., 2013). By showing the variabil-
ity across simulations, the sampling distributions also
highlight an important aspect of the results: bias is a
long-run property of an estimator; there is no guaran-
tee that one value from a single experiment will be close
to the population value, particularly for small sample
sizes.

When skewness is large (92, second row of Figure 6),
sampling distributions get more positively skewed with
decreasing sample sizes. To better understand how the
sampling distributions change with sample size, we turn
to the last row of Figure 6, which shows 50% highest-
density intervals (HDI). A HDI is the shortest interval
that contains a certain percentage of observations from
a distribution (J. K. Kruschke, 2013). For symmetric
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Figure 5. Bootstrap bias correction example: 100 experiments. For each experiment, 10 observations were
sampled. A. Each arrow starts at the sample median for one experiment and ends at the bias corrected sample
median. The bias was estimated using 200 bootstrap samples. The black vertical line marks the population median.
B. Cumulated averages of the data in panel A. This figure was created using the code in the illustrate_bias notebook.

distributions, HDI and confidence intervals are similar,
but for skewed distributions, HDI better capture the lo-
cation of the bulk of the observations. Each horizontal
line is a HDI for a particular sample size. The labels con-
tain the values of the interval boundaries. The coloured
vertical tick inside the interval marks the median of the
distribution. The red vertical line spanning the entire
plot is the population value.

For means and small sample sizes, the 50% HDI is
offset to the left of the population mean, and so is the
median of the sampling distribution. This demonstrates
that the typical sample mean tends to under-estimate
the population mean – that is to say, the mean sam-
pling distribution is median biased. This offset reduces

with increasing sample size, but is still present even for
n = 100.

For medians and small sample sizes, there is a dis-
crepancy between the 50% HDI, which is shifted to the
left of the population median, and the median of the
sampling distribution, which is shifted to the right of
the population median. This contrasts with the results
for the mean, and can be explained by differences in the
shapes of the sampling distributions, in particular the
larger skewness and kurtosis of the median sampling
distribution compared to that of the mean. The offset
between the sample median and the population value
reduces quickly with increasing sample size. For n = 10,
the median bias is already very small. From n = 15, the
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Figure 6. Sampling distributions of the mean and the median. In each panel, results for sample sizes from 4 to
100 are colour coded. The results are based on 10,000 samples for each sample size and skewness. The vertical red
lines mark the population values. Left column: results for the mean; right column: results for the median. In the
bottom row, the horizontal lines illustrate, for the mean (C) and the median (F), the 50% HDI of the distributions
shown in the second row. The coloured vertical tick marks intersecting the HDI are the medians of the distributions.
This figure was created using the code in the samp_dist notebook.
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median sample distribution is not median biased, which
means that the typical sample median is not biased.

Another representation of the sampling distributions
is provided in Figure 7: 50% HDI of the distributions of
10,000 sample biases are shown as a function of sample
size. Here bias was defined as the difference between
the sample estimate from each simulation and the popu-
lation value — so we are not looking at the average bias
but at the distribution of bias across simulated experi-
ments. For both the mean and the median, the spread
of the bias increases with increasing skewness and de-
creasing sample size. Skewness also increases the asym-
metry of the sampling distributions of bias, but more so
for the mean than the median.

So is the mean also biased? According to the stan-
dard definition of bias, which is based on the distance
between the population mean and the average of the
sampling distribution of the mean, the mean is not bi-
ased. But this definition applies to the long-run, after
we replicate the same experiment many times - 10,000
times in our simulations. So what happens in prac-
tice, when we perform only one experiment instead of
10,000? In that case, the median of the sampling distri-
bution provides a better description of the typical exper-
iment than the mean of the distribution. And the me-
dian of the sampling distribution of the mean is smaller
than the population mean when sample size is small. So
if we conduct one small n experiment and compute the
mean of a skewed distribution, we’re likely to under-
estimate the true value.

Is the median biased after all? The median is indeed
biased according to the standard definition. However,
with small n, the typical median (represented by the
median of the sampling distribution of the median) is
close to the population median, and the difference dis-
appears for even relatively small sample sizes. In other
words, in a typical experiment, the median shows very
limited median bias.

Group differences: bias

Now that we better understand the sampling distri-
butions of the mean and the median, we consider how
these two estimators perform when we compare two in-
dependent groups. According to Miller (1988), because
the median is biased when taking small samples from
skewed distributions, group comparison can be affected
if the two groups differ in sample size, such that real dif-
ferences can be lowered or increased, and non-existent
differences suggested. As a result, for unequal n, Miller
advised against the use of the median.

We assessed the problem using a simulation in which
we drew 10,000 independent pairs of samples from
populations defined by the same 12 ex-Gaussian distri-

butions used by Miller (1988), as described previously.
Group 2 had a constant size of n = 200; group 1 had size
n = 10 to n = 200, in increments of 10. Thus, this sim-
ulation is a simple extension of the simulation results
reported in Figure 3: the aim is to assess the bias of the
difference between two samples that differ in size. For
the mean bias of the sample mean, the results of 10,000
iterations are presented in Figure 8A. All the bias values
are near zero, as expected.

Results for the mean bias of the sample median are
presented in Figure 8B. Bias increases with skewness
and sample size difference (the difference gets larger as
the sample size of group 1 gets smaller). At least about
90-100 trials in Group 1 are required to bring bias to
values similar to the mean. These results are not sur-
prising and could have been predicted from the simu-
lation involving one group only (Figure 3). The only
clearly noticeable difference between the two simula-
tions is the size of the bias: it had a maximum of 40 ms
when one group was considered, but only about 15 ms
when two conditions were compared.

Next, let’s find out if we can correct the bias. Bias cor-
rection was performed in 2 ways: with the bootstrap, as
explained in the previous section, and with a different
approach using subsamples. The second approach was
suggested by Miller (1988):

’Although it is computationally quite tedious,
there is a way to use medians to reduce the
effects of outliers without introducing a bias
dependent on sample size. One uses the reg-
ular median from Condition F and compares
it with a special “average median” (Am) from
Condition M. To compute Am, one would take
from Condition M all the possible subsamples
of Size f where f is the number of trials in Con-
dition F. For each subsample one computes the
subsample median. Then, Am is the average,
across all possible subsamples, of the subsam-
ple medians. This procedure does not intro-
duce bias, because all medians are computed
on the basis of the same sample (subsample)
size.’

Using all possible subsamples would take far too
long; for instance, if one group has 5 observations and
the other group has 20 observations, there are

(
20
5

)
=

15504 subsamples to consider. Slightly larger sample
sizes would force us to consider millions of subsamples.
So instead we computed K random subsamples. We ar-
bitrarily set K to 1,000. Although this is not what Miller
(1988) suggested, this shortcut should reduce bias to
some extent if it is due to sample size differences. The
results are presented in Figure 8C and show that the K
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Figure 7. 50% highest density intervals of the biases of the sample mean and the sample median as a function
of sample size and skewness. The values were obtained by subtracting the population values from the sampling
distributions of the mean and the median, before computing the 50% HDI. For skewness 6 and 92, the sampling
distributions are illustrated in Figure 6. This figure was created using the code in the samp_dist notebook.

loop approach works very well. But we need to keep in
mind that it works in the long-run: for a single exper-
iment there is no guarantee, similarly to the bootstrap
procedure. The bias of the group differences between
medians can also be handled by the bootstrap. Bias cor-
rection using 200 bootstrap samples for each simulation
iteration leads to the results in Figure 8D: overall the
bootstrap bias correction works very well. At most, for
n = 10, the median’s maximum bias across distributions
is 1.79 ms, whereas the mean’s is 0.88 ms.

So in the long-run, the bias in the estimation of differ-
ences between medians can be eliminated using the sub-

sampling or the percentile bootstrap approaches. Be-
cause of the skewness of the sampling distributions, we
also consider the median bias: the bias observed in a
typical experiment. In that case, the difference between
group means tends to underestimate the population dif-
ference, as shown in Figure 8E. For the median, the
median bias is much lower than the standard (mean)
bias, and near zero from n = 20 (Figure 8F). Thus, for
a typical experiment, the difference between group me-
dians actually suffers less from bias than the difference
between group means. Also note that if the median is
adjusted to be mean unbiased, a consequence is that it
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Figure 8. Bias estimation for the difference between two independent groups. bc = bias correction. Group 2
is always sampled from the least skewed distribution and has size n = 200. The size of group 1 is indicated along
the x axis in each panel. Group 1 is sampled from Miller’s 12 skewed distributions and the results are colour coded
by skewness. A. Mean bias for mean reaction times. B. Mean bias for median reaction times. C. Mean bias for
median reaction times after subsample bias correction. D. Mean bias for median reaction times after bootstrap bias
correction. E. Median bias for mean reaction times. F. Median bias for median reaction times. This figure was
created using the code in the bias_diff notebook.
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is now median biased.
Based on our results so far, we conclude that Miller’s

(1988) advice was inappropriate because, when com-
paring two groups, bias in a typical experiment is actu-
ally negligible. To be cautious, when sample size is rel-
atively small, it could be useful to report median effects
with and without bootstrap bias correction. It would be
even better to run simulations to determine the sample
sizes required to achieve an acceptable measurement
precision, irrespective of the estimator used (Schön-
brodt and Perugini, 2013; Peters and Crutzen, 2017;
Rothman and Greenland, 2018; Trafimow, 2019). We
provide an example of such simulation of measurement
precision in a later section. Next, building up from what
we have learned so far, we turn to a more complicated
situation, in which skewness is considered at two levels
of analysis: for each participant/condition, and at the
group level.

Group differences: error rates

When researchers compare groups, bias and sam-
pling distributions are, regrettably, not at the top of
their minds. Most researchers are interested in false
positives (type I errors) and true positives (statistical
power) associated with a test. So in this section, we
extend the previous simulations to consider the error
rates associated with tests using the mean and the me-
dian in a hierarchical setting involving a within-subject
(repeated-measure) design: single-trials are sampled
from 2 conditions in multiple participants, each indi-
vidual distribution of trials is summarised, and the in-
dividual summaries are compared across participants.
For instance, when means are employed, a standard ap-
proach is to compare means of means: that is, for each
condition and each participant, the distribution is sum-
marised using the mean; then the means from the two
conditions are subtracted; finally, the individual differ-
ences between means are assessed across participants
by computing a one-sample t-test on group means. We
simulated this situation using the 12 ex-Gaussian distri-
butions used so far, 10,000 iterations, an arbitrary but
conventional alpha level of 0.05, and different numbers
of trials (10 to 200) and participants (25, 50, 100 and
200). Because, for each participant, trials for the two
conditions were randomly sampled from the same pop-
ulation, on average the differences between conditions
should be near zero. Also, because the tests were per-
formed with an alpha of 0.05, about 5% of the 10,000
tests, for each combination of parameters (number of
trials, number of participants, population skewness),
should be positive.

The results of the false positive simulations are pre-
sented in the sim_gp_fp notebook, which also contains

illustrations of sampling distributions and group biases.
In the case of an equal number of trials in each condi-
tion, the results show false positives close to the nomi-
nal level (0.05) for all skewness levels (Figure 9A; the
expected 5% level is shown as a black horizontal line
in this figure and subsequent ones; the shaded grey
area spans the values 0.025 to 0.075, which is a min-
imally satisfactory range suggested by Bradley (1978)).
Although computing group means of individual differ-
ences between means is a popular choice, the choice
of estimator must be made at the two levels of anal-
ysis. If we restrict our options to the mean and the
median, we can consider three more combinations, for
which results similar to that of the mean were obtained:
group means of individual differences between medi-
ans, medians of medians, medians of means (Figure 9B-
D). Tests on medians were performed using the method
by Hettmansperger and Sheather (1986). So, given
equal sample sizes in the two conditions, on average
we would commit the expected 5% of false positives in
all situations.

What happens if we use unequal sample sizes be-
tween conditions instead? Again, we performed 10,000
simulations, and varied the number of participants.
The number of trials was constant in one condition at
n = 200, and varied from 10 to 200 in the other con-
dition. As we saw previously, such differences in sam-
ple sizes, when sampling from skewed distributions, can
lead to biased estimation of differences between groups
or conditions. These sample size differences also affect
the outcomes of statistical tests. For group means of
individual means, the false positives are again at the
5% nominal level (Figure 10A). However, the results
change drastically for group means of individual me-
dians: with small sample sizes, the proportion of false
positives increases with skewness and with the number
of participants (Figure 10B). With n = 10 or 20, 200
participants and very skewed distributions, false posi-
tives are committed more than 50% of the time! This
unfortunate behaviour is due to the (mean) bias of the
sample median.

The effect of the bias of the sample median can be ad-
dressed by increasing the number of trials (Figure 10B).
The proportion of false positives can also be brought
close to the nominal level by using the percentile boot-
strap bias correction (Figure 10C). Yet another strategy
is to assess group medians of individual medians instead
of group means (Figure 11A). Indeed, because the sam-
ple median is not median biased, computing medians of
medians gets rid of the bias. Conversely, because the
sample mean is median biased, performing tests on me-
dians of means for small sample sizes leads to an in-
crease in false positives with increasing skewness and



15

25 participants 50 participants 100 participants 200 participants

1030507090 150 200 1030507090 150 200 1030507090 150 200 1030507090 150 200
0.00

0.05

0.10

0.15

0.20

Number of trials

P
ro

p.
 o

f f
al

se
 p

os
iti

ve
s

Skewness
92
88
76

72
60
55

45
38
29

21
12
6

Means of mean RTA

25 participants 50 participants 100 participants 200 participants

1030507090 150 200 1030507090 150 200 1030507090 150 200 1030507090 150 200
0.00

0.05

0.10

0.15

0.20

Number of trials

P
ro

p.
 o

f f
al

se
 p

os
iti

ve
s

Means of median RTB

25 participants 50 participants 100 participants 200 participants

1030507090 150 200 1030507090 150 200 1030507090 150 200 1030507090 150 200
0.00

0.05

0.10

0.15

0.20

Number of trials

P
ro

p.
 o

f f
al

se
 p

os
iti

ve
s

Medians of median RTC

25 participants 50 participants 100 participants 200 participants

1030507090 150 200 1030507090 150 200 1030507090 150 200 1030507090 150 200
0.00

0.05

0.10

0.15

0.20

Number of trials

P
ro

p.
 o

f f
al

se
 p

os
iti

ve
s

Medians of mean RTD

Figure 9. False positives: equal number of trials. Results from a simulation with 10,000 iterations are shown
for group means of differences between individual mean reaction times A, means of medians B, medians of me-
dians C and medians of means D. The shaded grey areas represent the minimally satisfactory range suggested by
Bradley (1978): 0.025-0.075. The black horizontal lines behind the shaded areas mark the expected 0.05 proportion
of false positives. This figure was created using the code in the sim_gp_fp notebook.
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Figure 10. False positives: group means and unequal numbers of trials. Results from a simulation with 10,000
iterations. A. Bias for group means of individual mean reaction times. B. Bias for group means of individual median
reaction times. C. Effect of the percentile bootstrap bias correction on inferences based on the means of median
reaction times calculated for 200 participants. The left panel is a replication of the right most panel from B, using
2,000 iterations instead of 10,000. In the right panel, a bias correction with 200 bootstrap samples was applied.
This figure was created using the code in the sim_gp_fp notebook.

number of participants (Figure 11B).

Effects of asymmetry and outliers on error rates

From the previous results, we could conclude that, if
the goal is to keep false positives at the nominal level,

using group means of individual means or group me-
dians of individual medians are satisfactory options in
the long-run. However, the choice of estimators used
to make group inferences depends on the shape of the
distributions of group differences, which themselves de-
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Figure 11. False positives: group medians and unequal numbers of trials. Results from a simulation with 10,000
iterations. A. Bias for medians of median reaction times. B. Bias for medians of mean reaction times. This figure
was created using the code in the sim_gp_fp notebook.

pend on between-subject variability and shape differ-
ences between conditions (for instance, if condition 1
has skewness k1 and condition 2 has skewness k2, then
the difference between conditions has skewness k1-k2
— we do not consider these factors in our simulations,
except in the section "Applications to a large dataset",
which provides illustrations of sampling distributions
across participants). In particular, skewness and outliers
can have very detrimental effects on the performance
of certain test statistics, such as t-tests on means. We
illustrate this problem with a simulation with 10,000
iterations using g&h distributions: the median of these
distributions is always zero, g controls the asymmetry
of the distribution and h controls the thickness of the
tails (Hoaglin, 1985a). With increasing h, outliers are
more and more frequent. For simplicity, we only sim-
ulate what happens for one-sample distributions at the
group level: the values considered could be any type of
differences between means, medians or any other quan-
tities. This simplification is necessary because the shape

of a group distribution (say of mean differences) de-
pends on several factors, and the same shape can poten-
tially be obtained by different combinations of these fac-
tors. Sample size was varied from 10 to 300. For each
sample, we perform three parametric tests: on means,
20% trimmed means and median. For false positives,
the samples were centred so that on average the sample
means, 20% trimmed means and medians were zero.
Alpha was set at the arbitrary but conventional 5% level,
such that on average, we expected 5% of false positives.
For true positives, the distributions were shifted by 0.4
from zero, such that the true mean, trimmed mean and
median were 0.4.

Let’s first consider false positives as a function of the
g parameter (Figure 12). As expected, for normal dis-
tributions (g = 0), the false positives are at the nomi-
nal level (5%). However, with increasing g, the prob-
ability of false positives increases, and much more so
with smaller sample sizes. In contrast, tests on me-
dians are unaffected by skewness. A third estimator,
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Figure 12. Group inferences using g&h distributions: false and true positives as a function of the g parameter.
Results from a simulation with 10,000 iterations. A. Illustrations of probability density functions for g varying from
0 to 1, h = 0. With g = 1 and h = 0, the distribution has the same shape as a lognormal distribution. B. False positive
results for the mean, the 20% trimmed mean and the median. Samples were drawn from populations with means,
20% trimmed means and medians of 0. The shaded grey areas represent the minimally satisfactory range 0.025-
0.075 suggested by Bradley (1978). The black horizontal lines behind the shaded areas mark the expected 0.05
proportion of false positives. C. True positive results (power) for the mean, the 20% trimmed mean and the median.
An effect was simulated by adding a constant to samples drawn from populations with means, 20% trimmed means
and medians of 0. The black horizontal line at 0.8 marks the arbitrary but conventional target of 80% statistical
power. This figure was created using the code in the sim_gp_g&h notebook.
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the 20% trimmed mean, gives intermediate results: it
is affected by skewness much less than the mean and
only for the smallest sample sizes. In a 20% trimmed
mean, observations are sorted, 20% of observations are
eliminated from each end of the distribution and the
remaining observations are averaged. Inferences based
on the 20% trimmed mean were made via an exten-
sion of the one-sample t-test proposed by Tukey and
McLaughlin (1963). Means and medians are special
cases of trimmed means: the mean corresponds to zero
trimming and the median to 50% trimming.

What happens when we keep g constant (g = 0.3) and
h varies (Figure 13A)? In the case of t-tests on means,
for h = 0, false positive probabilities are near the nomi-
nal level, but then increase with h irrespective of sample
size (Figure 13B). In contrast, medians are not affected
by h, and for 20% trimmed means, false positives in-
crease only when n = 10. When g = 0 and h varies,
the proportion of false positives for the mean decreases
slightly below 0.05 irrespective of sample size, whereas
tests on 20% trimmed mean and median are unaffected
(see supplementary notebook sim_gp_g&h).

When it comes to true positives (power), t-tests on
means perform well for low levels of asymmetry. How-
ever, with increasing asymmetry, power can be substan-
tially affected (Figure 12C). Power with 20% trimmed
means shows very little effects of asymmetry, except
for the smallest sample sizes, but much less so than
the mean. The median is associated with a seemingly
odd behaviour: power increases with asymmetry! Also,
power is higher for the mean when g = 0, a well-known
result due to the over-estimation of the standard-error
of the median under normality (Wilcox, 2017). Extra
illustrations are available in notebook samp_dist, show-
ing that, for the ex-Gaussian distributions considered
here, the sampling distribution of the mean becomes
more variable than that of the median with increasing
skewness and lower sample sizes.

When the probability of outliers increases (h in-
creases), the power of t-tests on means can be strongly
affected (Figure 13C), t-tests on 20% trimmed means
much less so, and tests on medians almost not at all.
Altogether, the g&h simulations demonstrate that the
choice of estimator can have a strong influence on long-
run error rates: t-tests on means are very sensitive to the
asymmetry of distributions and the presence of outliers.
But the results should not be used to advocate the use
of medians in all situations - as we will see, no method
dominates and the best approach depends on the em-
pirical question and the type of effect. Certainly, relying
blindly on the mean in all situations is unwise.

Group differences: power curves in different
situations

With the simulations in the previous section, we ex-
plored false positives and true positives at the group
level, depending on the shape of the distributions of
differences. For true positives, we considered a sim-
ple example in which the distribution of differences is
shifted by a constant. However, distributions can differ
in various ways and it is important to determine which
tests or categories of tests are best suited to detect dif-
ferent types of differences. So here we assess statistical
power in three well-documented situations in a hierar-
chical setting: in varying numbers of participants, vary-
ing numbers of trials are sampled from 2 ex-Gaussian
distributions that differ by a constant, mostly in early
responses or mostly in late responses. As the previous
ones, these simulations assume no between-participant
variability; we will provide a more realistic simulation
in the section "Applications to a large dataset". First,
we consider a uniform shift, in which one distribution
differs from another distribution by the addition of a
constant value. This is similar to the g&h power simula-
tions above, but in a hierarchical situation (again with
10,000 iterations). In condition 1, the ex-Gaussian pa-
rameters were µ = 500, σ = 50 and τ = 200 in every
participant. Parameters in condition 2 were the same,
but each sample was shifted by 20 ms. The number of
trials varied from 50 to 200, and we considered group
sample sizes of 25, 50 and 100 participants. For illus-
tration, Figure 14A shows two distributions with each
n = 1000 and a shift of 50 ms.

To better understand how the distributions differ,
panel B provides a shift function, in which the difference
between the deciles of the two conditions are plotted as
a function of the deciles in condition 1 — see details in
Rousselet, Pernet, and Wilcox (2017). The decile differ-
ences are all negative, showing stochastic dominance of
condition 2 over condition 1. The function is not flat
because of random sampling and limited sample size.
Power curves are shown in panels C and D, respectively
for equal and unequal sample sizes. Naturally, power
increases with the number of trials and the number of
participants. And for all combinations of parameters the
mean is associated with higher power than the median.

In our example, other quantities are even more sen-
sitive than the mean to distribution differences. For in-
stance, considering that the median is the second quar-
tile, looking at the other quartiles can be of theoreti-
cal interest to investigate effects in early or later parts
of distributions. This could be done in several ways -
here we performed tests on the group median of the
individual quartile differences. For the uniform shift
considered here, inferences on the third quartile (Q3)
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Figure 13. Group inferences using g&h distributions: false and true positives as a function of the h parameter
and g = 0.3. A. Illustrations of probability density functions for h varying from 0 to 0.5, g = 0.3. B. False positive
results for the mean, the 20% trimmed mean and the median. C. True positive results (power) for the mean, the
20% trimmed mean and the median. This figure was created using the code in the sim_gp_g&h notebook.

lead to lower power than the median. Using the first
quartile (Q1) instead leads to a large increase in power
relative to the mean. Q1 better captures uniform shifts

because the early part of skewed distributions is much
less variable than other parts, leading to more consis-
tent differences across samples. Even with n = 1000,
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Figure 14. True positives: uniform shift. A. Example sampling distributions in conditions 1 and 2. B. Shift function.
The differences between deciles are plotted as a function of deciles in condition 1. Deciles were computed using
the Harrell-Davis quantile estimator. The error bars show 95% confidence intervals computed using a percentile
bootstrap. C. Proportion of true positives (power) for equal sample sizes, across 10,000 iterations. D. Power results
for unequal sample sizes. M = mean, Md = median, Q1 = first quartile, Q3 = third quartile, SF = hierarchical shift
function. This figure was created using the code in the sim_gp_tp notebook.
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this lower variability can be seen in Figure 14B. So we
might be able to achieve even higher power by consider-
ing smaller quantiles than the first quartile, which could
be motivated by an interest in the fastest responses
(Rousselet, Macé, and Fabre-Thorpe, 2003; Bieniek et
al., 2016; Reingold and Sheridan, 2018). But if the goal
is to detect differences anywhere in the distributions,
a more systematic approach consists in quantifying dif-
ferences at multiple quantiles (Doksum, 1974; Doksum
and Sievers, 1976).

The hierarchical shift function

There is a rich tradition of using quantile estima-
tion to understand the shape of distributions and how
they differ (Doksum and Sievers, 1976; Hoaglin, 1985b;
Marden et al., 2004), in particular to compare RT dis-
tributions (De Jong, Liang, and Lauber, 1994; Pratte
et al., 2010; Balota and Yap, 2011; Rousselet, Pernet,
and Wilcox, 2017; Ellinghaus and Miller, 2018). Here
we consider the case of the deciles, but other quan-
tiles could be used. First, for each participant and each
condition, the sample deciles are computed over tri-
als. Second, for each participant, condition 2 deciles
are subtracted from condition 1 deciles — we’re deal-
ing with a within-subject (repeated-measure) design.
Third, for each decile, the distribution of differences
is subjected to a one-sample test. Fourth, a correc-
tion for multiple comparisons is applied across the 9
one-sample tests. We call this procedure a hierarchi-
cal shift function (an implementation is provided as
part of the rogme package in the R programming lan-
guage (R Core Team, 2018) — https://github.com/
GRousselet/rogme). There are many options avail-
able to implement this procedure and the example used
here is not the definitive answer: the goal is simply to
demonstrate that a relatively simple procedure can be
much more powerful and informative than standard ap-
proaches.

In creating a hierarchical shift function we need to
make three choices: a quantile estimator, a statistical
test to assess quantile differences across participants,
and a correction for multiple comparisons technique.
The deciles were estimated using algorithm 8 described
in (Hyndman and Fan, 1996). This estimator has the ad-
vantage, like the median, of being median unbiased and
its standard (mean) bias can be corrected using the bias
bootstrap correction (see detailed simulations in supple-
mentary notebooks hd_bias and sf_bias). The main lim-
itation of this estimator (and other estimators relying
on the weighted average of one or two order statistics)
is its poor handling of tied values. Tied values are not
expected for continuous distributions such as RT, unless
the raw data are rounded. If tied values are likely to oc-

cur, a good option is the Harrell-Davis quantile estima-
tor (Harrell and Davis, 1982), which performs well in
conjunction with the percentile bootstrap (Wilcox and
Erceg-Hurn, 2012; Wilcox, Erceg-Hurn, et al., 2014).
However, in the situations considered here, the Harrell-
Davis estimator is both mean and median biased, and
the bias bootstrap correction has limited effects on this
bias (notebooks hd_bias and sf_bias). Again, no meth-
ods dominate.

The group comparisons were performed using a one-
sample t-test on 20% trimmed means. In simulations,
the 20% trimmed mean gave false positive rates clos-
est to the nominal value relative to the mean, the me-
dian or the 10% trimmed mean (see simulation results
in notebook sim_gp_fp). The four methods had similar
power, with the mean performing the best, followed by
the trimmed means and last the median (see simulation
results in notebook sim_gp_tp). Given that our simula-
tions did not include outliers, to which the mean is very
sensitive, it seems safer to use the 20% trimmed mean
by default — a choice consistent with extant results
(Wilcox, 2017). The correction for multiple compar-
isons employed Hochberg’s strategy (Hochberg, 1988),
which guarantees that the probability of at least one
false positive will not exceed the nominal level as
long as the nominal level is not exceeded for each
quantile (Wilcox, Erceg-Hurn, et al., 2014); the same
strategy is applied in other shift function applications
(Wilcox, 2017). The power curves for the hierarchical
shift function are labelled SF in Figure 14C and D. SF’s
power curves are very similar to those obtained for Q1.
The advantage of SF is that the location of the distribu-
tion difference can be interrogated, which is impossible
if inferences are limited to a single quantile such as Q1.

SF and Q1 methods are also very similar in their
sensitivity to early differences illustrated in Figure 15,
and much more so than methods based on the mean,
the median, or Q3. These early differences were cre-
ated by sampling from two ex-Gaussian distributions
with parameters µ = 500, σ = 50 and τ = 200. Con-
dition 1 was centred on its third quartile, multiplied
by 1.1 to stretch it, and then shifted by its third quar-
tile. Early differences are well documented in the Si-
mon task, for which the two conditions differ mostly in
the fastest reaction times, and these differences progres-
sively weaken and sometimes reverse sign (De Jong,
Liang, and Lauber, 1994; Pratte et al., 2010; Schwarz
and Miller, 2012). In our example, the median domi-
nates the mean in terms of power in all situations.

Finally, we consider a situation in which a late effect
is observed (Figure 16). This situation was modelled
by two ex-Gaussian distributions with the same param-
eters µ = 500 and σ = 50 but different τ parameters,

https://github.com/GRousselet/rogme
https://github.com/GRousselet/rogme
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Figure 15. True positives: early difference. A. Example sampling distributions in conditions 1 and 2. For illus-
tration, this distribution was created as explained in the text, but with a multiplication by 1.5 to create a stronger
stretch. B. Shift function. C. Proportion of true positives (power) for equal sample sizes, across 10,000 iterations.
D. Power results for unequal sample sizes. This figure was created using the code in the sim_gp_tp notebook.
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Figure 16. True positives: late difference. A. For illustration, the difference in the τ component was exaggerated.
The two distributions had µ = 500 and σ = 50, but τ = 200 in condition 2 and 300 in condition 1. B. Shift function. C.
Proportion of true positives (power) for equal sample sizes, across 10,000 iterations. D. Power results for unequal
sample sizes. T = one-sample t-tests on differences between the means of the τ component estimated using an
ex-Gaussian fit to the data. This figure was created using the code in the sim_gp_tp notebook.
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one set to 200, another one set to 215. In that situation,
the mean dominates all methods, including SF as well
as performing one-sample t-tests on the mean of dif-
ferences in τ estimates obtained by fitting ex-Gaussian
distributions to the data using the maximum likelihood
method (Massidda, 2013). Thus, in this particular situ-
ation, the median performs poorly and the strong sen-
sitivity of the mean to the right tail of the distribution
is particularly useful, at least providing outliers do not
affect group assessment.

In summary, the examples considered so far demon-
strate that no method dominates: different methods
better handle different situations. Crucially, neither the
mean nor the median are sufficient or even necessary
to compare skewed distributions. Better tools are avail-
able; in particular, considering multiple quantiles of the
distributions allow us to get a deeper understanding of
how distributions differ. This can be done for instance
using the R functions in the reproducibility package for
this article (Rousselet and Wilcox, 2018a) and in a re-
cent review (Rousselet, Pernet, and Wilcox, 2017).

Applications to a large dataset

The simulations above suggest that using the median
is appropriate in many situations involving skewed dis-
tributions and is preferable to the mean in some situ-
ations. In this final section we consider what happens
when we deal with real RT distributions instead of sim-
ulated ones, as we have done so far. To find out, we
look at the behaviour of the mean, the median and the
hierarchical shift function in a large dataset of reaction
times from participants engaged in a lexical decision
task. The data are from the French lexicon project (FLP)
(Ferrand et al., 2010). After removing a few partici-
pants who did not pay attention to the task (very low
accuracy or too many late responses), we’re left with
959 participants. Each participant had between 996 and
1001 trials for each of two conditions, Word and Non-
Word. Figure 17 illustrates reaction time distributions
from 100 randomly sampled participants in the Word
and Non-Word conditions.

Among participants, the variability in the shapes of
the distributions is particularly striking. The shapes of
the distributions also differed between the Word and the
Non-Word conditions. In particular, skewness tended
to be larger in the Word than the Non-Word condition.
Based on the standard parametric definition of skew-
ness, that was the case in 80% of participants. If we use
a non-parametric estimate instead (mean – median), it
was the case in 70% of participants. This difference in
skewness between conditions implies that the difference
between medians will be biased in individual partici-
pants.

If we save the median response time for each partic-
ipant and each condition, we get two distributions that
display positive skewness (Figure 18A). The same ap-
plies to distributions of means (Figure 18B). The distri-
butions of pairwise differences between the Non-Word
and Word conditions is also positively skewed (Fig-
ure 18C). Notably, most participants have a positive dif-
ference: based on the median, 96.4% of participants are
faster in the Word than the Non-Word condition; 94.8%
for the mean.

Hence, Figure 17 and Figure 18 demonstrates that we
have to worry about skewness at 2 levels of analysis:
in individual distributions and in group distributions.
Here we explore estimation bias as a result of skewness
and sample size in individual distributions, because it is
the most similar to Miller’s 1988 simulations. Later we
will consider false and true positives in a hierarchical
situation. From what we’ve learnt so far, we can al-
ready make predictions: because skewness tended to be
stronger in the Word than in the Non-Word condition,
the bias of the median will be stronger in the former
than the later for small sample sizes. That is, the me-
dian in the Word condition will tend to be more over-
estimated than the median in the Non-Word condition.
As a consequence, the difference between the median of
the Non-Word condition (larger RT) and the median of
the Word condition (smaller RT) will tend to be under-
estimated. To check this prediction, we estimated bias
in every participant using a simulation with 2,000 iter-
ations (see details in notebook flp_bias_sim). We used
the full sample of roughly 1,000 trials as the popula-
tion, from which we computed population means and
population medians. Because the Non-Word condition
is the least skewed, we used it as the reference condi-
tion, which always had 200 trials. The Word condition
had 10 to 200 trials, with 10 trial increments. In the
simulation, single RT were sampled with replacements
among the roughly 1,000 trials available per condition
and participant, so that each iteration is equivalent to a
simulated experiment.

Let’s look at the results for the median. Figure 19A
shows the bias of the difference between medians (Non-
Word – Word), as a function of sample size in the Word
condition. The Non-Word condition always had 200
trials. All participants are superimposed and shown
as coloured traces. The average across participants is
shown as a thicker black line.

As expected, bias tended to be negative with small
sample sizes; that is, the difference between Non-Word
and Word was underestimated because the median of
the Word condition was overestimated. For the small-
est sample size, the average bias was -10.9 ms. That’s
probably substantial enough to seriously distort esti-
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Figure 17. FLP dataset: reaction time distributions from 100 participants. Participants were randomly se-
lected among 959. Distributions are shown for each participant (colour coded) in the Word (A) and Non-Word (B)
conditions. Each distribution is composed of roughly 1,000 trials. This figure was created using the code in the
flp_illustrate_dataset notebook.

mation in some experiments. Also, variability is high,
with a 80% highest density interval of [-17.1, -2.6] ms.
Bias decreases rapidly with increasing sample size. For
n=20, the average bias was -4.8 ms, for n=60 it was
only -1 ms.

After bootstrap bias correction (with 200 bootstrap
samples), the average bias dropped to roughly zero
for all sample sizes (Figure 19B). Bias correction also
tended to reduce inter-participant variability.

As we saw in Figure 6, the sampling distribution of
the median is skewed, so the standard measure of bias
(taking the mean across simulation iterations) does not

provide a good indication of the bias we can expect in a
typical experiment. If instead of the mean, we compute
the median bias, we get the results in Figure 19C. At the
smallest sample size, the average bias is only -1.9 ms,
and it drops to -0.3 for n=20. This result is consistent
with the simulations reported above and confirms that
in the typical experiment, the bias associated with the
median is negligible.

What happens with the mean? The average bias of
the mean is near zero for all sample sizes (Figure 19D).
As we did for the median, we also considered the me-
dian bias of the mean (Figure 19E). For the smallest
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Figure 18. FLP dataset: group distributions. For every participant, the median (A) and the mean (B) were com-
puted for the Word and Non-Word observations separately. Panel (C.) Distributions of pairwise differences between
the Non-Word and Word conditions. This figure was created using the code in the flp_illustrate_dataset notebook.
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Figure 19. FLP dataset: bias estimation for the difference between the Non-Word and Word conditions. bc
= bias-corrected. Md bias = median bias. In each panel, thin coloured lines indicate bias values from individual
participants and the thick black line indicates the mean bias across participants (group bias). The left column
illustrates results for the median, the right column for the mean. This figure was created using the code in the
flp_bias_sim notebook.

sample size, the average bias across participants is 6.9
ms. This positive bias can be explained from the re-
sults using the ex-Gaussian distributions: because of the
larger skewness in the Word condition, the sampling
distribution of the mean was more positively skewed

for small samples in that condition compared to the
Non-Word condition, with the bulk of the bias esti-
mates being negative. That is, the mean tended to be
more under-estimated in the Word condition, leading
to larger Non-Word – Word differences in the typical ex-



29

periment.
The results from the real RT distributions confirm our

earlier simulations using ex-Gaussian distributions: for
large differences in sample sizes, the mean and the me-
dian differ in bias due to differences in sampling distri-
butions and the bias of the median can be corrected us-
ing the bootstrap. Another striking difference between
the mean and the median is the spread of bias values
across participants, which is much larger for the median
than the mean. This difference in bias variability does
not reflect a difference in variability among participants
for the two estimators of central tendency. Indeed, as
we saw in Figure 18C, the distributions of differences
between Non-Word and Word conditions are very sim-
ilar for the mean and the median. Estimates of spread
are also similar between difference distributions (me-
dian absolute deviation to the median (MAD): mean RT
= 57 ms; median RT = 54 ms). This suggests that the
inter-participant bias differences are due to the individ-
ual differences in shape distributions observed in Fig-
ure 17, to which the mean and the median are differ-
ently sensitive.

The larger inter-participant variability in bias for the
median compared to the mean could also suggest that
across participants, measurement precision would be
lower for the median. We directly assessed measure-
ment precision at the group level by performing a multi-
level simulation. In this simulation, we asked, for in-
stance, how often the group estimate was no more than
10 ms from the population value across many experi-
ments (here 10,000 - see notebook flp_sim_precision).
In each iteration (simulated experiment) of the simula-
tion, there were 200 trials per condition and participant,
such that bias at the participant level was not an issue
(a total of 400 trials for an RT experiment is perfectly
reasonable and could be done in no more than 20-30
minutes per participant). For each participant and con-
dition, the mean and the median were computed across
the 200 random trials for each condition, and then the
Non-Word - Word difference was saved. Group estima-
tion of the difference was based on a random sample of
10 to 300 participants, with the group mean computed
across participants’ differences between means and the
group median computed across participants’ differences
between medians. Population values were defined by
first computing, for each condition, the mean and the
median across all available trials for each participant,
second by computing across all participants the mean
and the median of the pairwise differences. Measure-
ment precision was calculated as the proportion of ex-
periments in which the group estimate was no more
than x ms from the population value, with x varying
from 5 to 40 ms.

Not surprisingly, the proportion of estimates close
to the population value increases with the number of
participants for the mean and the median (Figure 20).
More interestingly, the relationship was non-linear, such
that a larger gain in precision was achieved by increas-
ing sample size for instance from 10 to 20 compared
to from 90 to 100. The results also let us answer use-
ful questions for planning experiments (see the black
arrows in Figure 20A & B):

• So that in 70% of experiments the group estimate
is no more than 10 ms from the population value,
we need to test at least 59 participants for the
mean, 56 participants for the median.

• So that in 90% of experiments the group estimate
is no more than 20 ms from the population value,
we need to test at least 37 participants for the
mean, 38 participants for the median.

Also, the mean and the median differed very little
in measurement precision (Figure 20C), which suggests
that at the group level, the mean does not provide any
clear advantage over the median. Of course, different
results could be obtained in different situations. For in-
stance, the same simulations could be performed using
different numbers of trials per participant and condi-
tion. Also, skewness can differ much more among con-
ditions in certain tasks, such as in difficult visual search
tasks (Palmer et al., 2011), so new simulations should
be performed to plan specific experiments.

False positives and true positives

Finally, we consider false positives and true positives
using simulations with ex-Gaussian distributions. A lim-
itation of previous ex-Gaussian simulations of false and
true positives was the lack of inter-participant variabil-
ity. To address this limitation, first we fit ex-Gaussian
distributions to the Word and Non-Word conditions of
each participant in the FLP dataset using maximum
likelihood estimation (Massidda, 2013) — see note-
book flp_exg_parameters. Then, we sample partici-
pants’ ex-Gaussian parameters with replacement, and
use them to generate simulated trials from the Word
and Non-Word conditions. Distributions of trials from
each condition were summarised using the mean, the
median and the deciles, as done previously. Distribu-
tions of individual pairwise differences were then tested
against zero using group tests on the mean of indi-
vidual means and median of individual medians. For
the deciles, we performed group tests on the mean,
the median, the 10% and 20% trimmed means of each
decile, with an Hochberg’s correction for multiple com-
parisons. All tests were performed with an alpha of
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Figure 20. FLP dataset: group measurement precision for the difference between the Non-Word and Word
conditions. Measurement precision was estimated by using a simulation with 10,000 iterations, 200 trials per
condition and participant, and varying numbers of participants. Results are illustrated for the mean (A), the median
(B), and the difference between the mean and the median (C). This figure was created using the code in the
flp_sim_precision notebook.

0.05. For the deciles, the group statistics based on
20% trimmed means gave long-run proportions of false
positives closer to the nominal level (see notebook

sim_gp_fp_flp). Using 20% trimmed means also gave
the highest power in most situations, so we only report
results for this group estimator (see full report in note-
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book sim_gp_tp_flp).
For false positives, for each participant two samples

were drawn using ex-Gaussian parameters from the
Word condition, so that on average no effect was ex-
pected. Whether sample sizes were equal or not, group
tests using means of means (mean), medians of medi-
ans (median) or a hierarchical shift function with 20%
trimmed means (SF) gave proportions of false positives
near the nominal 0.05 level (Figure 21). With increas-
ing numbers of participants the number of type I errors
decreased slightly for the SF method (making it slightly
more conservative than the other techniques), but re-
mained well within the satisfactory range (grey area in
Figure 21).

For true positives, for each participant we interpo-
lated each ex-Gaussian parameter between the Word
and Non-Word condition in 10 steps. For the simulated
Word condition, we generated trials using the param-
eters from that condition; for the Non-Word condition,
we used a combination of parameters from step 2 of the
interpolation continuum. We used this approach to sim-
ulate a relatively small but realistic effect, taking into
account two important aspects of this dataset: Word
and Non-Word conditions are associated with distribu-
tion differences in all 3 ex-Gaussian parameters µ, σ and
τ, and these parameters are correlated with each other
(see illustrations in notebook flp_exg_parameters). The
results are shown in Figure 22. Across all conditions
considered, the mean was associated with more power
than the median. This can be explained by the rela-
tively mild asymmetry of the distribution of pairwise
differences for the mean and the median (Figure 18):
unlike the median, the mean is very sensitive to this
asymmetry, but the asymmetry is not sufficient to in-
flate the mean’s standard error. In situations with larger
asymmetry, it could become beneficial to use the median
instead. Relative to the mean and the median, using a
hierarchical shift function approach led to a large power
increase across all trial and participant conditions.

A closer look

With the large effect sizes present in the FLP data, it
wouldn’t matter whether we use the mean, the median,
the hierarchical shift function technique or one of many
other options: most would reject at low alpha levels.
Over techniques considering only a measure of central
tendency, the SF approach has the advantage of help-
ing us understand the nature of the effects because it
considers the shapes of the distributions. We can also
get a better understanding of how distributions differ
by plotting individual shift functions (Figure 23A). The
20% trimmed mean across participants is always posi-
tive and increases from early to late deciles: 59, 66, 72,

77, 82, 86, 89, 91, 89. Using Spearman’s correlation
and an alpha of 0.05, 52.9% of participants were classi-
fied as showing a monotonic increase across deciles, and
14.9% showed a monotonic decrease. As illustrated in
Figure 23B, at each decile most participants have a pos-
itive difference. The percentage of participants showing
at every decile a positive difference was 83.2%; a neg-
ative difference 1.4%; the rest had deciles straddling
the zero line. So a clear majority of participants showed
stochastic dominance (Speckman et al., 2008). Whether
there are really three groups with qualitatively different
patterns of results across deciles could be addressed us-
ing recently proposed hierarchical models for instance
(Haaf and J. Rouder, 2017). In sum, there is so much
more to a data set than can be characterised by looking
only at the mean or the median.

Discussion

In this article, we reproduced the simulations from
Miller (1988), extended them and applied a similar ap-
proach to a large dataset of reaction times (Ferrand et
al., 2010). The two sets of analyses led to the same
conclusion: the recommendation by Miller (1988) to
not use the median when comparing distributions that
differ in sample size was ill-advised, for several rea-
sons. First, the bias can be strongly attenuated by us-
ing a percentile bootstrap bias correction. However, al-
though the bootstrap bias correction appears to work
well in the long-run, for a single experiment there is
no guarantee it will provide an estimation closer to the
truth. One possibility is to report results with and with-
out bias correction. Second, the sample distributions of
the mean and the median are positively skewed when
sampling from positively skewed distributions such as
RT distribution; as a result, computing the mean of the
sample distributions to estimate bias can be mislead-
ing. If instead we consider the median of the sample
distributions, we get a better indication of the expected
bias in a typical experiment, and this median bias tends
to be smaller for the sample median than the sample
mean. Third, the mean and the median differ very little
in the measurement precision they afford. Fourth, the
mean is not robust to departures from normality and
higher power is obtained with the median in many situ-
ations. Thus, there seems to be no rationale for prefer-
ring the mean over the median as a measure of central
tendency for skewed distributions. If the goal is to ac-
curately estimate the central tendency of a RT distribu-
tion, while protecting against the influence of skewness
and outliers, the median is far more efficient than the
mean (Wilcox and Rousselet, 2018). Providing sample
sizes are moderately large, bias is actually not a prob-
lem, and the typical bias is very small. Overall, given a
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Figure 21. FLP dataset: false positive simulation. Results from a simulation with 10,000 iterations are shown
for the cases in which each condition has the same number of trials (A) and different numbers of trials (B). The
shaded grey areas represent the minimally satisfactory range 0.025-0.075 suggested by Bradley (1978). The black
horizontal lines behind the shaded areas mark the expected 0.05 proportion of false positives. Mean = means of
means, Median = medians of medians, SF = hierarchical shift function with 20% trimmed means to assess group
differences of deciles. This figure was created using the code in the sim_gp_fp_flp notebook.

choice between the mean and the median, the median
appears to be a better option in some situations, at least
for the theoretical and empirical distributions studied
here, as which distributions best capture the shape of
RT data is still debated (Campitelli et al., 2017; Palmer
et al., 2011). In other situations, the mean could be a
better choice to detect differences, for instance in the
presence of differences more strongly affecting late re-
sponses, or in the case of the moderately skewed distri-
butions without clear outliers in the FLP data.

Clearly, no method dominates and researchers should
use a range of tools to answer different questions about
their data. For example, if the goal is to determine the
presence of ordinal relationships among variables, the
mean appears to be appropriate in certain situations
(Thiele, Haaf, and J. N. Rouder, 2017).

Importantly, conclusions should be limited to the es-

timators used. For instance, when making inferences
about the mean or the median, conclusions should be
restrained to the mean or the median, not to the en-
tire distributions. As we saw in our examples, distribu-
tions can differ in many ways and inferences on means
or medians are limited because they ask specific, non-
exhaustive questions about distribution differences. So
the lack of differences between means or medians can-
not be used to conclude that distributions do not differ
— more sensitive methods might reveal an effect (Par-
ris, Dienes, and Hodgson, 2013). A first step in address-
ing this limitation is to use both the mean and the me-
dian on the same dataset: a negative test using the me-
dian in conjunction with a positive test using the mean
could suggest an effect predominantly in the right tails.
Properly assessing the origin of the effect would require
more advanced techniques.
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Figure 22. FLP dataset: true positive simulation. Results are shown for the cases in which each condition has the
same number of trials (A) and different numbers of trials (B). Proportions were computed across 10,000 iterations
of the simulation. This figure was created using the code in the sim_gp_tp_flp notebook.

Despite their shortcomings, in practice many re-
searchers will continue to use the mean or the median
to make inferences about skewed distributions. So what
sample sizes should researchers use, for instance to min-
imise bias, the main target of this article? Using the
FLP data, we determined that median bias is near zero,
on average, from n = 20 trials per participant (Fig-
ure 19). For the mean, at least n = 70 is required to
get as close to zero median bias. These values should
not be used to guide sample size planning for new ex-
periments though: sample sizes depend on the goal of
the experimenter and on the shape of the distributions.
If the goal is to ensure a certain level of measurement
precision, then similar numbers of participants are re-
quired for the mean and the median in the FLP data
20. Hence, rather than providing generic guidelines, we
urge researchers to plan their experiments using simu-
lations in which they vary the number of trials per con-
dition and the number of participants (Ratcliff, 1993;
J. N. Rouder and Haaf, 2018). For each level of analy-

sis, trials and participants, one must then determine the
most appropriate way to quantify observations given the
experimental goals.

In our experience, the need to make decisions about
how to quantify effects at the two levels of analysis,
trials and participants, is unfortunately often ignored.
For instance, in an extensive series of simulations, with
1930 citations as of April 24th 2019, Ratcliff (1993)
demonstrated that when performing standard group
ANOVAs, the median can lack power compared to other
estimators. Ratcliff’s simulations involved ANOVAs on
group means, in which for each participant and each
condition, very few trials (7 to 12) were available.
These small samples were summarised using several
estimators, including the median. Based on the sim-
ulations, Ratcliff recommended data transformations
or computing the mean after applying specific cut-offs
to maximise power. However, these recommendations
should be considered with caution because, first, the re-
sults could be very different with more realistic sample
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Figure 23. FLP dataset: illustrations of the deciles. (A.) Hierarchical shift function. Each coloured line
represent one of 959 participants. The thick black line shows the 20% trimmed mean across participants for
each decile. This figure can produce by calling the functions hsf and plot_hsf from the rogme R package
(https://github.com/GRousselet/rogme). (B.) Sampling distributions of the deciles. The density curves were
computed at each decile from panel B, each using data from 959 participants. This figure was created using the
code in the flp_dec_samp_dist notebook.

sizes, second, there is no rationale for limiting group
level analyses to mean differences - for instance, our
simulations suggest that tests on medians of medians
can perform very well. Like t-tests, standard ANOVAs on

group means are not robust, and alternative techniques
should be considered, involving trimmed means, medi-
ans and M-estimators (Field and Wilcox, 2017; Wilcox
and Rousselet, 2018). More generally, standard pro-

https://github.com/GRousselet/rogme
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cedures using the mean lack power, offer poor control
over false positives, lead to inaccurate confidence in-
tervals, and can have low estimation accuracy (Field
and Wilcox, 2017; Wilcox and Rousselet, 2018; Davis-
Stober, Dana, and J. N. Rouder, 2018). Using means
as measures of location can also mislead researchers
when sampling from skewed distributions (Rousselet,
Pernet, and Wilcox, 2017; Trafimow, T. Wang, and C.
Wang, 2018).

Another important data analysis topic considered by
Ratcliff (1993) is the use of data transformations, such
as the log transform and the inverse or reciprocal trans-
form. Data transformations are routinely used to nor-
malise distributions, which can be successful in some
situations (Marmolejo-Ramos et al., 2015). However,
they sometimes fail to remove the skewness of the orig-
inal distributions, and they do not effectively deal with
outliers (Wilcox, 2017). Recent simulations also sug-
gest that for inferences on the mean, transformations
do not increase statistical power and can even lower it
in some cases (Schramm and J. Rouder, 2019). Also,
applying a transform changes the shapes of the distri-
butions, which contain important information about the
nature of the effects. And once data are transformed,
inferences are made on the transformed data, not on
the original ones, an important caveat that tends to
be swept under the carpet when results are discussed.
There is nevertheless a place for transformations chosen
in a principled way to aid interpretation, for instance
a log transformation to investigate multiplicative (non-
linear) relationships.

As an alternative to transforms, Ratcliff (1993) also
discusses the use of truncation. But truncating distri-
butions can also be detrimental, because it can intro-
duce bias, especially when used in conjunction with the
mean (Miller, 1991; Ulrich and Miller, 1994). Indeed,
common outlier exclusion techniques lead to biased es-
timation of the mean (Miller, 1991). When applied to
skewed distributions, removing any values more than
2 or 3 standard deviation from the mean affects slow
responses more than fast ones. As a consequence, the
sample mean tends to underestimate the population
mean. And this bias increases with sample size because
the outlier detection technique does not work for small
sample sizes, which results from the lack of robustness
of the mean and the standard deviation (Wilcox and Ke-
selman, 2003). The bias also increases with skewness.
Therefore, when comparing distributions that differ in
sample size, or skewness, or both, differences can be
masked or created, resulting in inaccurate quantifica-
tion of effect sizes. Truncation using absolute thresh-
olds (for instance by removing all RT < 300 ms and
all RT > 1,200 ms and averaging the remaining val-

ues) also leads to potentially severe bias of the mean,
median, standard deviation and skewness of RT dis-
tributions (Ulrich and Miller, 1994). The median is,
however, much less affected by truncation bias than the
mean. Also, the median is very resistant to the effect
of outliers and can be used on its own without relying
on dubious truncation methods. In fact, the median is a
special type of trimmed mean, in which only one or two
observations are used and the rest discarded (equiva-
lent to 50% trimming on each side of the distribution).
There are advantages in using 10% or 20% trimming
in certain situations, and this can done in conjunction
with the application of t-tests and ANOVAs for which
the standard error terms are adjusted (Wilcox and Ke-
selman, 2003; Wilcox, 2017).

Overall, there is no convincing evidence against using
the median of RT distributions, if the goal is to use only
one measure of location to summarise the entire distri-
bution. Which to use, the mean or the median, depends
on the empirical question and the type of data at hand.
In many situations, we argue that neither should be
used. Clearly, a better alternative is to not throw away
all the information available in the raw distributions,
by studying how entire distributions differ (Heathcote,
Popiel, and Mewhort, 1991; Baayen and Milin, 2010;
Rousselet, Pernet, and Wilcox, 2017; J. N. Rouder and
Province, Submitted). This can be done for instance
using the hierarchical shift function introduced in this
article. Looking at multiple quantiles provides an effec-
tive way to boost power and, combined with detailed
graphical representations, to understand how and by
how much distributions differ. To be clear, we are not
suggesting that the hierarchical shift function should
be used in all situations. The choice of estimators and
tests depends on the goal of the experimenter, and no
method dominates. The particular implementations of
the hierarchical shift function considered here is one
of many potential candidates. It also has clear disad-
vantages over other methods. For instance, it does not
include the shrinkage afforded by hierarchical models
(J. N. Rouder and Province, Submitted). It is also blind
to the underlying generative model, so it does not allow
inferences more directly related to cognitive processes
(Matzke et al., 2013; Voss, Nagler, and Lerche, 2013).
More generally, very specific questions can be better an-
swered by very specific tools, such that a diverse and
flexible toolbox is required. For instance, some methods
have been proposed to quantify the minimal reaction
times at which conditions differ — a specific question
that cannot be answered by standard methods (Rousse-
let, Macé, and Fabre-Thorpe, 2003; Reingold and Sheri-
dan, 2018).

Given the diversity of options available to study
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skewed distributions, we envisage that hierarchical shift
functions could be used to achieve different goals:

• to summarise data numerically and graphically, as
part of exploratory data analyses (EDA);

• to replace t-tests, by providing relatively simple
but much more robust and informative alterna-
tives;

• to test more specific hypotheses than differences
in location;

• to provide an intermediate step between t-tests
and multi-level (hierarchical) models, to nudge
users towards more comprehensive solutions.

Whatever the approach, or conjunction of approaches
chosen, we need to consider the shape of the distribu-
tions and outliers at both levels of analysis: in each par-
ticipant and across participants. And these choices must
be justified. Using group means of individual means by
default is not wise or justified.

Finally, depending on the type of data and the goals
of the experiment, an important question is how to
spend our money: by investing in more trials or in more
participants (J. N. Rouder and Haaf, 2018)? An answer
can be obtained by running simulations, either data-
driven using available large datasets or assuming gen-
erative distributions (for instance ex-Gaussian distribu-
tions for RT and other skewed distributions). Simula-
tions that take shape information into account are im-
portant to estimate bias and power. Assuming normality
can have disastrous consequences (Wilcox and Rousse-
let, 2018). In many situations, simulations will reveal
that much larger samples than commonly used are re-
quired to improve our estimation precision (Schönbrodt
and Perugini, 2013; Peters and Crutzen, 2017; Rothman
and Greenland, 2018; Trafimow, 2019).
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